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Parc Scientifique et Technologique de Luminy,
163, avenue de Luminy - Case 901,
F-13288 Marseille Cedex 9, France.

gardi@lidil.univ-mrs.fr

Abstract/Résumé

In this note, the mutual exclusion scheduling problem is considered. Given an undirected

graph G and an integer k, the problem is to find a minimum coloring of G such that each

color is used at most k times. The cardinality of such a coloring is denoted with χ(G, k). For

intervals graphs, the problem is known to be NP-complete even for fixed k ≥ 4. We prove

that if an interval graph or more generally a circular-arc graph G with n vertices admits a

coloring such that each colour is used at least k times, then χ(G, k) equals the lower bound

dn/ke. The proof yields a linear-time algorithm to solve the problem in this case which finds

applications in schedules planning. Then, the assertion is extended to the class of triangulated

graphs for k ≤ 3 and disproved for bounded tolerance graphs and co-comparability graphs.

Keywords: scheduling, colorings, interval graphs, classes of graphs.

Dans cette note, un problème d’ordonnancement avec exclusion mutuelle est abordé. Etant

donné un graphe non-orienté G et un entier k, le problème consiste à trouver une coloration

de G tel que chaque couleur apparaisse au plus k fois. La cardinalité d’une telle coloration

est notée χ(G,k). Pour les graphes d’intervalles, le problème est NP-complet même pour

une valeur fixée k ≥ 4. Nous prouvons que si un graphe d’intervalles ou plus généralement

un graphe d’arc circulaires G à n sommets admet une coloration tel que chaque couleur est

utilisée au moins k fois, alors χ(G, k) égale la borne inférieure dn/ke. La preuve fournit un

algorithme linéaire pour résoudre le problème dans ce cas qui possède des applications dans

la planification d’horaires de travail. Ensuite, ce résultat est étendu à la classe des graphes

triangulés pour k ≤ 3 et réfuté pour les graphes de tolérance bornée et les compléments des

graphes de comparabilité. Mots-clés : ordonnancement, colorations, graphes d’intervalles,

classes de graphes.

Relecteurs/Reviewers: Michel Van Canegehem, Alain Colmerauer.



1 Introduction

Definition of the problem. The following problem arises in scheduling the-
ory: n unit-time jobs must be complete on k processors in a minimum time
with the constraint that some jobs cannot be executed at the same time be-
cause they share a same ressource. Many variants of this problem have been
considered in combinatorial optimization and operations research litterature
(see [19, 5, 4, 16, 1] for different applications). Such scheduling problems can be
alternatively formulated in graph-theoretic terms. By creating an undirected
graph G = (V, E) with a vertex for each of the n jobs and an edge between
each pair of conflicting jobs, we can see that a schedule of minimum length
corresponds to a partition of V into a minimum number of independent sets
of size at most k. In this way, B.S. Baker and E.G. Coffman [1] called Mutual
Exclusion Scheduling (MES) the following graph-theoretical problem: given an
undirected graph G and a natural number k, find a minimum coloring of G
such that each colour is used at most k times. The cardinality of this a color-
ing shall be denoted by χ(G, k). A trivial lower bound for χ(G, k) is given by
max(χ(G), dn/ke), where χ(G) is the chromatic number of the graph G.

Since coloring a graph is a NP-complete problem [18], MES is NP-complete
too. Then, MES was studied for classes of graphs for which the coloring problem
is polynomial, notably the perfect graphs (see [11] for an introduction to the
world of perfect graphs). Unfortunately, MES remains NP-complete for many
basic classes of perfect graphs: bipartite graphs, cographs, interval and triangu-
lated graphs [5], permutation and comparability graphs [17]. At our knowledge,
MES is proved to be polynomial-time solvable only for forests and trees [1], split
graphs [20], complements of interval graphs [5] and proper interval graphs [7].

Results and applications. Our interest to the MES problem for interval
graphs comes from a working schedules planning problem (WSP), which has
actually inspired this research. This problem has the following definition. Let
{Ti}i=1,...,n be a set of tasks having each one a starting date li and an ending
date ri. The reglementation imposes that an employee cannot execute more
than k tasks. Given that the tasks allocated to an employee must not overlap,
find a planning requiring the minimum number of employees. Since the tasks
are some intervals of the real line, the WSP problem is equivalent to the MES
problem for interval graphs. If the tasks are cyclic then the problem becomes
equivalent to the MES for circular-arc graphs.

