
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS - Université de Provence - Université de la Méditerranée

On decidability of the control reachability

problem in the asynchronous π-calculus

Roberto M. Amadio, Charles Meyssonnier

Rapport/Report 04-2002

31 Mai, 2002

Les rapports du laboratoire sont téléchargeables à l’adresse suivante

Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

1



On decidability of the control reachability

problem in the asynchronous π-calculus

Roberto M. Amadio, Charles Meyssonnier

Laboratoire d’Informatique Fondamentale

UMR 6166
CNRS - Université de Provence - Université de la Méditerranée

Université de Provence

{amadio,meyssonn}@cmi.univ-mrs.fr

Abstract/Résumé

We study the decidability of the control reachability problem for various fragments of the asynchronous π-

calculus. We consider the combination of three main features: name generation, name mobility, and unbounded

control. We show that the combination of name generation with either name mobility or unbounded control

leads to an undecidable fragment. On the other hand, we prove that name generation with unique receiver

and bounded input (a condition weaker than bounded control) is decidable by reduction to the coverability

problem for Petri Nets with transfer (and back).

Nous étudions la décidabilité d’un problème d’accessibilité pour plusieurs fragments du π-calcul asyn-

chrone. Nous considérons la combinaison de trois aspects principaux : la génération de noms, la mobilité de

noms et le contrôle non borné. Nous montrons que la combinaison de la génération de noms avec ou bien la

mobilité de noms ou bien le contrôle non borné induit un fragment indécidable. D’autre part, nous démontrons

que la génération de noms avec recepteur unique et avec input borné (une condition plus faible que le contrôle

borné) est décidable par reduction au problème de couverture pour les Réseaux de Petri avec transfert (et vice

versa).

Relecteurs/Reviewers: Silvano Dal Zilio, Denis Lugiez.

Notes: The authors are partly supported by IST Profundis. A preliminary version of this
article appeared in Electronic Notes in Theoretical Computer Science 52.1 and as INRIA
Research Report 4241. A revised version will appear in the Journal of Nordic Computing.

2



1 Introduction

In the last fifteen years a variety of formalisms or calculi have been proposed for the description
of interactive systems including notions such as ‘object’, ‘mobility’, ‘migration’, ‘cryptographic
function’,. . . A common aspect of these formalisms is the emphasis on the generation and the
management of names. Indeed, formalisms such as the π-calculus or the join-calculus can be
regarded as elaborations over well known models like ccs [23] or Petri Nets (see, e.g. [27]),
respectively, where a notion of generation and mobility of names is added.

The programming languages community has undergone a similar evolution moving from
static memory management languages like Fortran to dynamic memory management lan-
guages like Pascal and, nowadays, object oriented languages. The introduction of references
in programming languages has required a considerable rethinking of the run time support
going from the introduction of a heap memory to the development of garbage collection al-
gorithms. The automatic verification community is now confronted to a similar problem. The
current technology applies well to finite state systems but its extension to more expressive
models is not so well-understood. For instance, if we consider the situation for the π-calculus,
which has a prominent role among the calculi including name generation, the decidability
result we are aware of concern the synchronous π-calculus with bounded control (see, e.g.,
[9, 24]).

We believe that an interesting problem is to go beyond this restricted framework. In par-
ticular, we propose to look at properties of the reduction relation such as control reachability,
boundedness, deadlock, liveness,. . . for process calculi based on the asynchronous π-calculus
[8, 18, 4] – we recall that ‘asynchronous’ here refers to a communication mechanism where
messages are put in an unbounded and unordered buffer and that in the process calculus
jargon this amounts to disallow the output prefix; by opposition, the synchronous π-calculus
forces a synchronization between the sender and the receiver. We pause to note that the
quest for decidability results for equivalence problems (trace, bisimulation,. . .) is discouraged
by the negative results known for Petri Nets [17, 20] and the fact that, as we will see, even
restricted fragments of the asynchronous π-calculus have an expressive power that goes well
beyond Petri Nets.

Our interest in the asynchronous π-calculus stems from the observation that the core of
concurrent programming languages such as Pict [25], Join [15], or Tyco [30] are based on
it and the remark that object-oriented programming languages enjoy a rather direct repres-
entation in these formalisms. Thus advances in the analysis of this calculus are likely to have
an impact on ‘practical’ program analysis. In this paper, we will mainly consider a minimal
asynchronous, polyadic, simply sorted π-calculus not including external choice and we will
concentrate on three main ‘features’ of this minimal calculus:

• Name generation, i.e. the possibility of generating fresh names (values, channels,. . .).

• Name mobility, i.e. the possibility of transmitting names.

• Unbounded control, i.e. the possibility of dynamically adding new threads of control.

In the absence of name generation, our formalism can be mapped to Petri Nets. This encoding,
basically going back to early work [16] on the translation of ccs to Petri Nets, settles most
interesting decision problems for the fragment without name generation. Therefore, the main

3



issue that, in our opinion, remains to be clarified is whether there exist decidable fragments
that include some form of name generation.

Our main results are as follows:

1. The combination of name generation and name mobility leads to an undecidable frag-
ment even assuming the control finite.

2. The combination of name generation and unbounded control leads to an undecidable
fragment even assuming that no name is transmitted (this refines a well-known unde-
cidability result for ccs).

3. Name generation with unique receiver and bounded input conditions is decidable by
reduction to the coverability problem for Petri Nets with transfer.

Roughly, the unique receiver condition entails that at most one thread can perform an
input on a generated name, and the bounded input condition makes sure that there is a bound
on the number of generated names on which an input can be performed (bounded control
implies bounded input, but not vice versa; more on this in section 6.1).

Our third (and main) result generalizes a previous result we presented in [6] stating that
name generation without name mobility and with bounded control is decidable by reduction
to the coverability problem for Petri Nets. The generalization has a price as we have to move
to a more general form of Petri Nets with transfer.

We also observe that the coverability problem for Petri Nets (Petri Net with transfer) can
be encoded into the control reachability problem for bounded control systems without name
mobility (bounded control systems without name mobility and with name generation). This
shows that the reduction of the control reachability problem to the coverability problem for
Petri Net (with transfer) is not an overkill and it also provides another example of the blow
up in complexity due to the introduction of name generation (cf. remark 6.11).

2 Asynchronous π-calculus

We fix our notation for the asynchronous polyadic π-calculus. Simple sorts are defined by the
following grammar:

s ::= o || Ch(s, . . . , s) (1)

where intuitively o is some ground sort and Ch(s1, . . . , sn) is the sort of channels carrying
n data of sort s1, . . . , sn. We assume a set of names, ranged over by a, b, c, . . . and suppose
that (i) every name a comes with a fixed sort st(a) = s and that (ii) for every sort there are
denumerable many names of that sort.

We also assume a denumerable set of parametric process identifiers A,B, . . . and suppose
that every identifier A comes with a fixed sort st(A) = Ch(s1, . . . , sn) so that n is the number
of parameters and si the sort of the ith parameter.

Vectors of names (possibly empty) are denoted ~a,~b, . . . We denote with [~b/~a] a substitution
on names. In substitutions, a name (an identifier) can only be replaced by a name (an
identifier) with the same sort.

We consider a polyadic, simply sorted, asynchronous π-calculus with the standard opera-
tions of message creation a~b, input prefix a(~b).P , parallel composition P | Q, name generation
(νa)P , and parametric recursive definitions. The latter is preferred to iteration because it

4



allows a better control on the creation and termination of parallel threads. If ~a ≡ a1, . . . , an

then we use (ν~a) as a shorthand for (νa1) . . . (νan) and, without loss of generality, we assume
that the names ai are all distinct.

A process is presented by a finite system E of parametric equations A(a1, . . . , an) = P
and an initial configuration where we assume that: (i) every process identifier is defined by
exactly one equation and (ii) the names occurring free in P are included in {~a}.

It will be convenient to assume that every parametric equation has the following normalised
shape:

A(~a) = a(~a′).(ν~a′′)(Πi∈Iai~ai | Πj∈JAj(~aj)) . (2)

Such an equation specifies a process that inputs a message and then generates new names,
sends a number of messages, and runs a number of continuations. The sets I and J are
assumed finite (possibly empty, in which case the parallel composition reduces to the termin-
ated process 0). We note that in 2 the names ~a, ~a′, and ~a′′ are bound. We will assume that
they are renamed so that they are all distinct.

Also, we assume that 2 is well-sorted which means that: (i) if st(A) = Ch(s1, . . . , sn)
then ~a ≡ a1, . . . , an and st(ai) = si; (ii) if st(a) = Ch(s1, . . . , sn) then ~a′ ≡ a′1, . . . , a

′
n and

st(a′i) = si; and (iii) similar conditions hold for the messages ai~ai and the continuations
Aj(~aj)).

Given a finite system of recursive equations as above, a configuration is a normalised
process of the shape:

(ν~a)(Πi∈Iai(~ai) | Πj∈JAj(~aj))

where as usual ‘Π’ stands for the parallel composition. Let P,Q be two configurations. We
write P ≡ Q if P is syntactically equal to Q up to renaming of bound names, permutation of
name generations, and associativity and commutativity of parallel composition. We denote
with fn(P ) the set of names occurring free in P .

Next we introduce the reduction relation on configurations. All we want to capture is the
usual reduction rule

a~b | a(~c).P → [~b/~c]P

allowed to take place under name generation and parallel composition, up to a suitable struc-
tural equivalence. Our definition of reduction is a bit technical because (i) it has to evaluate
the actual parameters, (ii) unfold a recursive definition to find an input prefix matching a
message, and then (iii) bring at top level the name generations, the messages, and the con-
tinuations under the input prefix. The advantages of this approach are that we can then
(i) limit the structural rules to the ones stated above, (ii) give a compact normal form for
configurations, and (iii) provide a simple translation to Petri Nets.

