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Abstract/Résumé

We investigate how to take advantage of the particular features of the Calculus of In-

ductive Constructions in the framework of hardware verification. First, we emphasize in a

short case study the use of dependent types and of the constructive aspect of the logic for

specifying and synthesizing combinatorial circuits. Then, co-inductive types are introduced

to model the temporal aspects of sequential synchronous devices. Moore and Mealy automata

are co-inductively axiomatized and are used to represent uniformly both the structures and

the behaviors of the circuits. This leads to clear, general and elegant proof processes as it

is illustrated on the example of a realistic circuit: the ATM Switch Fabric. All the proofs

are carried out using Coq. Keywords: formal methods, hardware verification, type theory,

dependent types, co-induction, extraction.

Nous étudions comment tirer parti au mieux, dans le domaine de la vérification de hard-

ware, des particularités du Calcul des Constructions Inductives. Nous nous intéressons tout

d’abord, dans une courte étude de cas, aux types dépendants et à l’aspect constructif de la lo-

gique sous-jacente pour spécifier et synthétiser des circuits combinatoires. Puis nous étendons

notre étude aux circuits séquentiels synchrones en introduisant des types co-inductifs pour

modéliser les aspects temporels. Nous donnons une axiomatisation co-inductive des auto-

mates de Moore et de Mealy que nous utilisons pour représenter uniformément les structures

et les comportements. Il en résulte des processus de preuve clairs, généraux et élégants comme

nous l’illustrons sur l’exemple d’un vrai circuit: l’ATM Switch Fabric. Toutes les preuves sont

vérifiées à l’aide de l’assistant de preuve Coq. Mots clés: méthodes formelles, vérification de

hardware, théorie des types, types dépendants, co-induction, extraction.

Relecteurs/Reviewers: Roberto Amadio, Sylvano Dal Zilio
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1 Introduction

In recent years formal methods have been used increasingly in the verification
of circuit designs and have appeared to be a good alternative to test and simu-
lation techniques which present the drawback of being non exhaustive. Among
them, model checking methods based on BDDs [Bry86] have the advantage to
be fully automated. However they can lead to a combinatorial explosion of the
state space and moreover they are not generic since the verification is for circuits
of fixed size.

Formal specification combined with mechanical verification is a profitable ap-
proach for achieving the high levels of assurance required of safety-critical digital
systems. In this paper we present a study for specifying and verifying circuits
in Type Theory, and more precisely in the Calculus of (Co)-Inductive Construc-
tions (CC). The motivation for choosing this logical framework is threefold.
First, its great expressiveness makes it possible to give clear, accurate and gen-
eric specifications, to reason elegantly on them, and to obtain general and re-
usable results. Second, it rests on firm logical foundations. Third, it is imple-
mented as a proof assistant, the Coq system [Tea01]. The latter, as it relies on
a small kernel of rules, can be regarded as very reliable. Thus, we investigate
thoroughly how to take advantage of the particular features of CC (depend-
ent types, higher order logic, inductive and co-inductive types, extraction) in
the framework of hardware verification. All the proofs are carried out using Coq.

The first part of this work deals with combinatorial circuits and their repres-
entation with dependent types. It is illustrated by a short case study based on
the work done in [HDL90] and related to linear arithmetic architectures. It also
presents a method for synthesizing this kind of devices by using the possibility
to extract the informative content of λ-terms [CGJ96].

Then, this study is extended to sequential synchronous circuits. In addition to
dependent types that we still use to give a precise description of their combin-
atorial parts, we introduce co-inductive types to take into account the temporal
aspects of their specification.

Starting from a co-inductive representation of the history of the values carried
by the wires, we model uniformly by means of Mealy and Moore automata
both the structures and the behaviors. These two notions are thus considered
as descriptions of the same entity, represented at different abstraction levels.
Automata are axiomatized as fixpoints, representing non-ending processes that
compute an infinite output sequence in response to an infinite input sequence.
The set of automata is equipped with algebraic composition rules and with an
equivalence relation which is proved to be a congruence for the composition
rules. This makes a hierarchical approach possible since, in a modular device, a
pre-proven sub-component can be replaced by its expected behavior. This ax-
iomatization includes a co-inductive theorem about automata equivalence from
which follow all the correctness proofs in the practical cases. This theorem cap-
tures once and for all the temporal aspects of the proofs, that are thus clearly
separated from the combinatorial parts. This makes the proof process general,
efficient and elegant.
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We demonstrate the feasibility of this methodology on the example of a realistic
non trivial circuit, namely the Fairisle ATM Switch Fabric. This circuit has been
designed, built, and used at the University of Cambridge [LM91] [LM90] and
has been widely used as a benchmark by the international hardware community.
In spite of the complexity of the device, and due to the abstract description of
automata, we obtain very compact representations (at most five states) with
high level transition functions on rich data types [CJ99].