A undirected graph G = (V, E) is an interval graph if to each vertex v ∈ V
an interval Iv = [le(Iv), re(Iv)] on the real line can be associated such that
each pair of distinct vertices u, v ∈ V are adjacent if and only if Iu ∩ Iv 6= ∅.
The family {Iv}v∈V is an interval representation of G. The intersection graph
obtained from collections of arcs on a circle is called circular-arc graph. A
circular-arc representation {Av}v∈V of an undirected graph G which fails to
cover some point p on the circle will be topologically the same as an interval
representation of G. Specificially, we can cut the circle at p and straighten it
out a line, the arcs becoming intervals. It is easy to see therefore, that every
interval graph is a circular-arc graph.

Interval graphs are colorable in linear time [11, 14, 22] whereas coloring
circular-arc graphs is an NP-complete problem [8]. Nevertheless, MES for in-
terval graphs is NP-complete even for fixed k ≥ 4 (at our acquaintance the
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problem for k = 3 remains an open question) [5]. Moreover, the reduction given
in [5] can be slightly modified to establish the NP-completeness of MES for
circular-arc graphs with fixed k ≥ 3. In a first section, the following sufficient
condition is given to obtain χ(G, k) = dn/ke for MES with interval and circular-
arc graphs: there exists a coloring of the graph G such that each color is used
at least k times. The constructive proof yields a linear-time algorithm to solve
the MES problem in this case (given the graph and the coloring in input). One
corollary of this result is: for an interval graph (or a circular-arc graph) G, if
χ(G, k) = dn/ke then for all k′ < k, we have χ(G, k′) = dn/k′e too. Such a
result finds applications in WSP of certain municipal bus drivers or air terminal
personnels (schedules planning problems solved by the firm Prologia–Groupe
Air Liquide [2]). Indeed, the movements of buses or planes in these cases gener-
ated some packets of consecutive tasks inducing independent sets of size larger
than k (for reasonnable values of k like 3, 4, 5).

Extensions. Two common super-classes of interval graphs are the classes of
triangulated graphs and complements of comparability graphs. Triangulated
graphs (also called chordal graphs) are the graphs without a cycle of length four
or more as an induced subgraph. A triangulated graph can be represented by an
intersection graph of a family of subtrees of a tree. Thus, each interval graph is
triangulated. The complement G = (V, F ) of an interval graph G can be transi-

tively oriented by setting (u, v) ∈ ~F if re(Iu) < le(Iv) (we shall write Iu ≺ Iv if
re(Iu) < le(Iv)). Transitively orientable (or partially orderable) graphs are also
known as comparability graphs. Hence, each interval graph is the complement
of a comparability graph, shortly a co-comparability graph. Interval graphs are
exactly the graphs which are both triangulated and co-transitively orientable
[10]. Another interesting class which contains interval graphs is the class of
tolerance graphs. A graph G = (V, E) is a tolerance graph if each vertex v ∈ V
can be assigned an interval Iv and a positive real number tv referred to as its
tolerance, such that for each pair of distinct vertices, uv ∈ E if and only if
|Iu ∩ Iv | ≥ min(tu, tv). The family {Iv}v∈V is a tolerance representation of G.
If a graph has a tolerance representation such that the tolerance of each vertex
v ∈ V is smaller than the length of Iv , then this graph is called a bounded
tolerance graph. Bounded tolerance graphs are co-comparability graphs [13].

Triangulated graphs are colorable in linear time [9] whereas coloring co-
comparability or tolerance graphs takes O(n3) time [11]. The MES problem is
NP-complete for triangulated and co-comparability graphs even for fixed k ≥ 3
[20, 17]. In a second section, we study the impact of the condition previously
defined on MES with these super-classes of interval graphs. We extend the
result of the first section to the triangulated graphs for k = 2, 3 (we conjecture
that the property holds for any integer k). Finally, we give counter-examples for
bounded tolerance graphs and also for co-comparability graphs with any integer
k.