Definition 2.1 (reduction) If the equation associated to the process identifier A is (2) and

(1) P ≡ (ν~b′)(A(~b) | c(~c) | Q),

(2) the sets {~a,~a′,~a′′} and {~b′} ∪ fn(P ) are mutually disjoint,

(3) σ ≡ [~b/~a,~c/~a′],

(4) and σ(a) = c then

P → (ν~b′,~a′′)(Πi∈Iσ(ai~ai) | Πj∈JAj(σ~aj) | Q) . (3)

5



We may wonder whether our normalised configurations can represent all usual processes
of the π-calculus, say:

p ::= a~b || a(~b).p ||!(a(~b).p) || (νa)p || (p | p) .

Indeed, this can be easily checked. We note that, up to structural equivalence, a process p in
the usual notation can always be written as:

p ≡ (ν~a)(Πi∈Iai~ai | Πj∈Jaj(~aj).pj | Πk∈K !(ak(~ak).pk)) .

We claim that we can build a configuration P and a set of equations E whose behaviour
is equivalent to p’s. We proceed by induction on the structure of p to generate the set of
equations. For every process aj(~aj).pj we introduce a fresh process identifier Aj(. . .) and the
equation Aj(. . .) = aj(~aj).Qj where Qj is obtained by applying inductively the transforma-
tion to pj. Similarly, for every process !(ak(~ak).pk)) we introduce a fresh process identifier
Ak(. . .) and the equation Ak(. . .) = ak(~ak).(Ak(. . .) | Qk), where Qk is obtained by applying
inductively the transformation to pk.

Reassured about the expressivity of our formalism, we can now formally state the control
reachability problem we address in this paper.

Definition 2.2 (control reachability) Given a system of equations E containing a process
identifier A and a related initial configuration P , the control reachability problem asks whether
P reduces to a configuration containing the process identifier A, i.e. P →∗ (ν~a)(. . . | A(~b) |
. . .), for some ~a,~b.

In section 3.4, we will relate this problem to the well known coverability problem for Petri
Nets.

3 The fragment without name generation reduces to Petri
Nets

We consider the fragment where 2 is restricted to having the shape:

A(a1, . . . , an) = b(a′1, . . . , a
′
m).(Πi∈Ibi

~bi | Πj∈JAj(~bj)) . (4)

In this fragment no name generation is allowed. Given such a system of equations and an
initial configuration P we will recall below the standard construction of a Petri Net that
simulates the reduction of the process.

3.1 Parameterless systems of equations

First we recall the notion of parameterless system of equations (a notation used, e.g., in the
context of ccs [23]). We assume a finite set N of names with generic elements x, y, . . . and
a finite set Id of identifiers with generic elements X,Y, . . . To every process identifier X we
associate an equation of the shape:

X = Σk∈Kxk.(Πi∈Ik
xi | Πj∈Jk

Xj) (5)

where K is a finite set and Σ stands for the external choice. This means that X can perform an
input on exactly one of the channels {xk}k∈K for which a corresponding message is available.

6



We emphasize that external choice is just used here to represent an intermediate step towards
the translation to Petri Nets. Indeed, external choice is easily encoded in Petri Nets as
explained in the following section 3.2. If K is empty, we take conventionally the right hand
side as the terminated process 0. The reduction rule is then formulated as follows assuming
the usual properties for parallel composition:

X | xk | P → Πi∈Ik
xi | Πj∈Jk

Xj | P . (6)

Note that here no renaming is needed and that the process identifier X is literally replaced
by the right hand side of 5 defining it. Also, since there is no name generation, all names
appearing in a reachable configuration belong to N .

3.2 From parameterless systems of equations to Petri Nets

We fix a system of equations E without parameters of the shape (5) and an initial configuration
P . Let N and Id be the set of names and identifiers, respectively, occurring in E and P .

1. We associate a distinct place to every name x ∈ N and to every process identifier
X ∈ Id . The intended interpretation is that a token at place x corresponds to a message
x while a token at place X means that the control of a thread is at X. Following this
interpretation we determine the initial marking.

2. For every equation of the shape (5) we introduce the transitions {tk}k∈K which are
connected to the places as follows: for all k ∈ K, an edge from place X to transition tk

and an edge from place xk to transition tk. Moreover, if the continuation of xk has the
shape

(Πi∈Ik
xi | Πj∈Jk

Xj)

then we add an edge from transition tk to place xi for i ∈ Ik and from transition tk to
place Xj for j ∈ Jk.

3.3 From systems without name generation to parameterless systems

We fix a system of parametric equations Eb without name generation of the shape (4) with
initial configuration P . Let Nb be the set of names occurring free in P and let Id b be the set
of process identifiers occurring in Eb.

We define the set of names N of the parameterless system as the least set such that:

a, a1, . . . , an ∈ Nb and st(a) = Ch(s1, . . . , sn), st(ai) = si, i = 1, . . . , n

〈a, a1, . . . , an〉 ∈ N

and similarly we define the set of identifiers Id of the parameterless system as the least set
such that:

A ∈ Id b, a1, . . . , an ∈ Nb and st(A) = Ch(s1, . . . , sn), st(ai) = si, i = 1, . . . , n

〈A, a1, . . . , an〉 ∈ Id
.

We write b1, . . . , bn ↓ a1, . . . , am if n = m, bi ∈ Nb, and st(bi) = st(ai) for i = 1, . . . , n. For
every equation of the shape (4) and for every vector c1, . . . , cn of names such that c1, . . . , cn ↓
a1, . . . , an we produce a parameterless equation

〈A, c1, . . . , cn〉 = Σ~c ′↓~a′ σ~c ′〈b, a′1, . . . , a
′
m〉.

σ~c ′(Πi∈I〈bi,~bi〉 | Πj∈J〈Aj ,~bj〉),

7



where σ~c ′ ≡ [~c/~a,~c ′/~a′] and we take σ〈u1, . . . , ul〉 = 〈σu1, . . . , σul〉.
It is readily verified that in this way we produce a parameterless equation for every

identifier in Id and that the names used on the right hand side belong to N . We leave it
to the reader to check that the parameterless system represents exactly the behaviour of the
parametric system.

To summarize, we can transform a parametric system into a system without parameters
but with external choice, and in turn, we can transform the latter system into a Petri Net.

3.4 From control reachability to coverability, and back

In terms of Petri Nets, the control reachability problem we have formulated in definition 2.2
amounts to checking whether certain places, corresponding to a given process identifier, will
contain a token. This is an instance of the coverability problem for which Lipton [22] has
provided a 2O(

√
n) space lower bound and Rackoff [26] a 2O(n log n) space upper bound (for a

survey on these results see, e.g., [12]).
On the other hand, it is easy to see that the coverability problem for Petri Nets can be

reduced to the control reachability problem 2.2. Given a Petri Net, for every transition t
taking, say, one token from places a1, . . . , an and putting one token in places b1, . . . , bm, we
introduce the equations (we omit the parameters):

At = a1.A
1
t A1

t = a2.A
2
t . . . An−1

t = an.(b1 | · · · | bm | At) .

Thus a transition of the Petri Net is now simulated by serialising the reading of the tokens.
If we want to know, whether, say, the place a will ever contain a token we add the equation
A = a.B. Then the initial configuration contains the process identifier At for every transition
t, a number of messages corresponding to the initial marking, and the process identifier A.
To determine whether the place a will contain a token it is then enough to check whether
the initial configuration reaches one containing the process identifier B. This reduction is
polynomial and it shows that even without mobility and without name generation the control
reachability problem 2.2 we consider requires exponential space. A variant of this translation
for Petri Nets with transfer will be presented in section 6.11.

4 The fragment with bounded control is undecidable

We say that a configuration has bounded control if there is a natural number that bounds the
number of live threads running in parallel in any accessible configuration. One can imagine
various syntactic conditions that imply this property and are efficiently checkable. To show
our negative results in this and the following section 5, it will be enough to consider the
fragment where (2) is restricted to having the shapes:

A(~a) = a(~b).(ν ~d)(Πi∈Iai
~bi | A′(~c))

A(~a) = A1(~a1) ⊕ A2(~a2) .

where ⊕ denotes the internal choice (which is only used in the following section 5). This
means that, up to internal choice, every control point has exactly one continuation and
thus the control is basically bounded by the number of parallel threads present in the initial
configuration.

8



4.1 Definability of internal choice

It is well known that internal choice is definable from parallel composition and name genera-
tion. In our case, there is just a little twist to fit the shape of the normalised equations (2).
Thus we replace the equation A(. . .) = A1(. . .) ⊕ A2(. . .) by the equations:

A(. . .) = t.(νc)(A′
1(c, . . .) | A′

2(c, . . .) | c | t)
A′

i(c, . . .) = c.Ai(. . .) for i = 1, 2

where t is a ‘global’ channel provided in the initial configuration with a message t (the channel
t plays the role of the ccs τ action).

A similar trick applies if we want to define the internal choice of two messages a1 ⊕ a2.
Then we introduce an identifier A and the equations:

A(. . .) = t.(νc)(A′
1(c, . . .) | A′

2(c, . . .) | c | t)
A′

i(c, . . .) = c.ai for i = 1, 2 .

4.2 2-counter machines

In the undecidability proofs, we simulate 2-counter machines (see, e.g., [19]) and reduce the
halting problem to the control reachability problem 2.2. We assume that a 2-counter machine
contains instructions of the form:

(1) q : Ck := Ck + 1; goto q′

(2) q : (Ck = 0) → goto q′, Ck := Ck − 1; goto q′′

where C1, C2 denote the two counters. An instruction of type (1) increments the counter
Ck and jumps to another point of the control. An instruction of type (2) tests whether the
counter Ck is 0 and if it is the case it jumps to a control point q ′, otherwise it decrements the
counter and jumps to control point q ′′.

4.3 Undecidability with generated channels

We now turn to the main result of this section.

Proposition 4.1 The control reachability problem for the fragment with bounded control is
undecidable.