This paper is self-contained and organized as follows. Section 2 is a brief in-
troduction to the Calculus of (Co)-Inductive Constructions. In section 3, we
present on the example of a comparator, how to specify accurately linear arith-
metic structures using dependent types and how to synthesize them using the
Coq extraction mechanism. Section 4 is dedicated to axiomatizing automata.
Then, in section 5, we present an application of our methodology to the ATM
Switch Fabric. Finally, in section 6, we compare our study to other related work
and we conclude in section 7.

2 A Brief Overview of the Calculus of Co-In-
ductive Constructions

The Calculus of Constructions (CoC) has been introduced by T.Coquand and
G.Huet [CH85] and enriched with inductive types by C.Paulin-Mohring [PM96]
and co-inductive types by E. Giménez [Gim96]. Simultaneously, successive ver-
sions of the system were implemented, resulting in the proof assistant Coq
[Tea01].

The Calculus of Constructions

The Calculus of (Co-)Inductive Constructions (CC) is a higher order λ-calculus
which provides in an uniform logical framework both a functional programming
language for specifying and a higher order intuitionistic logic for reasoning about
specifications, via the Curry-Howard isomorphism. The system relies on a dual
interpretation of types, either as sets or as propositions. Thus a term t, inhab-
itant of a type A, can be both interpreted as an element of the set A and as a
proof of the proposition A.

CC is obtained by enriching the simply typed λ-calculus in the following way.
First, one allows types to depend on terms. For that, a sort * is introduced
and A:* means “A is a type”. New type constructors such as P:A→* can be
interpreted both as predicates over the set A or as a family of sets, indexed by
A. One can then construct types (P a) depending on terms a of type A. Under
the assumptions x:A, h:(P x) one can derive ` λx:A.h : (∀x:A)(P x). The
type (∀x:A)(P x) denotes either the product of a family of sets indexed by A

or a universally quantified proposition.

Polymorphism is also introduced by abstracting terms with respect to types.
One can then define the polymorphic identity:

4



(λA:*)(λx:A)x:(∀A:*)A→A

as well as the conjunction A∧B of two propositions A and B by the type:

(∀C:*)(A→B→C)→C.

Finally, abstracting types with respect to types is also possible. The conjunc-
tion ∧ for example, can be defined in the following way:

∧ := (λA:*)(λB:*)(∀C:*)(A→B→C)→C

Extraction

As the underlying logic is constructive, proofs are effective. This implies in par-
ticular that any proof of a statement of the form: (∀x:A)(∃y:B)(P x y) is a
pair (f:A→B, p) where f is a program that, for all x:A, computes a witness
y=(f x) and p is a proof of the proposition: (∀x:A)(P x (f x)). In this sense,
such a term can be viewed as a certified program since f is accompanied with
a “certificate” p ensuring that it meets some property. It is then interesting to
be able to erase the logical part of the proof term, exactly as a compiler ignores
comments, and, in such a way, to get the purely computational component f

which has been proved to be correct. But this is meaningless in such a system
as the one we have presented, since proofs and programs are undifferentiated.
These considerations lead to splitting the sort * into two twin sorts called Set

and Prop, enforcing the distinction between the two possible type semantics.
This is how the system Coq can provide a mechanism which automatically ex-
tracts from a term the certified computational part.

Induction, Co-Induction

The calculus also makes it possible to define inductive and co-inductive types.
Such a type is characterized by a finite set of typed constructors. Each con-
structor corresponds to an introduction rule of the underlying natural deduction
system. As an illustration, let us review the various notions of lists that can be
defined in the system.