4



I

CA

TI

coCT

BTI

Fig. 1. Inclusion hierarchy of interval graphs (I),

circular-arc graphs (CA), triangulated graphs (T), toler-

ance graphs (TI), bounded tolerance interval graphs (BTI)

and co-comparability graphs (coC).

Fig. 1 summarizes the inclusion hierarchy of the classes of graphs previously
defined. For more details on these graphs and their applications, the interested
reader can consult [23, 11, 3, 12] for surveys. All graph-theoretical terms not
defined here can be found in [3, 11].

2 A sufficient condition for MES with interval

and circular-arc graphs

First we prove the validity of the sufficient condition for MES with interval
graphs.

Proposition 1 Let G be an interval graph with n vertices and k an integer. If G
admits a coloring such each color is used at least k times, then χ(G, k) = dn/ke.
Moreover, a partition of G into dn/ke independent sets can be computed in O(n)
time and O(n) space given an ordered interval representation and the coloring
in input.

The proof is essentially based on the following lemma.

Lemma 1 Let S1, . . . , St be t independent sets of G satisfying the following
conditions:

. t ∈ {1, . . . , k},

. for i = 1, . . . , t, |Si| = k + ri with ri ∈ {1, . . . , k − 1},

. r =
∑t

i=1
ri ≥ k.

Then there exists an independent set S∗ of size r such that for all i = 1, . . . , t,
ri intervals of S∗ belong to Si. In other words, S1, . . . , St admits an optimal
partition into t independent sets of size k and one independent set of size r.

Proof. An algorithm having in input an interval representation of S1, . . . , St is
proposed for the construction of S∗. The intervals of each independent set are
supposed to be ordered according to the relation ≺. The rank of an interval in
its independent set is its number in this order. In this way, Ii,j denotes the in-
terval of rank j in the independent set i. At each step, the algorithm selects one
interval among the t independent sets, removes it from its independent set and
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includes it in S∗. After k steps, the independent set S∗ is returned in output.
The selection of I∗

j (ie. the interval of rank j in S∗) is done as follows: choose
the interval having the smallest right endpoint among the intervals of rank j,
which belong to independent sets of size still larger than k (see Fig. 2). The
complete procedure is detailed below.

Algorithm ExtractStable;

Input: k an integer,

S1, . . . , St some independent sets satisfying the conditions of Lemma 6;

Output: S∗ = {I∗1 , . . . , I∗k} an independent set;

begin;

S∗ ← ∅;

for j ← 1, . . . , r do

F ← ∅;

for i← 1, . . . , t do

if |Si| > k then

F ← F ∪ {Ii,j};

let I∗j be the interval having the smallest right endpoint in F ;

remove I∗j from its independent set and add it to S∗;

return S∗;

end;

S2

I∗
1

S3

I∗
2

S1

I∗
3

Fig. 2. An example of the execution of the algorithm with k = 3.

To conclude, the correctness of the algorithm is established. At each step of
the algorithm, an interval is selected (every input independent set has at least k
intervals). Therefore, S∗ contains exactly r intervals in output. Now, we claim
that for all j = 1, . . . , r − 1, we have I∗

j ≺ I∗j+1, ie. re(I∗

j ) < le(I∗j+1). Indeed,
assume that I∗

j ≡ Iu,j and I∗j+1 ≡ Iv,j+1 with u, v ∈ {1, . . . , t}. If u = v, the
claim is proved. Otherwise, suppose that I∗

j and I∗j+1 are intersecting. We have
le(Iv,j+1) ≤ re(Iu,j) and also re(Iv,j) < re(Iu,j). Now, Iv,j+1 ∈ F at step j + 1
implies necessarily Iv,j ∈ F at step j. Then, Iv,j has a smaller right endpoint
than Iu,j ≡ I∗j in F at step j, which is a contradiction. �

Now the proposition is proved as follows.