Proof. The proof is loosely inspired by the encoding of the computation mechanism of Turing
machines into a deduction system for Horn clauses without function symbols, also known as
datalog. Readers familiar with the latter might find it inspiring to look at an ‘existential’
Horn clause ∀~x (a(~x) ⊃ ∃~y b(~x, ~y)) as a recursive process A = a(~x).(ν~y)(b(~x, ~y) | a(~x) | A).
More recent variations over this theme can be found in the framework of Dolev-Yao model of
cryptographic protocols [11, 5].

We now turn to the technical development. A counter is represented as a stack of cells
where the bottom cell contains 0 and all the others contain 1. Thus the value 2 is represented
by the stack 011. For every state, we assume a channel q of sort Ch(). Moreover, for every
counter Ck we assume channels

Topk of sort Ch(Ch(Ch(),Ch(),Ch())) and
Adj k of sort Ch(Ch(Ch(),Ch(),Ch()),Ch()) .

9



Every cell of the stack is assigned a distinct channel a of sort Ch(Ch(),Ch(),Ch()). We asso-
ciate to every such channel three more distinct channels a0, a1, at and a message a(a0, a1, at).
Moreover:

• If the channel a refers to the bottom cell then we introduce a message a0, and otherwise
we introduce a message a1.

• If the channel a refers to the cell at the top of the stack we introduce a message Top ka.

• If the channels a and b refer to two adjacent cells (the first under the second) then we
introduce a message Adj k(a, bt).

For instance, the stack 011 could be represented by the following messages:

a(a0, a1, at) | a0 | Adj k(a, bt) | (bottom cell)

b(b0, b1, bt) | b1 | Adj k(b, ct) | (second cell)

c(c0, c1, ct) | c1 | Topkc (top cell) .

We now consider the problem of implementing on this data structure the 2-counter machine
operations. We build a system of equations as follows:

• For every instruction of type (1) we introduce an equation:

Aq = q.Topk(a).(νa′, a′0, a
′
1, a

′
t)

(q′ | Adj k(a, a′t) | Topk(a
′) | a′(a′0, a

′
1, a

′
t) | a′1 | Aq) .

• For every instruction of type (2) we introduce two equations:

A1
q = q.Topk(a).a(a0, a1, at).a0.

(q′ | Topk(a) | a(a0, a1, at) | a0 | A1
q),

A2
q = q.Topk(a).a(a0, a1, at).a1.Adj k(b, bt).

(at | bt.(q′′ | Topk(b) | A2
q)) .

For the sake of readability we have omitted the parameters (which can be easily inferred)
as well as the intermediate process identifiers. The first equation corresponds to the case
Ck = 0 and the second to the case Ck > 0. This second case reveals the role of the channel
at: it is used to simulate via a communication an equality test between at and bt so as to
make sure that the received channel b corresponds to the cell adjacent to a.

Finally, we introduce the equation A = qH .B where qH is the halting state of the 2-counter
machine. The initial configuration includes the identifiers Aq or Ai

q, i = 1, 2 for every state q
of the 2-counter machine as well as the identifier A.

Moreover for k = 1, 2 we have the messages:

a(a0, a1, at) | a0 | Topka

corresponding to two empty stacks, and the message qo corresponding to the initial state qo

of the 2-counter machine.
We claim that the halting problem for the 2-counter machine reduces to the reachability

of the control point B. The system we have described can simulate every reduction of the

10



2-counter machine. Moreover, in the simulation of instructions of type (2) a certain non-
determinism arises because the control may be caught by A1

q or A2
q and in the second case an

arbitrary message Adj k(b, bt) may be received. Note however that if something goes wrong,
i.e. either we pick up the wrong branch or the wrong ‘adjacent message’ the computation
gets stuck before the message corresponding to the next state (q ′ or q′′) is released. Thus the
system may engage in more computations than the 2-counter machine but these computations
lead immediately to a deadlock. �

Remark 4.2 The encoding above relies on channel mobility and moreover processes may
input on received channel names. In turn this feature is used to program a weak form of
name equality that allows to encode the ‘decrement’ instruction of 2-counter machines. The
decidability result in section 6 suggests that this is an essential feature as weaker forms of
name mobility with bounded control turn out to be decidable.

4.4 Undecidability with generated values and conditional

The encoding presented above can be further simplified if we consider a π-calculus with a
conditional on name equality. To formalise this extension, we assume equations may have the
shape:

A(~a) = [a = a′]A′(~a′), A′′(~a′′) (7)

with the expected meaning that we branch on A′ if a ≡ a′ and on A′′ otherwise.
Now if we allow a conditional on names of basic sort o then a simpler encoding is possible

where all transmitted names have sort o (no channel mobility). We assume additional channels
Contk to indicate the contents of a cell (values 0 or 1). The sorts are now as follows:

Topk of sort Ch(o), Adj k of sort Ch(o, o), and Contk of sort Ch(o, o) .

For every instruction of type (1) we introduce the equation:

Aq = q.Topk(a).(νa)′(q′ | Adj k(a, a′) | Contk(a
′, 1) | Topk(a

′) | Aq),

and for every instruction of type (2) we introduce two equations:

A1
q = q.Topk(a).Contk(a

′, v).[a′ = a][v = 0]

(q′ | Topk(a) | Contk(a, 0) | A1
q),

A2
q = q.Topk(a).Contk(a

′, v).[a′ = a][v = 1]Adj k(a
′, a′′).[a′′ = a]

(q′ | Topk(a
′) | A2

q) .

Then the encoding follows the pattern presented in the proof of proposition 4.1.

5 The fragment without name mobility is undecidable

We consider the fragment where all names have sort Ch(), i.e., no name mobility is allowed.
Then 2 is restricted to having the shape:

A(~a) = a.(ν ~d)(Πi∈Iai | Πj∈JAj(~cj)) . (8)

11



In the absence of name mobility, generated names cannot be extruded and therefore name
generation is essentially ccs restriction. Milner [23] shows that synchronous ccs with re-
striction, relabelling, and external choice is powerful enough to simulate a 2-counter machine.
We will show that this simulation can be still carried on while dropping external choice
and relabelling and using just asynchronous communication. Schematically, we replace (i)
synchronous communication by asynchronous communication plus an acknowledgement, (ii)
external choice by internal choice (of course, this is possible because we are just looking at a
control reachability property), and (iii) relabelling by parametric equations.

Proposition 5.1 The control reachability problem for the fragment with name generation
and without name mobility is undecidable.

Proof. Again we simulate a 2-counter machine (cf. section 4.2) and reduce the halting
problem to the control reachability problem 2.2. The basic issue is to represent a stack. To
this end we define the following system of equations (inspired by [23]). The channel i stands
for increment, z for counter is zero, and d for decrement. Each of these channels comes
with a corresponding ‘acknowledgement’ channel ia, za, and da which are kept implicit in the
parameters below.

B(i, z, d) = Bi(i, z, d) ⊕ Bz(i, z, d)

Bi(i, z, d) = i.(i
a
| CB(i, z, d))

Bz(i, z, d) = z.(za | B(i, z, d))

C(i, z, d, z′, d′) = Ci(i, z, d, z′, d′) ⊕ Cd(i, z, d, z′, d′)
Ci(i, z, d, z′, d′) = i.(i

a
| CC (i, z, d, z′, d′))

Cd(i, z, d, z′, d′) = d.((d′ ⊕ z′) | D(i, z, d, z′, d′))

D(i, z, d, z′, d′) = Dd(i, z, d, z′, d′) ⊕ Dz(i, z, d, z′, d′)
Dd(i, z, d, z′ , d′) = (d′a.(d

a
| C(i, z, d, z′, d′)))

Dz(i, z, d, z′, d′) = (z′a.(d
a
| B(i, z, d)))

CB(i, z, d) ≡ (νi′′, z′′, d′′)(C(i, z, d, z′′, d′′) | B(i′′, z′′, d′′))
CC (i, z, d, z′, d′) ≡ (νi′′, z′′, d′′)(C(i, z, d, z′′, d′′) | C(i′′, z′′, d′′, z′, d′)) .

A process B receives on either i or z and acknowledges on either ia or za, respectively. A
process C receives on either i or d and either acknowledges on ia or sends on either d′ or z′,
respectively. A process D receives on either d′a or z′a and sends on da. The processes CB
and CC create a new C which is suitably linked to either B or C, respectively.

We describe the intended dynamics of a decrement instruction. The message goes on d
if the neighbour is C and on z if the neighbour is B. Here is a schematic intuition of what
happens in a specific case:

DCCCBB → DDCCBB → DDDCBB → DDDDBB →
DDDBBB → DDCBBB → DCCBBB → CCCBBB .

The D is propagated towards the right till it meets B and when this happens it becomes B
and shortcuts the last B, then the call comes back and the D’s are turned again into C’s.

Note the peculiar way in which we use the internal choice. If a ‘server’ can receive requests
on two channels then it guesses non-deterministically on which channel the next message is

12



coming. Symmetrically, a ‘client’ with two requests internally guesses which request is going to
be served. If client and server guess consistently we obtain the desired behaviour. Otherwise
client and server get stuck.

We translate a program of a 2-counter machine as a finite control process that acts as a
client for two stacks representing the counters that are initialised by:

S ≡ B(i1, z1, d1) | B(i2, z2, d2) .

For every instruction of type (1) we introduce the equation:

Aq = q.(ik | iak.(q
′ | Aq)) ,

and for every instruction of type (2) we introduce two equations:

A1
q = q.(zk | za

k .(q′ | A1
q))

A2
q = q.(dk | da

k.(q
′′ | Aq)) .