Let A be a parameter of type Set, one can define the following types:

Inductive list:Set := nil:list | cons:A→list→list

Inductive d list:nat->Set:=

d nil:(d list O) | d cons:(n:nat)A→(d list n)→(d list (n+1))

CoInductive c list : Set :=

c nil : c list | c cons : A→c list→c list

CoInductive Stream : Set := Cons : A→Stream→Stream

An induction principle is associated with each inductive type (and is automat-
ically generated by the system Coq). It corresponds to an elimination rule for
reasoning on the terms in the free algebra generated by the constructors. The
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inductive type list represents the set of finite lists the elements of which are in
A. If n is of type nat, (d list n) is the dependent type of length-n lists. Total
functions can be defined over inductive types by structural recursion.

In this study, we make heavy use of dependent lists, to give a precise encoding
of circuit ports. The number of input and output wires is verified when type-
checking the specifications. This prevents from tackling the proof process with
erroneous or unreliable descriptions of the circuit.

In a dual way, the co-inductive type c list corresponds to a greatest fixpoint,
and denotes the set of all the finite and infinite lists of elements in A. The
type Stream represents infinite sequences of such elements. The proofs of co-
inductive statements are co-recursive terms. They are interpreted by fixpoints
which represent non-ending processes that build infinite objects step by step.
The co-recursive terms must meet a guard condition to be well-formed: a re-
cursive call, within such a term, must occur just under a constructor.

Our methodology for verifying synchronous sequential circuits relies on encod-
ing by streams the history of the values carried by the wires. In this way, a
register, for example, is a function consing its initial value to its input stream.
In the rest of this paper we shall write σ0 for the head of a stream σ and σ′ for
its tail. Moreover, we shall use a predicate ∼ that represents the extensional
equality over the streams and which is defined co-inductively by:

CoInductive ∼: Stream→Stream→Prop :=

eqS:(∀σ:Stream)(∀τ:Stream) σ0=τ0 → σ’∼τ’→ σ ∼ τ

Moreover, let us mention that these types depend on parameter A. For instance,
the type of streams of elements of type A is in fact (Stream A).

The following section handles combinatorial circuits and is a short case study
that exemplifies the use of dependent lists and of the Coq extraction mechanism
for specifying and synthesizing a certain class of arithmetic circuits. Then we
present a more significant investigation, involving a co-inductive axiomatization
of automata, a hierarchical methodology for verifying sequential synchronous
circuits and the certification of a rather complex device.

3 Synthesizing Linear Architectures: Extraction
and Dependent Types

This section illustrates on the case of linear arithmetic architectures how a cer-
tified circuit can be synthesized from its behavioral specification in type theory.
It also exemplifies the use of sub-types and dependent types for accurate spe-
cifying.

Let us consider, for instance, the comparator depicted in fig.1. It is a hardware
device that accepts two numerals and determines their relative magnitude. It is
composed of identical cells interconnected by a carry wire accepting comparison
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Figure 1: A Comparator

data in a 3-valued type. Each cell, from left to right, outputs a value that de-
pends on the incoming carry and the result of the comparison of two digit inputs.

Our axiomatization makes heavy use of sub-types and dependent polymorphic
lists that allow us to get high-level abstract specifications, more general than
those in previous work on dependent types [HDL90]. This latter type is particu-
larly suitable in the framework of hardware specification where linear structures
are prevalent.

3.1 Axiomatizing numeration systems

The numeration system axiomatization is parameterized by its base which is
represented as a term BASE of type

BT:={b:nat|O<b}.

BT stands for the type of strictly positive natural numbers. This type is defined
inductively and the terms inhabiting it are pairs consisting of a natural number
b and a proof that b is greater than 0. The natural injection from BT to the
natural numbers is defined by associating with such a pair its first component.
Let us call base the result of this injection on BASE.

The type of digits can then be defined similarly as the type of the natural
numbers less than base and we denote by val:digit→nat the related natural
injection. The numerals are represented by dependent lists of digits, and then
the information about their length is carried by their type, at the static level.
For all natural number n the type of length-n numerals is thus defined by:

(num n)=(d list digit n).