Proof of Proposition 1. Let S = {S1, . . . , Sq} be a partition of G into
independent sets such that for all i = 1, . . . , q, we have |Si| ≥ k. Define
|Si| = αik+βi to be the size of an independent set Si with αi a non-zero integer
and βi ∈ {0, . . . , k−1}. First, from each independent set Si are extracted αi−1
independent sets of size k, plus one if βi = 0. After this preprocessing, at most
2k−1 intervals remain in each independent set. Then, Lemma 1 is applied with
t = k to extract independent sets of size k while at least k independent sets of
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size strictly larger than k exist in the partition S. When it remains less than k
such independent sets in S, a last application of Lemma 1 allows to conclude.
The execution of Algorithm ExtractStable requiring k O(t) time, the method
described here runs in k O(n/k) = O(n) time (given the intervals ordered ac-
cording to ≺ in each input independent set). �

Now, by a simple extension of Lemma 1, we establish that Proposition 1
holds for circular-arc graphs too. This extension relies on a simple fact: by
removing the arcs which contain any point p on the circle, a circular-arc graph
becomes an interval graph. Thus, the previous algorithm can be modified as
follows to be still correct for circular-arc graphs. Select any point p on the circle.
Moving clockwise once around the circle, define Ii,j to be the jth arc (become
interval) following the arc containing p. Then, use Algorithm ExtractStable to
obtain a solution (the right endpoint becomes the clockwise endpoint). The
proof of the correctness remains the same since the arcs containing the point p
induces a clique. Indeed, we always have I∗

j ≺ I∗j+1 for all j = 1, . . . , r − 1 and
in addition, I∗r ∩I∗1 = ∅ (the contrary would imply that I∗

r contains the point p).
Finally, Lemma 1 is always applyable for circular-arc graphs and the following
proposition is established.

Proposition 2 Let G be a circular-arc graph with n vertices and an integer
k. If G admits a coloring such that each color is used at least k times, then
χ(G, k) = dn/ke. Moreover, a partition of G into independent sets of size at
most k can be computed in O(n) time and O(n) space given an ordered circular-
arc representation and the coloring in input.

Remark. Ordered interval (or circular-arc) representations can be com-
puted in linear time by using recognition algorithms for interval (or circular-arc)
graphs (see [6, 15] and [21]).

Corollary 1 Let G be an interval graph (or a circular-arc graph) with n ver-
tices. If χ(G, k) = dn/ke then χ(G, k′) = dn/k′e for all integer k′ < k.

3 Extensions for triangulated graphs

In this section, we extend Proposition 1 to the class of triangulated graphs for
values k = 2, 3. We shall denote with d(v) the degree of a vertex v.

Proposition 3 Let G be a triangulated graph with n vertices and an integer
k ≤ 3. If there exists a coloring of G such each color is used at least k times,
then χ(G, k) = dn/ke.

The following lemma establishes immediately the proposition for k = 2.

Lemma 2 Let A and B two independent sets of size 2 in G. Then there exists
an independent set of size 2 having exactly a vertex in A and a vertex in B.

Proof. Let A = {a1, a2} and B = {b1, b2}. Suppose that there is no indepen-
dent set such that it is described in the lemma. This implies that a1 is connected
to b1 and b2 and a2 is connected to b1 and b2 too. In this case, {a1, b1, a2, b2, a1}
is a cycle of length four without a chord, which is a contradiction. �

For k = 3, the proof relies on the following lemmas.

7



Lemma 3 Let H = (X, Y, E) be a triangulated bipartite graph with |X |+ |Y | =
n and |E| = m. Then we have the (in)equalities

∑
x∈X d(x) =

∑
y∈Y d(y) =

m ≤ n − 1.

Proof. The equality
∑

x∈X d(x) =
∑

y∈Y d(y) = m holds because H is bipar-
tite. Moreover, a triangulated bipartite graph is isomorphic to a tree (a bipartite
graph cannot contain a cycle of length three). Hence, we have m ≤ n − 1. �

Lemma 4 Let H = (A, B, E) be a triangulated bipartite graph such that |A| =
|B| = 4. There exists in H an independent set of size 4 having exactly two
vertices in A and two vertices in B.