Moreover, we introduce the equation A = qH .B.
The initial configuration includes the process S above corresponding to the two empty

stacks, the identifiers Aq or Ai
q (i = 1, 2) for every state q of the 2-counter machine, the

identifier A, and the message qo corresponding to the initial state qo of the 2-counter machine.
We claim that the halting problem for the 2-counter machine reduces to the reachability

of the control point B. It is clear that by a suitable selection of internal choices we can
simulate the behaviour of the 2-counter machine. On the other hand, suppose an attempted
communication gets stuck because of wrong choices. This may happen (i) when the control
sends an increment or test zero request to a counter, (ii) when A1

q and A2
q compete to take

the control, or (iii) when a decrement instruction propagates towards the right in a counter.
In all cases the control is stuck. In the first and second case this is immediate and in the
third case this happens because the control waits for an acknowledgement which is delivered
only after the propagation is completed and the D’s are turned back into C’s. �

Remark 5.2 In all the equations above, an input is followed, up to internal choice, by exactly
one output. This implies that the number of messages present in a reachable configuration
is bounded. Thus we have also shown that ‘bounded messages’ with unbounded control is
undecidable.

6 The fragment with unique receiver and bounded input is

decidable

In [6], we have shown that control reachability for the fragment without name mobility and
with bounded control is decidable by reduction to the coverability problem for Petri nets. We
briefly recall our main arguments:

• We note that in systems without name mobility and with bounded control there is a
bound on the number of ‘live’ names appearing in any reachable configuration. Indeed,
the only form of name transmission allowed in these systems is via the recursion para-
meters: once a name disappears from the recursion parameters, no input can ever be
performed on that name again and all messages addressed to that name can be collected.

13



• We generalise the reduction to Petri Nets presented in section 3 and simulate name
generation by the reusing of ‘dead’ names and name collection by a reset on the corres-
ponding places. It turns out that by a static analysis it is possible to decide whether a
generated name is persistent or temporary (it eventually dies) and in the latter case to
give a bound on the number of messages emitted on the temporary name. Because the
reset operation on a bounded place is already definable in Petri Nets, we can show that
the control reachability problem for the considered fragment reduces to the coverability
problem for Petri Nets.

This result is not very satisfying because: (i) it completely forbids name mobility and (ii)
it requires bounded control. In section 3, we have seen that in the absence of name generation
the control reachability problem is decidable (even if the control is unbounded) thus there is
clearly some space for improvement. In this section we present a more general decidability
result for a fragment including some form of name mobility and unbounded control. First,
we introduce three basic ingredients: unique receiver condition (section 6.1), bounded input
condition (section 6.2), and Petri Nets and parameterless systems with transfer (section 6.3).
We informally discuss how they contribute to our decision result before turning to the formal
development in the following section 6.4.

6.1 Unique receiver condition and name collection

The formalization of the decidable fragment relies on the unique receiver condition: a syntactic
condition on the π-calculus studied in [2] (the unique receiver condition presented here is
actually more liberal than the one in [2]). The condition ensures that any generated name is
associated to a unique thread that can possibly perform input actions on it. To make sure
that reduction preserves this property, we also require that received names cannot be used in
input position; a property also known as local mobility.

In practice, the unique receiver condition is usually satisfied as one leans naturally towards
an ‘object-oriented’ style of programming where interaction arises when an object calls the
method of another uniquely determined object. In theory, it can be shown [2] that the join-
calculus can be represented up to ‘asynchronous’ bisimulation in the asynchronous π-calculus
with unique receiver. Since in turn the asynchronous π-calculus can be translated into the
join-calculus in a fully abstract way [14], we can claim that the unique receiver condition does
not impair the expressivity of the programming model.

In order to formulate the unique receiver condition it is convenient to distinguish the
parameters of a process identifier in two lists separated by ‘;’ as in A(~aI ;~aO), with the
intended meaning that the names ~aI can be used in input and output whereas the names ~aO

can be used in output only. In the following we will refer to ~aI as the i/o parameters and to
~aO as the output parameters of the process identifier A.

Definition 6.1 An equation of the shape:

A(~aI ;~a0) = a(~a′).(ν~a′′)(Πk∈Kak~ak | Πj∈JAj(~aI,j;~aO,j)) (9)

satisfies the unique receiver condition, if besides the usual conditions on parametric equations
(2), the following holds:

(1) the input is performed on an i/o parameter: a ∈ {~aI},

(2) the input parameters in the continuations {~aI,j}j∈J are all distinct, and

14



(3) the generated names belong to the i/o parameters of the continuations and the latter are
included in the i/o parameters or the generated names:

{~a′′} ⊆
⋃

j∈J

{~aI,j} ⊆ {~aI} ∪ {~a′′} . (10)

An equation of the shape:
A(~aI ;~a0) = B(~bI ;~b0) ⊕ C(~cI ;~c0) (11)

satisfies the unique receiver condition, if (besides the usual conditions) the names ~bI are all
distinct, the names ~cI are all distinct, and {~bI} ∪ {~cI} ⊆ {~aI}.

We include internal choice because it is useful in practice to approximate the behaviour
of a conditional on name equality and because we need it to encode Petri Nets with transfer
(cf. section 6.5).

The separator ‘;’ plays no role in the reduction relation and therefore definition 2.1 applies
to these refined systems.

Roughly, the conditions above make sure that in a reachable configuration a generated
name can appear at most once (up to internal choice) among the i/o parameters of at most
one process identifier.

The unique receiver condition provides a simple local criterion to collect generated names.
Once a generated name, say a, is removed from the i/o parameters of the related thread we
are sure that it can never appear again among the i/o parameters (no other thread can have
that name among the i/o parameters and no thread can put a received name among its i/o
parameters).

Thus the name a is dead and some action has to be taken so that it can be reused at a
later time. The name a can appear in the current configuration in three positions:

1. as the address of a message as in a~b: these messages can be just thrown away since no
thread will ever receive them.

2. as the contents of a message, say ba: these messages can still be received and retrans-
mitted indefinitely but their contents can never be exploited. Therefore we can turn
the message into bg where g is some generic name on which no input action is ever
performed.

3. as the output parameters of a process identifier, say A(. . . ; a): the same reasoning as in
the previous case applies and we turn these process identifiers into A(. . . ; g).

We will explain in section 6.3 how these ‘collection operations’ can be represented in Petri
Nets with transfer.

6.2 Bounded input condition and name generation

It is convenient to assume that the initial configuration has the shape:

Init ≡ Πk∈Kak~ak | Πj∈JAj(~aI,j;~aO,j) | Πh∈HAh(~aI,h;~aO,h) (12)

where all process identifiers occurring in the configuration are distinct and the related system
of equations E can be partitioned in systems Ej , Eh relating to identifiers Aj, Ah, for j ∈ J

15



and h ∈ H, respectively. This means that a process identifier occurring in a reachable con-
figuration is uniquely associated to exactly one process identifier in the initial configuration.

We note that there is no loss of generality in these hypotheses. If the initial configura-
tion contains generated names, then replace these names by fresh constants. If it contains
a repeated process identifier then just introduce a fresh process identifier and duplicate the
related equations. Finally, if the system of equations cannot be partitioned then again in-
troduce fresh process identifiers and duplicate the related equations. The partitioning of the
system E is instrumental to the following definition.

Definition 6.2 An initial configuration such as (12) and the related system of equations E
satisfy the bounded input condition if the following holds:

(1) The equations in Ej, j ∈ J are either of the shape (9) with exactly one continuation or
of the shape (11).

(2) In the equations in Eh, h ∈ H no name generation is allowed.

Note that the initial configuration (12) is not ‘bounded control’ in the sense adopted in
section 4. The definition 6.2 requires that threads that can generate names have exactly one
continuation whereas the other threads can have an arbitrary number of continuations.

A problem dual to collection is the one of computing fresh names, i.e., for all practical
purposes, names that are not currently used elsewhere in the current configuration. The
bounded input condition is helpful in solving this problem: if we allocate to each thread
generating names a sufficiently large finite set of names, then at any point in the computation
the thread can figure out the names it is currently using and determine, by complementation,
the names not used.

6.3 Petri Nets and parameterless systems with transfer

Petri Nets with transfer are standard Petri Nets where moreover a transition may entail the
transfer of the tokens in a place p to a distinct place q. Thus, if we regard places as counters,
the transfer is expressed by the assignments: q := q + p; p := 0.

Definition 6.3 A Petri Net with transfer is a tuple (P, T,Pre ,Post ,Trans), where P is a
finite set of places, T is a finite set of transitions, Pre is a function from P × T into N (the
natural numbers), Post is a function from T ×P into N, and Trans is a function from T into
2P×P .

Additionally, it is convenient to assume that the transfer operations do not interfere with
the transition and with each other. Thus we require that for all t ∈ T and (p, p ′) ∈ Trans(t):
(1) p 6= p′, (2) Pre(p, t) = Pre(p′, t) = Post(t, p) = Post(t, p′) = 0, and (3) for all (q, q′) ∈
Trans(t), either (q, q′) = (p, p′) or {p, p′} ∩ {q, q′} = ∅.

A marking for such a net is a function from P into N. The transition t will be said to be
enabled with respect to the marking M if and only if ∀p ∈ P M(p) ≥ Pre(p, t), and when this
is the case we have the reduction M → M ′, where for all p ∈ P ,

M ′(p) =







0 if (p, p′) ∈ Trans(t) for some p′,
M(p) + M(p′) if (p′, p) ∈ Trans(t) for some p′,
M(p) − Pre(p, t) + Post(t, p) otherwise.

16



The Petri Nets with transfer we consider here are a particular case of the generalized self-
modifying nets introduced in [10]. The reachability problem for Petri Nets with transfer is
undecidable. The proof given in [7] for Petri Nets with reset still applies – in Petri Nets with
reset, a transition can empty the contents of a place; for some problems, the reset operation
can be simulated by transferring the contents of a place to a sink place. On the other hand,
the coverability problem is decidable. The proof of this result has a rather long history. A
first approach is based on a ‘forward’ analysis via the generation of the Karp-Miller tree
[21]. Another approach presented in [1] uses a ‘backward’ analysis. Both methods rely on
properties of well-orders. The latter in particular exploits the fact that the backward analysis
generates a growing chain of ideals with an effectively computable basis. By the properties
of well-orders this chain stabilizes and its limit can be effectively computed. This method
applies to a variety of systems including Petri Nets with reset and/or with transfer [1, 10, 13].