The function Val:(∀n:nat)(num n)→nat that associated with each numeral
its value is the recursive function defined as follows:

(Val 0 d nil) = 0

(Val (n+1) (d cons n d D)) = (val d)*basen + (Val n D)
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3.2 Specifying linear architectures

The specification of linear connections of 4-ported identical cells are paramet-
erized by the types A, B, C: Set of the ports and by a relation

cell:A→B→C→A→Prop.

A connection is a relation over two length-n lists, an input carry and an output
carry. More precisely, it is of type:

connection: (∀n:nat)A→(d list B n)→(d list C n)→A→Prop

and is defined inductively by the two propositions:

– (∀a:A) (connection 0 a (d nil A) (d nil B) a)

– (∀n:nat) (∀a,a’,a’’:A) (∀b:B) (∀c:C)
(∀lb:(list B n)) (∀lc:(list C n))

(cell a b c a’)→(connection n a’ lb lc a’’)→
(connection (n+1) a (d cons B n b lb) (d cons C n c lc) a’’)

3.3 Example: the comparator

The comparator is a particular case of connection. The type A of the carry is
a 3-valued inductive type order:={L, G, E}. The types B and C are instan-
tiated by digit. For specifying the relation cell we first define a function
comparison: nat→nat→order that associated with all natural numbers v

and v’ the value L, G, or E depending on whether v is less than v’, greater
than v’, or equal to v’. The functional description of a cell is given by the term
f cell: order→digit→digit→order defined as follows:

(f cell L d d’)= L

(f cell E d d’)= (comparison (val d) (val d’))

(f cell G d d’)= G

The structure of the comparator is then specified by:

(λn:nat)(λo:order)(λX,Y:(num n)) (connection n E X Y o).

For describing its expected behavior, we introduce for all natural numbers n

the type [0,n[ with the natural injection val inf:(∀n:nat)[0,n[→nat. The
specification of the circuit is specified by the function specif of type

(∀n:nat)[0,n[→[0,n[→order

defined by:

(specif n x y):= (comparison (val inf n x) (val inf n y)).
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The theorem of correctness which establishes that the implementation is correct
with respect to the intended behavior can be informally stated as follows :

Let n be a natural number and X and Y be two length-n numerals. Let us denote
by X (respectively Y) the value of type [0, basen[ of X (respectively Y). Then:

(∀o:order)(comparator n o X Y) → o=(specif basen X Y).

However, because of the constant value of the input carry, the proof requires
a generalization. Therefore a lemma is first established which sets forth the
correct behavior of a connection, whatever value is given to the input carry. It
is proven by induction on the term encoding the connection.

3.4 The factorization theorem

A more general approach oriented to the verification as well as to the synthesis
of 1-dimension arithmetic circuits is given in [HDL90]. One can observe that,
given a base b, each cell of the comparator implements a modulo-b version of
the overall structure.

Let us characterize the relations that are implemented by such structures, and
for that let us consider R a relation of type: (∀n:nat)A→[0,n[→[0,n[→A→Prop.

Proper relation. R is said to be proper if and only if:
(∀n:nat)(∀a:A)(R 1 a 0 0 a).

Moreover, let n, m, x, x’, q, q’, r, r’ be natural numbers such that

x=nq+r ; x’=nq’+r’ ; x,x’:[0, mn[ ; q,q’:[0, m[ ; r,r’:[0,n[

The relation R is said to be factorizable if it holds on x and x’ provided it
holds on the quotients q and q’ and on the remainders r and r’. More precisely,
this notion is defined as follows.

Factorizable relation. R is said to be factorizable if and only if:
(∀a,a’,a’’: A) (R m a q q’ a’) → (R n a’ r r’ a’’) →

(R mn a x x’ a’’).

The theorem of factorization states that for all relation R that is proper and
factorizable, (R bn) is implemented by a connection of n cells implementing
(R b). More formally:

(∀n: nat)(∀X, Y: (num n))(∀a, a’: A)(connection n a X Y a’)→
(R bn a X Y a’).

This theorem is proved by an induction on (connection n a X Y a’)
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3.5 Synthesis of linear structures

It is possible to use the Coq extraction mechanism to obtain a certified ar-
chitecture that implements a behavior given by a proper and factorizable re-
lation R. For that, the factorization theorem is set in a slightly different way.
Let us denote by b the base of the system of numeration under consideration.
First the relation R is specified by using a functional parameter FR of type
(∀n:nat)A→[0,n[→[0,n[→A. Then, R is defined by:

(R n a x y a’):= a’=(FR n a x y).