Proof. Suppose that such an independent set does not exist and set A =
{a1, a2, a3, a4} and B = {b1, b2, b3, b4}. We claim that for all distinct pairs
ai, aj ∈ A, we have d(ai) + d(aj) ≥ 3. Indeed, the contrary implies that there
are at least two vertices in B which are not connected to ai and aj and also
implies the existence of an independent set of size 4 with two vertices in A and
two vertices in B. According to “pigeon hole” principle, this claim imposes to
A to contains three vertices of degree at least 2. On the other hand, Lemma
3 imposes to the sum of degrees in A to be smaller than 7. Thus, without
loss of generality, we can set d(a1) ≤ 1, d(a2) ≥ 2, d(a3) ≥ 2 and d(a4) ≥ 2.
Now, by applying Lemma 3 to the bipartite subgraph induced by A \ {a1} and
B, we obtain the stronger condition d(a2) + d(a3) + d(a4) ≤ 6 which implies
(a) d(a2) = d(a3) = d(a4) = 2. By using a similar proof with the bi’s, we
establish that (b) d(b1) = d(b2) = d(b3) = 2. Therefore, by supposing that
d(a1) = d(b4) = 1 (in the worst case), the conditions (a) and (b) implies that
H is isomorphic to a chain (see Fig. 3).

a1 a2 a4a3

b1 b2 b3 b4

Fig. 3. The chain.

In this case, {a1, a2, b3, b4} induces an independent set of size 4 with two
vertices in A and two vertices in B, which is in contradiction with our first
hypothesis. �

Lemma 5 Let H = (A ∪ B, C, E) be a triangulated bipartite graph such that
|A| = |B| = 2 and |C| = 4. There exists in H an independent set of size 3
having exactly one vertex in A, one vertex in B and one vertex in C.

Proof. Suppose that such an independent set does not exist and let A =
{a1, a2}, B = {b1, b2} and C = {c1, c2, c3, c4}. First, we claim that for all
pairs ai, bj , we have d(ai) + d(bj) = 4 (the contrary implies the existence of
a desired independent set). By summing on all the pairs ai, bj , we obtain
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d(a1) + d(a2) + d(b1) + d(b2) = 8. This is in contradiction with the condi-
tion d(a1) + d(a2) + d(b1) + d(b2) ≤ 7 imposed by Lemma 3. Consequently, our
hypothesis is false and the desired independent set exists. �

By using the proof of Proposition 1 with the following lemma, we establish
definitely Proposition 3 for k = 3.

Lemma 6 Let G be a triangulated graph.

(1) If A, B, C are three independent sets of G of size 4, then there exists an
independent set of size 3 having exactly one vertex in A, one vertex in B
and one vertex in C,

(2) If A, B are two independent sets of G respectively of size 5 and 4, then
there exists an independent set of size 3 having exactly two vertex in A
and one vertex in B.

(3) If A, B are two independent sets of G respectively of size 4 and 4, then
there exists an independent set of size 2 having exactly one vertex in A
and one vertex in B.

Proof. The first assertion is proved by applying successively Lemmas 4 and
5 with independent sets A, B, C. The second and third assertions are directly
deduced from Lemma 4 (or simply by Lemma 2 for the third one). �

The proof technique used to establish Proposition 3 is essentially based on
the fact that a triangulated bipartite graph is isomorphic to a tree and also is
not a dense graph. That is why we conjecture that Proposition 3 holds for any
integer k.

4 Counter-examples for bounded tolerance and

co-comparability graphs

To conclude, we show that Proposition 1 cannot be extended to bounded toler-
ance graphs and also to co-comparability graphs. In effect, the graph Kk+1,k+1

is a counter-example for any integer k. Kk+1,k+1 is the complete bipartite graph
on 2k + 2 vertices partitioned into two k + 1-independent sets.

I0 I1 I2

t0 = t1 = t2 = 0

t3 = 5

t4 = 5

t5 = 5

0 1 2 3 4 5

I5

I4

I3
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Fig. 4. The bounded tolerance graph K3,3 for k = 2.

Such a graph has the following bounded tolerance representation (see Fig. 4):
define k + 1 intervals I0 = [0, 1], I1 = [2, 3], . . . , Ik = [2k, 2k + 1] with tolerances
t0 = t1 = · · · = tk = 0 and k+1 intervals Ik+1 = Ik+2 = · · · = I2k+1 = [0, 2k+1]
with tolerances tk+1 = tk+2 = · · · = t2k+1 = 2k + 1. It is easy to show that
χ(Kk+1,k+1, k) = 4 since two vertices of different independent sets cannot be
matched. Finally, this bound is strictly larger than the lower bound dn/ke =
d(2k + 2)/ke = 3.
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