Parameterless systems with transfer relate to Petri Nets with transfer just as in section 3
parameterless systems relate to Petri Nets. With reference to section 3.1, we now allow more
general equations of the shape

X = Σk∈Kxk.{T (uh, vh)}h∈Hk
.(Πi∈Ik

xi | Πj∈Jk
Xj) (13)

where uh, vh are either names or identifiers and T stands for transfer. The inteded meaning is
that following an input xk a sequence of transfer operations {T (uh, vh)}h∈Hk

is performed. As
expected, executing the transfer operation T (u, v) amounts to remove all instances of u in the
current configuration and create as many instances of v. Mutatis mutandis, we also require
that these transfer operations do not interfere. Then, adapting the translation in section 3.2,
we can reduce parameterless systems with transfer to Petri Nets with transfer.

The interest of the transfer operation in our context comes from the observation that if
we represent messages a~b and control positions A(~a;~b) as counters, as we did in translating
systems without name generation to Petri Nets (section 3.2), then the collection operations
described above in section 6.1 can be regarded as transfer operations.

6.4 Reduction to Petri Nets with transfer

We now turn to the core of the technical development. We fix an initial configuration P and
a related system of equations E as in definition 6.2.

6.4.1 Names and identifiers

The first problem is to determine the names and identifiers of the parameterless system with
transfer.

1. Let No be the collection of names occurring free in P .

2. Let St be the set of sorts of names occurring in P, E .

3. Let G = {gs | s ∈ St} be a set of fresh generic names, one for each sort in St , and such
that st(gs) = s.

4. We assume a fresh name z that will correspond to a sink place without outgoing arcs.
The reset of a place p is performed by transferring the contents of p to z.

17



5. For every thread j ∈ J of the initial configuration (12) that can generate names we
assume a finite set of fresh names Nj . The requirements on the size of Nj will be given
in the following section 6.4.2. Let Nν =

⋃

j∈J Nj .

6. We define the space of names N of the parameterless system as the least set such
that z ∈ N and if a ∈ No ∪ Nν , st(a) = Ch(s1, . . . , sn), ai ∈ No ∪ Nν ∪ G then
〈a, a1, . . . , an〉 ∈ N . Note that N is finite.

7. We specialise the notion of vector compatibility presented in section 3.3. We write

~c ↓O ~a if ~c ↓ ~a, {~c} ⊆ No ∪ Nν ∪ G,

and we write

~c ↓j
I ~a if ~c ↓ ~a, {~c} ⊆ No ∪ Nj

and moreover if ci and ck are two distinct occurrences in ~c of names in Nj then ci 6= ck.
If A is defined by A(~aI ;~aO) = . . . and belongs to system El then we write

~cI ,~cO ↓ A if ~cI ↓l
I ~aI and ~cO ↓O ~aO .

If the system El is without name generation then we take conventionally Nl = ∅ and
therefore {~cI} ⊆ No.

8. We define the set of identifiers Id of the parameterless system as the least set such that
if A is an identifier in the system E and ~a ↓ A then 〈A,~a〉 ∈ Id . Note that Id is finite.

Example 6.4 Consider the system and initial configuration (i = 1, 2):

Si(a; ) = a(a′, b).(νa′′, b′)(a′(a′′, b′) | b | Ri(a
′′, b′; )),

Ri(a, b; ) = b.Si(a; ),
Init ≡ S1(a; ) | a(a′, b) | R2(a

′, b; ) .

Here No = {a, a′, b}, St = {s1 = Ch(s1, Ch()), s2 = Ch()}, and G = {gs1
, gs2

} (note that s1

is a recursive sort; this is a bit more general than the simple sorts we have considered in this
paper, however our construction still applies).

Then we define for i = 1, 2 the sets of names and identifiers as follows:

Ni = {ci,j | 1 ≤ j ≤ 3, st(ci,j) = s1} ∪ {di,j | 1 ≤ j ≤ 2, st(di,j) = s2},
Nν = N1 ∪ N2,
N = {z} ∪ {〈u〉 | u ∈ No ∪ Nν , st(u) = s2}∪

{〈u, v, w〉 | u ∈ No ∪ Nν , v, w ∈ No ∪ Nν ∪ G,
st(u) = st(v) = s1, st(w) = s2},

Id = {〈Si, u〉 | 1 ≤ i ≤ 2, u ∈ No ∪ Ni, st(u) = s1}∪
{〈Ri, u, v〉 | 1 ≤ i ≤ 2, u, v ∈ No ∪ Ni, st(u) = s1, st(v) = s2} .

6.4.2 Parameterless equations

Every parametric equation in E of the shape (9) generates a certain number of parameterless
equations of the shape (13). We refer to definition 6.2 of bounded input. If no name generation
is involved then the parameterless equations are generated as described in section 3.3. Because
generated names cannot appear among the i/o parameters no name collection is necessary.

18



Equations of the shape (11) involving internal choice produce a finite family of paramet-
erless equations of the shape X = Y ⊕ Z. The latter are easily represented in a Petri Net:
introduce two transitions tY , tZ , an edge from X to tY , an edge from X to tZ , an edge from
tY to Y , and an edge from tZ to Z.

Therefore, we concentrate on the case where the equation has the shape:

A(~aI ;~a0) = b(~a′).(ν~a′′)(Πk∈Kbk
~bk | B(~bI ;~bO)), (14)

where the process identifier A relates to the system Ej with name generation, for some j ∈ J .

1. For every ~cI ,~cO ↓ A we define:

σI = [~cI/~aI ] (actual i/o parameters)

D = σI({~aI}\{~bI}) ∩ Nj (dead names in ~cI) .

2. For ~c ′ ↓O ~a′, we also define;

~c ′′ = choose(Nj ,~a
′′, {~cI ,~cO,~c ′}) (fresh names in Nj)

σ~c ′ = [~cI/~aI ,~cO/~aO,~c ′/~a′,~c ′′/~a′′] (combined substitution)

σD(b) =

{

gs if σ~c ′(b) ∈ D ∪ G, st(b) = s
b otherwise

(dead names to generic)

KD = {k ∈ K | σ~c ′(bk) ∈ D ∪ G} (dead names to sink) .

Here choose is a function selecting a vector of names ~c ′′ such that ~c ′′ ↓j
I ~a′′ and {~c ′′} ∩

{~cI ,~cO,~c ′} = ∅. We leave it to the reader to check that we can always select a finite Nj

satisfying this property.

The substitution σD and the set KD are applied below to collect dead names.

3. For every ~cI ,~cO ↓ A we introduce the parameterless equation:

〈A,~cI ,~cO〉 = Σ~c ′↓O~a′ σ~c ′(〈b,~a′〉).Col (D).

σ~c ′(Πk∈K\KD
〈bk, σD(~bk)〉 | Πk∈KD

z | B(~bI ;σD(~bO))) .

We use the substitution σD to map dead names in argument position to generic names
and we select in KD the messages addressed to dead names. Col(D) is an abbreviation
for a sequence of transfer instructions collecting dead names in D. Intuitively, Col (D)
collects dead names in the surrounding terms and threads, i.e., in the ‘evaluation con-
text’.

4. Formally, for all a ∈ D, Col(D) contains the following transfer instructions:

T (〈a,~b〉, z) ∀〈a,~b〉 ∈ N,
T (〈b,~c〉, 〈b, τD~c〉) ∀〈b,~c〉 ∈ N, with {~c} ∩ D 6= ∅, b /∈ D,
T (〈B,~c〉, 〈B, τD~c〉) ∀~c ↓ B, with {~c} ∩ D 6= ∅,

where: τD(c) =

{

gs if c ∈ D, st(c) = s,
c otherwise.

We note that here name collection is performed eagerly: names generated by the thread
j are collected as soon as they exit its i/o parameters. Another possibility to be explored
is to collect names lazily when they are generated/reused.

19



5. Finally, the initial configuration (12) is translated into the parameterless notation as
follows:

〈Init〉 ≡ Πk∈K〈ak,~ak〉 | Πj∈J〈Aj ,~aI,j,~aO,j〉 | Πh∈H〈Ah,~aI,h,~aO,h〉 . (15)

Example 6.5 (continued) We further develop example 6.4 and concentrate on the equa-
tions associated to the identifier S1 for c1,1 ↓ S1. Then σI = [c1,1/a], D = {c1,1}, and the
equation has the shape:

〈S1, c1,1〉 = Σ~c ′↓a′ ,b P~c ′

If ~c ′ ≡ c′1, c
′
2 ∈ No ∪ Nν ∪ G we have:

P~c ′ ≡ 〈c1,1, c
′
1, c

′
2〉.Col({c1,1}).Q~c ′ .

The following table shows the shape of Q~c ′ for two different choices of ~c ′ and ~c ′′:

~c ′ ~c ′′ Q~c ′

c1,2, d1,1 c1,3, d1,2 〈c1,2, c1,3, d1,2〉 | 〈d1,1〉 | 〈R1, c1,3, d1,2〉

g, d2,1 c1,2, d1,1 z | 〈d2,1〉 | 〈R1, c1,2, d1,1〉 .
Note that we only collect the names of the first thread, e.g., in the second case the name d2,1

that belongs to the second thread is received in input in ~c′ and a message 〈d2,1〉 is emitted. It
is up to the second thread to make sure that the name d2,1 is alive.

The sequence of transfer instructions associated to Col ({c1,1}) is:

{T (〈c1,1, u, v〉, z) | 〈c1,1, u, v〉 ∈ N}∪
{T (〈u, c1,1, v〉, 〈u, gs1

, v〉) | 〈u, c1,1, v〉 ∈ N,u 6= c1,1}∪
{T (〈S1, c1,1〉, 〈S1, gs1

〉)}∪
{T (〈R1, c1,1, u〉, 〈R1, gs1

, u〉) | u ∈ N ∪ N1, st(u) = s2} .