The theorem is stated as follows:

(∀n:nat)(∀X,Y: (num n))(∀a:A)(∃a’:A)(R bn a X Y a’).

The existential quantifier must be declared in the informative sort Set. The
function extracted from such a proof will take as arguments a natural number
n, two length-n numerals X and Y, and an element a:A. It will return an element
a’ of type A. The function f is certified to be such that (R bn a X Y a’). The
proof is performed by induction on n.

• If n=0, we give the witness a’=a and prove that (R 1 a 0 0 a) using the
fact that R is proper.

• Let us now consider a of type A, n a natural and two length-(n+1) nu-
merals X=(d cons n d D) and Y=(d cons n d’ D’). Let a1 be (FR b a

d d’). By induction hypothesis, there exists a’ such that
(R bn a1 D D′ a’). The relation being factorizable we can deduce that

(R b(n+1) a (d cons n d D) (d cons n d′ D′) a’).

The term resulting from the extraction is in the system Fω [Gir71]. From
FR a function fr of type nat→A→nat→nat→A is obtained. Note that the
logical contents of [0,n[ have disappeared. The extracted function f is of type
nat→list→list→A→A and defined by

• (f 0 D D’ a)=a

• (f (n+1) (cons d D) (cons d’ D’) a)=(f n D D’ a1)

where a1=(fr b a d d’)

From the extracted term, a ML program can be automatically generated. It pro-
duces the expected result, when taking as inputs a natural n and two length-n
numerals X and Y. If one of the numerals is shorter than n, an exception is re-
turned. Numerals longer than n are truncated.

The synthesis of the comparator is obtained by defining the function FR of type:
(∀n:nat)order→[0,n[→[0,n[→order by:

(FR L x y)= L

(FR E x y)= (comparison (val inf n x) (val inf n y))

(FR G x y)= G
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Figure 2: A register

and by applying the factorization theorem after having showed that the relation
defined by

(R n a x y a’):= a’=(FR n a x y)

is proper and factorizable.

The rest of this paper is dedicated to a methodology for verifying sequential
synchronous devices, based on a co-inductive axiomatization of automata, and
to an application to a true circuit. Let us point out that, although we shall
essentially emphasize the co-inductive aspect of the specifications, we shall keep
using dependent lists to give accurate encoding of the component ports.

4 Co-inductive Axiomatization of Automaton Al-
gebra

When we started thinking about a general axiomatization for synchronous se-
quential circuits, it appeared that it would basically rely on the way the history
of the values carried by the wires would be represented. The purest and most
elegant way to do this was to encode these infinite sequences as co-inductive
streams as presented in section 2. So, no time parameters need handling and a
register, for instance, is merely a function consing its initial value to its input
stream (fig. 2).

The problem was then to avoid re-introducing any time parameter in the fol-
lowing. It was out of the question, for example, to represent expected behaviors
by timing diagrams. Or to use functions that access the nth element of a given
stream. Thus we were led to choose a representation by finite state machines
that can be viewed as devices which compute an infinite sequence of outputs in
response to an infinite sequence of inputs.

Mealy and Moore automata [Mea55, Moo56] have been broadly used for mod-
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eling circuit structures. We found that this notion is also an adequate and
elegant model for representing behaviors that are described by the designers
in an informal way. As it will be illustrated in the case study we present in
application, the description of the automata we handle is very abstract (for
example a transition function may involve a complex algorithm over the nat-
ural numbers). This kind of representations, that are depicted by clear and
compact transition diagrams, appears to be more trustworthy than other ones
that are based on low level tools (like timing diagrams). In this uniform frame-
work for encoding both the structures and the behaviors, these two notions are
considered as descriptions of the same entity, represented at different abstrac-
tion levels. Moreover, the set of automata is equipped with composition rules
[HU79, Boo67]. This algebraic structure leads naturally to modular descriptions
of architectures and thus to the decomposition of complex device verification
processes into the verification of simpler sub-components. Finally, we introduce
a notion of equivalence over the automata which is a congruence for their com-
position rules. This makes a hierarchical approach possible since, in a modular
device, a pre-proven sub-component can be replaced by its expected behavior.

In addition to the specific advantages of Mealy and Moore automata, and due
to the expressiveness of the Calculus of Constructions, the following aspects of
our encoding are worth being underlined:

– Genericity: Our definition of automata is generic enough to represent in a
uniform way, both low level automata that are related to structures and more
complex ones that represent behaviors.

– Compactness: Due to the high abstraction level of our axiomatization, we get
extremely compact behavioral automata (at most 5 states in the example given
as an application). The information is essentially carried by the state structure
and by the transition and output functions.

– Co-inductive reasoning: Our co-inductive encoding leads to a single generic
lemma that describes the proof schema that underlies any correctness proof.
This lemma captures all the temporal aspects of the reasoning.

– Dependent types: As in the previous case study, we introduce dependent types
whenever they contribute to a better precision of the specifications. They can
be used jointly with co-inductive types to encode, for instance, a n boolean sig-
nal as a stream of length-n lists of booleans.

4.1 Specification of Mealy and Moore Automata

We present two variants of the notion of automaton, due to Mealy [Mea55] and
Moore [Moo56]. The definitions are similar except that in a Mealy automaton,
the output depends on the current state and on the input, whereas it only de-
pends on the current state in a Moore automaton. It can be shown that the
two notions are equivalent.

A Mealy automaton is defined by 5 parameters as follows.
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Figure 3: Representation of a Mealy automaton

Definition 1 A Mealy automaton is a 5-uple (I, O, S, Trans, Out) where
I, O and S are respectively the set of inputs, the set of outputs and the set of
states. Trans is the transition function, of type I→S→S and Out is the output
function, of type I→S→O (see fig. 3).

Given an initial state s, the Mealy machine computes an infinite output se-
quence in response to an infinite input sequence inp. It can then be viewed as
a function that we shall call Mealy function, of type (Stream I)→S→(Stream

O) defined as a fixpoint as follows:

fix.Mealy λinp λs (Cons (Out inp0 s) (Mealy inp’ (Trans inp0 s))).

The first element of the output stream is the result of the application of the
output function Out to the first input inp0 and to the initial state s. The tail
of the output stream is then computed by a recursive call to Mealy on the tail
inp’ of the input stream and the new state (Trans inp0 s). This recursive
call occurs just under the constructor Cons of the co-inductive type Stream, and
that is the guarded condition to be met for the term to be well-formed.

This function Mealy depends in fact on the 5 parameters (I, O, S, Trans,

Out) defining the automaton. As the first three parameters can be synthesized
from the last two, we will denote it by (Mealy Trans Out).

The stream of all the successive states from the initial one can be obtained sim-
ilarly:

(fix.States:(Stream I)→S→(Stream S)) λinp λs (Cons s (States inp’

(Trans inp0 s))).

One can notice that, with this encoding, the output stream can be defined
without referring to the state stream, contrary to what happens when infinite
sequences are defined as functions over the natural numbers where (on)n:nat,
the output sequence, and (sn)n:nat, the state sequence, are defined by :

(∀n:nat) on=(Out inpn sn) and sn+1=(Trans inpn+1 sn)

Moore automata are described in fig. 4 and are defined as follows.

Definition 2 A Moore automaton is a 5-uple (I, O, S, Trans, Out) where
I, O and S are respectively the set of inputs, the set of outputs and the set of
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Figure 4: Representation of a Moore automaton

states. Trans is the transition function, of type I→S→S and Out is the output
function, of type S→O (see fig. 4).

The Moore function associated with such an automaton is of type :(Stream

I)→S→(Stream O) and is defined by:

fix.Moore λinp λs (Cons (Out s) (Moore inp’ (Trans inp0 s))).

It is well known, and we shall formally establish, that these two notions are
equivalent in the sense that any Mealy machine can be simulated by a Moore
machine and conversely.

Let us now axiomatize the inter-connection rules which express how a complex
machine can be decomposed into simpler ones.

4.2 Modularity

Three basic inter-connection rules are defined on the set of automata [Boo67].
They represent the parallel composition, the sequential composition and the
feedback composition of synchronous sequential devices.