Finally, the initial configuration is:

〈Init〉 ≡ 〈S1, a〉 | 〈a, a′, b〉 | 〈R2, a
′, b〉 .

6.4.3 Bisimulation relation and decidability

A configuration reachable from the initial configuration (12) has the shape:

P ≡ (ν~a)(Πk∈Kak(~ak) | Πj∈JAj(~aI,j;~aO,j) | Πh∈HAh(~aI,h;~aO,h)) .

Let us set Lj = {~a} ∩ {~aI,j}, L =
⋃

j∈J Lj, Z = {~a}\L, and KZ = {k ∈ K | ak ∈ Z}.
Because of the unique receiver condition (definition 6.1) we claim that the sets Z, {Lj}j∈J

form a partition of {~a}.
Then we introduce a relation R connecting configurations with the property above to

parameterless configurations as follows:

P R Q if Q ≡ τ(Πk∈K\KZ
〈ak,~ak〉) | Πk∈KZ

z |
τ(Πj∈J〈Aj ,~aI,j,~aO,j〉 | Πh∈H〈Ah,~aI,h,~aO,h〉)

where τ : {~a} → Nν ∪ G is a substitution such that τ(a) ∈ Nj if a ∈ Lj and τ(a) = gs if
a ∈ Z and st(a) = s, and moreover τ is injective on the live names L. The rationale for the
definition of the relation R is given by the two following lemmas.

20



Lemma 6.6 The relation R is a bisimulation.

Proof hint. Suppose P R Q, we show that:

(1) If P → P ′ then for some Q′, Q → Q′ and P ′ R Q′.

(2) If Q → Q′ then for some P ′, P → P ′ and P ′ R Q′. This follows from a direct analysis

presented in appendix A. �

Lemma 6.7 The initial configuration Init (12) reaches a control A(. . .) iff the related para-
meterless initial configuration 〈Init〉 (15) reaches a control 〈A, . . .〉.

Proof. We note that Init R 〈Init〉. From the definition of the relation R it follows that
if P R Q then P includes a control A(. . .) iff Q includes a control 〈A . . .〉. We conclude by
applying the previous lemma 6.6. �

We finally arrive at the announced decidability result.

Theorem 6.8 The control reachability problem for input bounded systems with unique re-
ceiver is decidable.

Proof. From lemma 6.7 the control reachability problem for, say, the identifier A, reduces
to control reachability for the identifiers of the shape 〈A,~a〉 in the parameterless system.
Because the name space described in section 6.4.1 is finite there are finitely many of them. In
turn, by the discussion in section 6.3, the reachability of an identifier 〈A,~a〉 is equivalent to
determine whether the place 〈A,~a〉 in the corresponding Petri Net with transfer will contain
a token. As recalled in section 6.3 this property is decidable. �

6.5 Encoding Petri Nets with transfer

We now turn to showing how the coverability problem for Petri Nets with transfer can be
encoded into the control reachability problem for parametric systems with name generation,
bounded control, and without name mobility – these systems are a particularly simple case
of the systems that we have shown to be decidable.

Suppose given a Petri Net with transfer P = (P, T,Pre ,Post ,Trans) (cf. definition 6.3),
with P = {pi}i∈I . The net P is simulated by one thread defined by the system of equations
in 1. For the sake of simplicity, we only consider the case where each transition has at
most one transfer arc (multiple transfer arcs can clearly be encoded at the cost of additional
equations by sequentializing the transfers). Of course, for transitions t without a transfer arc,
we suppress the equations TRANS t, STEP t and RESETt , and the control flows directly from
PRE t,m to POST t. Similarly, if m = 0 then we start directly with TRANSt . Note that this
definition relies on name generation and internal choice but not on name mobility.

The notation Post(t, pi) · xi stands for Post(t, pi) copies of the message xi. It is assumed
that ~x is a vector of ]I distinct names xi (for i ∈ I), that ~x′ is obtained by substituting x′

for xk in ~x, and that (ij)j∈{1,...,m}, k, and l are the respective indices in I of the preplaces
of t, the origin of the transfer arc, and the destination of the transfer arc, (i.e., Pre(pi, t) =
] {j ∈ {1, . . . ,m} | ij = i} for all i ∈ I, and Trans(t) = {(pk, pl)}).

The intended meaning is that a token in place pi is represented by a message xi, and we
accordingly define the translation of a marking M as the configuration

φ(M) ≡ (ν~x) (Πi∈IM(pi) · xi | LOOP(~x)) ,

21



LOOP(~x) = ⊕t∈T PRE t(~x) (choose a transition)

PRE t,1(~x) = xi1 .PRE t,2(~x) (consume tokens)
. . . = . . .

PRE t,m(~x) = xim .TRANS t(~x)

TRANS t(~x) = STEP t,1(~x) ⊕ RESET t(~x) (begin transfer)
STEP t(~x) = xk. (xl | TRANS t(~x)) (transfer one token)

RESET t(~x) = τ.(νx′)POST t(~x′) (flush remaining tokens)

POST t(~x) = τ. (Πi∈IPost(t, pi) · xi | LOOP(~x)) (put tokens)

Figure 1: Simulating a Petri net with transfer

where again ~x is a vector of ]I distinct names xi, for i ∈ I.
Note that in equation RESET t, the parameter xk is replaced in the continuation by the

generated name x′: this means that further transitions affecting pk will seek to receive or
send messages on x′ rather than xk, and since the name x′ is fresh, this amounts to resetting
place pk.

Thus, starting from the configuration φ(M), our process nondeterministically chooses a
transition t, consumes the required number of tokens/messages from the preplaces of t (thus
blocking if t is not enabled with respect to M), transfers a number of tokens from the origin
to the destination of the transfer arc, resets the origin of the transfer arc, and finally puts the
correct number of tokens in the postplaces.

When firing an enabled transition t can yield the reduction M → M ′, our process, starting
from the configuration φ(M), can take t as its option for the internal choice in LOOP , reach
TRANS without blocking, take the STEP option exactly as many times as there are tokens
in the origin of t’s transfer arc, and eventually reach a configuration which only differs from
φ(M ′) by messages on the channel that was dropped from the parameters when executing
RESET .

On the other hand, when our process, starting from φ(M), simulates the firing of a
transition t and thus reaches a configuration differing from φ(M ′), for some M ′, only by dead
messages, we cannot be sure that all the messages xk were transfered to xl before the RESET
option was taken. However, we do know that t is enabled and allows the reduction M → M ′′

for some M ′′ that differs from M ′ only in place pl, and such that M ′(pl) ≤ M ′′(pl).
Before we can give a more formal description of the sense in which our process simulates

P, we need to introduce the following definitions: a reduction chain P1 → P2 → · · · → Pn

will be called internal (and denoted P1 →∗
i Pn) whenever Pj does not contain the process

identifier LOOP for any j ∈ {2, . . . , n− 1}. This answers the need of talking about reduction
chains that remain contained within the simulation of one reduction step of P. Moreover, to
formalize the sentence “P differs from Q only by dead messages”, we introduce the notion of
minimum form: given a configuration P , the minimum form mf (P ) associated to P is the
configuration obtained by pruning from P its dead messages, i.e., if

P ≡ (ν ~d)
(

Πi∈Ici
~di | Πj∈JAj(~aj ; ~bj)

)

,

22



then
mf (P ) ≡ (ν ~d)

(

Πi∈I′ci
~di | Πj∈JAj(~aj ; ~bj)

)

,

with I ′ = {i ∈ I | ∃j ∈ J ai ∈ {~aj}}.
When P is a minimum form and P → Q, we shall write P  mf (Q). Note that whenever

P and Q are configurations such that P → Q, we have mf (P ) mf (Q), and that conversely,
if P  Q, then for any P ′ such that mf (P ′) = P there is Q′ such that P ′ → Q′ and
mf (Q′) = Q. We shall use the notation  ∗

i to denote the internal chains of this abstract
reduction on minimum forms with the same meaning as for the standard reduction. Since,
for any marking M , φ(M) is itself a minimum form, we can now state our main proposition
as follows.

Proposition 6.9 The process defined in 1 simulates P in the following sense:

(1) If M → M ′ then φ(M) +
i φ(M ′)

(2) If φ(M) +
i φ(M ′), then there is M ′′ ≥ M ′ such that M → M ′′.

A (rather straightforward) proof of this proposition can be found in appendix B.

Corollary 6.10 The coverability problem for Petri Nets with transfer reduces to the control
reachability problem for parametric systems with name generation, bounded control, and no
name mobility.

Proof. Suppose we want to decide whether a marking Mf is coverable by P, starting from
the initial marking M0. We add to the process described above the equations

FINAL1(~x) = xi1 .FINAL2(~x)
. . . = . . .

FINALn(~x) = xim .ACCEPT (~x)
ACCEPT(~x) = 0 ,

where (ij)j∈{1,...,m} is a sequence of indices in I such that ] {j ∈ {1, . . . , n} | ij = i} = Mf (pi)
for all i ∈ I, and change the equation associated to LOOP to

LOOP(~x) = (⊕t∈T PRE t(~x)) ⊕ FINAL1(~x) ,

thus ensuring that for any marking M , we have M ≥ Mf if and only if the process identifier
ACCEPT is reachable from φ(M).