4.2.1 Parallel Composition

In this paragraph we consider two Mealy automata respectively defined by the
two following 5-uples:

(I1, O1, S1, Trans1, Out1) and (I2, O2, S2, Trans2, Out2)

and we define their Mealy functions

A1 := (Mealy Trans1 Out1) and A2 := (Mealy Trans2 Out2).

In the following and when it does not introduce ambiguity, A1 and A2 will be
employed to denote both the automata and their Mealy functions.

The parallel composition of A1 and A2 is described in fig. 5. The two objects,
on each side of the schema, need comments :

- f=(f1, f2) builds from the current input i the pair of inputs (f1(i),

f2(i)) for A1 and A2.
- output computes the global output from the outputs of A1 and A2.

More formally, the parallel composition of the two automata is defined by the
following function over the input streams and initial states:
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Figure 5: Parallel Composition

parallel : (Stream I)→ S1 → S2 :=

λinp λs1 λs2 (Map output (Prod (A1 (Map f1 inp) s1) (A2 (Map f2 inp)

s2))).

In this definition, for k ∈ {1, 2}, sk is the initial state of Ak and (Ak (Map fk

inp) sk) is the output stream of Ak. The global output stream is obtained by
mapping the function output on the product of the output streams of A1 and A2.

This parallel composition is not an automaton. But it can be shown that it is
equivalent to a Mealy automaton called PC in the following sense: if a certain
relation holds on the initial states, in response to the same input streams, the
output streams for parallel composition and PC are equivalent. The type of its
states is the product of the types of states of A1 and A2. Its transition function
and its output function are respectively defined by:

(∀i:I)(∀s1:S1)(∀s2:S2)

(Trans PC i (s1, s2))=((Trans1 (f1 i) s1), (Trans2 (f2 i) s2))

(Out PC i (s1, s2))=(output (Out1 (f1 i) s1) (Out2 (f2 i) s2)).

The following lemma states the equivalence between the parallel composition
and this automaton.

Lemma 3 Let PC be the Mealy function (Mealy Trans PC Out PC). For all
states s1 of type S1, s2 of type S2, and for all input stream inp of type (Stream

I) the following relation holds:

(parallel inp s1 s2) ∼ (PC inp (s1,s2))

Proof. Let us clarify on this simple example how a proof term can be built by
co-inductive reasoning. The type of such a proof term being co-inductive, the
term is itself a fixpoint. In the case of this lemma, it is particularly compact
and defined as follows:
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fix.Equiv parallel PC λs1 λs2 λinp

(eqS h (Equiv parallel PC t1 t2 inp’)).

Let us recall that eqS is the constructor of predicate ∼ (see section 2). The term
h is a proof of the equality of the heads of the two streams under considera-
tion, inp’ is the tail of inp and t1 and t2 are the new states computed as follows:

t1= (Trans1 (f1 inp0) s1) and t2= (Trans2 (f2 inp0) s2)

Thus, the proof relies on the (co-inductive) hypothesis that the property being
proved holds on the tail of the input stream and on the next states.

Such proofs are to be compared with those obtained when encoding infinite
sequences by functions over the natural numbers. They are shorter and more
elegant since they do not require handling indices nor performing induction.

The terms parallel and PC that have been defined in this paragraph depend
in fact on several parameters. When these parameters are not clear from the
context, we shall explicitly mention them. We shall write for example (PC

Trans1 Trans2 out1 out2 f output) instead of PC. It is not mandatory to
indicate the types of inputs, outputs and states, since they can be synthesized
from the other parameters. This parameters management is handled by the
section mechanism of the Coq proof assistant. Outside a parameterized section,
the parameters are discharged and must appear explicitly in the terms that are
defined in the section and that depend on the parameters.

4.2.2 Sequential Composition

Let us now consider two automata

(I, O’, S1, Trans1, Out1) and (O’, O, S2, Trans2, Out2)

the output set of the first one being the input set of the second one and let us
define their Mealy functions:

A1 := (Mealy Trans1 Out1) and A2 := (Mealy Trans2 Out2).