Finally, we prove that Mf is coverable from M0 if and only if ACCEPT is reachable
from φ(M0). First, if M0 →∗ M with M ≥ Mf , applying proposition 6.9(1) inductively
yields φ(M0)  

∗ φ(M), and since M ≥ Mf , we have that ACCEPT is reachable from
φ(M0) – note that from the point of view of control reachability, the reductions → and are
equivalent in the sense that they associate the same reachability set to any given configuration.
Conversely, if ACCEPT is reachable from φ(M0), then there must be M such that M ≥ Mf

and φ(M0)  
∗ φ(M). An induction on the length of this reduction chain, using proposition

6.9(2) and the monotonicity of reduction on Petri Nets with transfer (i.e., the fact that if
M0 → M1 and M ′

0 ≥ M0 then there is M ′
1 such that M ′

0 → M ′
1 and M ′

1 ≥ M1), then suffices
to conclude that there is M ′ ≥ M such that M0 →∗ M ′, and since we have M ′ ≥ M ≥ Mf ,
this concludes the proof. �

23



Remark 6.11 (on complexity) Define 2n
0 = n and 2n

k+1 = 22n

k so that 2n
k is a ‘tower’ of

height k of exponentials. Let n be the size of a system of parametric equations with bounded
control (one continuation or an internal choice) and without name generation obtained, say,
by counting the number of symbols. It is clear that there is a k such that the size of the para-
meterless system and the related Petri Net described in section 3 is bounded by 2n

k . Rackoff’s
upper bound [26] shows that the coverability problem for Petri Nets can be solved in exponential
space in the size of the net. The number of problems that needs to be solved is also at worse
exponential in n. Thus there is some k ′ ≥ k such that the control reachability problem for
such systems can be solved in O(2n

k′). A recent result by Ph. Schnoebelen [28] claims that the
coverability problem for Petri Nets with transfer is not primitive recursive. Coupled with the
encoding above this shows that if we add name generation to the systems just described then
the complexity of deciding the control reachability problem goes beyond primitive recursion.

7 Conclusion

We regard the decidability and undecidability results presented here as a step towards the
systematic introduction of approximated decision methods for the asynchronous π-calculus
and related formalisms. It seems natural to factorize such approximation methods through a
translation to (possibly extended) Petri Nets.

Going from the π-calculus to Petri Nets, one general remark is that identifying names
in the π-calculus produces a conservative approximation of the reduction relation – i.e., the
approximation can do more reductions; this is not true if a conditional like (7) is introduced,
however such a conditional can be approximated by internal choice. This suggests exploring
approximation methods where a finite space of names is allocated to every name generator.
Then, for instance, starting from a π-calculus with a unique receiver condition we can force the
bounded input condition and develop a translation into Petri Nets. Once the behaviour of a
system is mapped to a Petri Net further standard approximation and acceleration techniques
are readily available based, e.g., on semi-linear sets (see, e.g., [29], for an up to date survey).

In another direction, let us note that the unique receiver condition and the bounded input
condition are instrumental to name collection and name generation operations, respectively.
We have selected them because they are effective and simple, however more general conditions
might be found that still allow for an effective implementation of the collection and generation
operations in Petri Nets. For instance, one could try to go from the unique receiver condition
to a weaker ‘locality’ condition requiring that received names can be used only in output.

Yet in another direction, we point out that the decision method for Petri Net with transfer
is an instance of a general method that applies to so called well structured systems [1, 13].
Such systems include, e.g., finite state systems with lossy channels. Thus a possible research
direction is to look at variations over the π-calculus model that still admit a translation into
well structured systems.

Finally we remark that in this paper we have focused on the control reachability problem.
As mentioned in the introduction, other problems such as boundedness, deadlock, or liveness
deserve to be investigated. We expect that for these problems too it will be fruitful to look
at translations into Petri Nets. As a first concrete example, we can offer the analysis of the
message deliverability property for the asynchronous π-calculus defined in [3]. This property
requires that every emitted message has a chance of being received. It turns out that this
property is quite close to the liveness property of Petri Nets and that it can be shown to be

24



decidable by similar techniques in the case without name generation.

A Proof of lemma 6.6

Suppose P R Q, we show that:

(1) If P → P ′ then for some Q′, Q → Q′ and P ′ R Q′.

(2) If Q → Q′ then for some P ′, P → P ′ and P ′ R Q′.

(1) We develop the analysis in a simplified case thus saving some notation: (i) there are just
two threads (that can generate names), (ii) all channels are monadic and threads have just
one output parameter, and (iii) all names in P are restricted. Then suppose:

P ≡ (ν~cI)(ν ~dI)(ν~c) (cc′ | Πh∈HZ
chc′h | Πh∈HL

chc′h |

A(~cI ; cO) | A′(~dI ; dO))

where: ch ∈

{

{~c} if h ∈ HZ (dead names)

{~cI , ~dI} if h ∈ HL (live names)

and A(~aI ; aO) = a(a′).(ν~c ′′)(Πk∈Kbkb
′
k | B(~bI ; bO)) .

Let us set:

{

σI = [~cI/~aI ], σI(a) = c, ~cI ≡ ~cI,l,~cI,d,

σI(~bI) ≡ ~cI,l,~c
′′, D = {~cI,d} .

Under these hypotheses, P consumes the message cc′ and we have that P → P ′ with:

P ′ ≡ (ν~cI,l,~c
′′)(ν ~dI)(ν~c,~cI,d)

(Πh∈HZ
chc′h | (i)

Πh∈H′

Z
chc′h | Πh∈HL\H′

Z
chc′h | (ii)

σ(Πk∈KZ
(bkb

′
k) | Πk∈K\KZ

(bkb
′
k)) | (iii)

B(~cI,l,~c
′′;σbO) | (iv)

A′(~dI ; dO)), (v)

where:







σ = [~cI/~aI , cO/aO, c′/a′]
H ′

Z = {h ∈ HL | ch ∈ D}
KZ = {k ∈ K | σ(bk) ∈ D ∪ {~c}} .

From PRQ we know that Q is obtained from P by application of a substitution τ and pruning
of dead messages. Suppose the live names in P are renamed so that the substitution τ is the
identity on live names:

τ ≡ [~cI/~cI , ~dI/~dI , ~g/~c] .

Then we can write Q as follows:

Q ≡ (〈c, τc′〉 | Πh∈HZ
z | Πh∈HL

〈ch, τc′h〉 | 〈A,~cI , τcO〉 | 〈A
′, ~dI , τdO〉) .

The parameterless system includes the equation:

〈A,~cI ,~cO〉 = Σd′↓a′〈c, d′〉.Qd′

25



and taking d′ = τc′ we have:

Qτc′ ≡ Col(D).(Πk∈KD
z | Πk∈K\KD

στc′〈bk, σDb′k〉 | 〈B,~cI,l,~c
′′, στc′(σDbO)〉)

We rename the generated names ~c ′′ in P so that they coincide with the ones selected by the
function choose . Then the substitution στc′ considered here is

στc′ = [~cI/~aI , τcO/aO, τc′/a′]

and KD = {k ∈ K | στc′(bk) ∈ G ∪ D}.
Now we observe that for a formal parameter b ∈ {~aI , aO, a′,~c ′′} we have:

στc′(b) =

{

σ(b) if b ∈ {~aI ,~c
′′}

τ(σb) if b ∈ {aO, a′} .

It follows that:
σ(b) ∈ D ∪ {~c} iff στc′(b) ∈ D ∪ G (16)

and from this we derive that KZ = KD.
Let us now see how Q simulates P . By consuming 〈c, τc′〉 and unfolding the equation

above we obtain that Q → Q′ with:

Q′ ≡ Πh∈HZ
z | (i)

Col(D)(Πh∈HL
〈ch, τc′h〉) | (ii)

Πk∈KD
z | Πk∈K\KD

στc′〈bk, σDb′k〉 | (iii)

〈B,~cI,l,~c
′′, στc′(σDb′O)〉 | (iv)

Col(D)(〈A′, ~dI , τdO〉) (v)

where we use Col(D)(R) as an abbreviation for the result of applying the transfer operations
in Col(D) to the process R. We define the substitution:

τ ′ ≡ [~cI,l/~cI,l, ~dI/~dI ,~c
′′/~c ′′, ~g/~c,~g/~cI,d]

and we apply it to show that P ′ R Q′. First we note that τ ′ is injective on live names and
maps dead names to generic names. Then we compare the parts (i) − (v) of P ′ and Q′.

(i) By definition of R a message addressed to a dead name is mapped to z.

(ii) If h ∈ H ′
Z then ch ∈ D and by definition of the collection operation Col(D)〈ch, τc′h〉 = z.

On the other hand, if h ∈ HL\H
′
Z then

Col(D)〈ch, τc′h〉 = 〈ch, [~g/~cI,d](τch)〉 = 〈ch, τ ′ch〉 .

(iii) We have remarked above that KZ = KD. If k ∈ KZ the same reasoning as in (i) applies.
Otherwise, if k ∈ K\KZ we show:

τ ′(σ〈bk, b′k〉) = στc′〈bk, σDb′k〉 .

Since σbk is live we have that τ ′(σbk) = σbk. On the other hand, we have observed above
that:

στc′(bk) =

{

σ(bk) if bk ∈ {~aI ,~c
′′}

τ(σbk) if bk ∈ {aO, a′},

26



and in the second case we observe that τ ′(σbk) = σbk implies τ(σbk) = σbk.
Next consider σDb′k. By definition of σD, we have:

σD(b′k) =

{

g if στc′b′k ∈ D ∪ G
b′k otherwise.

Then we apply the observation (16). In the first case, στc′b′k ∈ D ∪ G implies σb′k ∈ D ∪ {~c}
which implies τ ′(σb′k) = g. Therefore τ ′(σb′k) = g = στc′(g). In the second case, στc′b′k =
σb′k = τ ′(σb′k).

(iv) We reason as in case (iii).

(v) We reason as in case (ii).

(2) Suppose now Q performs a reduction to Q′. We can take P , Q, Q′, and τ as in case (1).
Because the substitution τ is injective on i/o parameters we can trace back the redex from
Q to P and perform a corresponding reduction to P ′. Then the (reversible) computations we
performed in the previous case show that P ′RQ′. �

B Proof of proposition 6.9

We begin by proving two lemmas.

Lemma B.1 The transition t is enabled with respect to the marking M if and only if

(ν~x) (Πi∈IM(pi) · xi | PRE t,1(~x))
 

∗
i (ν~x) (Πi∈I (M(pi) − Pre(pi, t)) · xi | TRANS t(~x)) .

Proof. If t is enabled with respect to M , then for all i ∈ I, M(pi) ≥ Pre(pi, t), and by
construction of the equations PRE t,j for j ∈ {1, . . . ,m}, we have the required reduction chain.
Conversely, if the reduction chain given above holds, for all i ∈ I, we have M(pi) ≥ Pre(pi, t),
and t is enabled. �

Lemma B.2 For all markings M and M ′,

Q ≡ (ν~x) (Πi∈IM(pi) · xi | TRANS t(~x))
 

∗
i (ν~x) (Πi∈IM

′(pi) · xi | POST t(~x))

if and only if






M ′(pk) = 0
M(pl) ≤ M ′(pl) ≤ M(pl) + M(pk)
M ′(p) = M(p) for all p ∈ P \ {pk, pl} .

Proof. (⇒) The configuration Q can only reduce to

(ν~x) (· · · | RESET t(~x))

after having performed a number of TRANS t → STEP t → TRANS t loops. Since each loop
consumes one message xk and outputs one xl, the reachable configurations are the

(ν~x)
(

Πi∈IM
′′(pi) · xi | RESET t(~x)

)

,

27



for all M ′′ satisfying






M ′′(pk) = M(pk) − n
M ′′(pl) = M(pl) + n
M ′′(p) = M(p) for all p ∈ P \ {pk, pl} ,

for some n ∈ {0, . . . ,M(pk)}.
From each of these configurations, the only possible reduction step is to

Q′ ≡ (ν~x, x′)
(

Πi∈IM
′′(pi) · xi | POST t

([

x′/xk

]

~x
))

,

where x′ is a fresh name. By α-renaming, we have

Q′ ≡ (ν~x, x′′)
(

M ′′(pk) · x′′ | Πi∈I\{k}M
′′(pi) · xi | POST t(~x)

)

,

and
mf (Q′) ≡ (ν~x)

(

Πi∈I\{k}M
′′(pi) · xi | POST t(~x)

)

.

Therefore, M ′ must satisfy M ′(pk) = 0 and M ′(p) = M ′′(p) for all p 6= pk. But then M ′

meets the conditions stated in the lemma.

(⇐) For the converse, if M ′ satisfies the conditions, then after performing n = M ′(pl)−M(pl)
iterations of the STEP loop,

Q →∗
i (ν~x)

(

Πi∈IM
′′(pi) · xi | RESET t(~x)

)

,

with






M ′′(pk) = M(pk) − n
M ′′(pl) = M(pl) + n = M ′(pl)
M ′′(p) = M(p) for all p ∈ P \ {pk, pl} ,

and by suitably α-renaming the configuration reached after the RESET reduction step, we
have

Q ∗
i (ν~x)

(

Πi∈IM
′(pi) · xi | POST t(~x)

)

.

�

Proof of (1) Let t be the transition fired for the reduction M → M ′. We have

φ(M) (ν~x) (Πi∈IM(pi) · xi | PRE t,1(~x)) ,

and since t is enabled with respect to M , we can apply lemma B.1 to get

φ(M) ∗
i (ν~x) (Πi∈I (M(pi) − Pre(pi, t)) · xi | TRANS t(~x)) .

Now, let M0 be the marking defined by M0(p) = M(p) −Pre(p, t), and let M1 be defined
by







M1(pk) = 0
M1(pl) = M0(pl) + M0(pk)
M1(p) = M0(p) for all p ∈ P \ {pk, pl} .

Lemma B.2 then yields

φ(M) ∗
i (ν~x) (Πi∈IM1(pi) · xi | POST t(~x)) ,

28



so that we eventually get

φ(M) ∗
i (ν~x) (Πi∈I (M1(pi) + Post(t, pi)) · xi | LOOP(~x)) .

All that remains to be checked is that M ′ = M1 + Post(t, ). To this end, let p ∈ P : if p
is the origin of t’s transfer arc, we have

M ′(pk) = 0 = M1(pk) + Post(t, pk) .

If p is the destination of t’s transfer arc, we have

M ′(pl) = M(pk) + M(pl) = M0(pk) + M0(pl) = M1(pl) = M1(pl) + Post(t, pl)

(we remind the reader that Pre(pl, t) = Pre(pk, t) = Post(t, pl) = Post(t, pk) = 0). In all
other cases, we have

M ′(p) = M(p) − Pre(p, t) + Post(t, p) = M0(p) + Post(t, p) = M1(p) + Post(t, p) .

�

Proof of (2) The first step of the reduction has to be

φ(M) (ν~x) (Πi∈IM(pi) · xi | PRE t,1(~x)) ,

for some t. Then, the only possible reduction path leads to

φ(M) ∗
i (ν~x) (Πi∈I (M(pi) − Pre(pi, t)) · xi | TRANS t(~x)) .

At this point, we can use lemma B.1 to ensure that t is enabled with respect to M . Let M ′′

be the marking obtained by firing t from M . We must simply prove M ′′ ≥ M ′.
Before reaching φ(M ′), our process must reach a configuration containing POST t, so let

M1 be a marking such that

φ(M) →∗
i (ν~x) (Πi∈IM1(pi) · xi | POST t(~x))

→ φ(M ′) .

Note that we must have M ′(p) = M1(p) + Post(t, p) for all p ∈ P .
By applying lemma B.2, we get







M1(pk) = 0
M0(pl) ≤ M1(pl) ≤ M0(pl) + M0(pk)
M1(p) = M0(p) for all p ∈ P \ {pk, pl} ,

where M0(p) = M(p) − Pre(p, t) for all p ∈ P . We conclude that M ′′ ≥ M ′, since

• M ′′(pk) = M ′(pk) = 0,

• M ′′(pl) = M(pl) + M(pk) = M0(pl) + M0(pk) ≥ M1(pl) = M ′(pl),

• and for all other p,

M ′′(p) = M(p) − Pre(p, t) + Post(t, p)
= M0(p) + Post(t, p)
= M1(p) + Post(t, p)
= M ′(p) .

�

29



References

[1] P. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. In Proc. IEEE-LICS, 1996.

[2] R. Amadio. On modeling mobility. Theoretical Computer Science, 240:147–176, 2000.

[3] R. Amadio, G. Boudol, and C. Lhoussaine. On message deliverability and non-uniform
receptivity. http://www.cmi.univ-mrs.fr/∼amadio, January 2002.

[4] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-
calculus. Theoretical Computer Science, 195:291–324, 1998.

[5] R. Amadio and W. Charatonik. On name generation and set-based analysis in Dolev-Yao
model. Technical report, 2002. RR-4379, INRIA.

[6] R. Amadio and C. Meyssonnier. On the decidability of fragments of the asynchronous
π-calculus. In Proc. EXPRESS01, Electronic Notes in Theoretical Computer Science,
volume 52.1, 2001. Also appeared as RR-INRIA 4241.

[7] T. Araki and T. Kasami. Some decision problems related to the reachability problem for
Petri nets. Theoretical computer science, 3(1):85–104, 1977.

[8] G. Boudol. Asynchrony and the π-calculus. Technical report, RR 1702, INRIA, Sophia-
Antipolis, 1992.

[9] M. Dam. Model checking mobile processes (full version). Information and Computation,
1996. Also appeared in Proc. Concur’93.

[10] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and unde-
cidability. In Proc. ICALP 98. Springer Lect. Notes in Comp. Sci. 1443, 1998.

[11] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Proc. Formal methods and security protocols, FLOC Workshop, Trento,
1999.

[12] J. Esparza. Decidability and complexity of Petri net problems - an introduction. In Lec-
tures on Petri Nets I: Basic Models, Springer Lect. Notes in Comp. Sci. 1491. Springer,
1998.

[13] A. Finkel and Ph. Schnoebelen. Well structured systems everywhere. Theoretical Com-
puter Science, 256(1-2):63–92, 2001.

[14] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. Proc. ACM
Principles of Prog. Lang., 1996.

[15] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. In Proc. CONCUR 96, Springer Lect. Notes in Comp. Sci. 1119, 1996.

[16] U. Golz and A. Mycroft. On the relationship of CCS and Petri Nets. Proc. ICALP84,
Springer Lect. Notes in Comp. Sci. 172:196–208, 1984.

[17] M. Hack. Decidability questions for Petri Nets. Garland publishing Co., 1979.

30



[18] K. Honda and M. Tokoro. An object calculus for asynchronous communication. Proc.
ECOOP 91, Geneve, Springer Lect. Notes in Comp. Sci. 612, pages 133–147, 1991.

[19] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation.
Addison-Wesley, 1979.

[20] P. Jancar. Undecidability of bisimilarity for Petri Nets and related problems. Theoretical
Computer Science, 148:281–301, 1995.

[21] R. Karp and R. Miller. Parallel program schemata. J. Comp. Sys. Sciences, 3:147–195,
1969.

[22] R. Lipton. The reachability problem requires exponential space. Technical Report TR
66, Yale University, 1976.

[23] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[24] U. Montanari and M. Pistore. Checking bisimilarity for finitary π-calculus. In CONCUR
’95, Springer Lect. Notes in Comp. Sci. 962, 1995.

[25] B. Pierce and D. Turner. Pict: a programming language based on the π-calculus. Uni-
versity of Cambridge, 1996.

[26] C. Rackoff. The covering and boundedness problem for vector addition systems. Theor-
etical Computer Science, 6:223–231, 1978.

[27] C. Reutenauer. Aspects mathématiques des réseaux de Petri. Masson Editeur, 1988. Also
available in english: The mathematics of Petri Nets, Prentice-Hall.

[28] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters, 2002. To appear, draft available at http://www.lsv.ens-
cachan.fr/∼phs.

[29] G. Sutre. Abstraction et accéleration de systèmes infinis. PhD thesis, ENS Cachan, 2000.

[30] V. Vasconcelos and R. Bastos. Core-TyCO, the language definition, version 0.1. Technical
report TD98-3, University of Lisbon, 1998.

31