The sequential composition is described in fig. 6 and merely corresponds to the
composition of the functions A1 and A2. As in the previous paragraph, we show
that this composition is equivalent to an automaton SC the states of which are
pairs composed of a state of A1 and a state of A2. The transition and output
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functions of SC are defined by:

(∀i:I)(∀s1:S1)(∀s2:S2)

(Trans SC i (s1, s2))= ((Trans1 i s1), (Trans2 (Out1 i s1) s2))

(Out SC (s1, s2))= (Out2 (Out1 i s1) s2))

More precisely, we have the following lemma:

Lemma 4 Let SC be the Mealy function (Mealy Trans SC Out SC). For all
states s1 of type S1, s2 of type S2, and for all input stream inp of type (Stream

I) the following relation holds:

(A2 (A1 inp s1) s2) ∼ (SC inp (s1,s2))

The proof is similar to that of the previous paragraph.

4.2.3 Feedback Composition

The previous two rules have been presented on Mealy automata but they could
have been defined on Moore automata as well. For the feedback composition,
at least one automaton must be a Moore automaton. Without this restriction,
the specified interconnection is not correct since the current output depends on
itself.

Let us consider a Mealy automaton and a Moore automaton, the output set of
the first one being the input set of the second one. They are defined respectively
by the 5-tuples:

(I1, O, S1, Trans1, Out1) and (O, O2, S2, Trans2, Out2)

The corresponding Mealy and Moore functions are defined as usual by:

A1 := (Mealy Trans1 Out1) and A2 := (Moore Trans2 Out2).

Let I be the set of the feedback composition inputs. The function input of type
I*O2 →I1 (where the operator * denotes the cartesian product) is a parameter

17



which computes the current input of A1 from the current input i and the out-
put of A2. The following function out computes the current output of the device:

out:= λi λs1 λs2 (Out1 (input (i, (Out2 s2))) s1)

The functions updating the states are defined by:

upd1:= λi λs1 λs2 (Trans1 (input (i, (Out2 s2))) s1)

upd2:= λi λs1 λs2 (Trans2 (out i s1 s2) s2)

We can now specify the feedback function that computes the output stream
produced by the device represented in fig. 7 with states having s1 and s2 as
initial values, and in response to an input stream inp:

fix.feedback λinp λs1 λs2

(Cons (out inp0 s1 s2) (feedback inp’ (upd1 inp0 s1 s2)(upd2

inp0 s1 s2)))

As for the previous two rules, we show that this composition is equivalent to a
Mealy automaton FC defined by the 5-uple (I,O, S1*S2, Trans FC, Out FC)

where:

(Trans FC i (s1, s2)) = ((upd1 i s1 s2), (upd2 i s1 s2)))

(Out FC i (s1, s2)) = (out i s1 s2)

The following lemma establishes the equivalence of the two devices.

Lemma 5 Let FC the Mealy function (Mealy Trans FC Out FC). For all states
s1 of type S1 and s2 of type S2, for all input stream inp of type (Stream I),
the following equivalence holds:

(feedback inp s1 s2) ∼ (FC inp (s1, s2))

The proof is analogous to the previous ones.

These three composition rules are sufficient for describing all sequential circuit
interconnections [Boo67].

4.3 Automaton Congruence

In this paragraph, we define a notion of congruence over the set of Mealy auto-
mata, which is useful in a hierarchical approach of circuit verification. It makes
it possible to replace a pre-proven structural component by its equivalent be-
havioral automaton. Informally, we lift the stream equivalence to automata by
stating that two automata are equivalent if their outputs are equivalent streams
whenever their inputs are equivalent streams. It is then a kind of extensional
equality over functions over streams.

Definition 6 Let (I, O, S1, Trans1, Out1) and (I, O, S2, Trans2, Out2)

be two automata and A1 and A2 their Mealy (or Moore) functions. The automata

18



are said to be equivalent and we write: A1 ≡ A2 if and only if:

(∀s1:S1)(∃s2:S2)(∀inp:(Stream I))(A1 inp s1) ∼ (A2 inp s2) ∧
(∀s2:S2)(∃s1:S1)(∀inp:(Stream I))(A1 inp s1) ∼ (A2 inp s2).

Lemma 7 The condition A1 ≡ A2 is equivalent to:

(∀s1:S1)(∃s2:S2)(∀inp1,inp2 :(Stream I))

(inp1 ∼ inp2)→(A1 inp1 s1) ∼ (A2 inp2 s2) ∧
(∀s2:S2)(∃s1:S1)(∀inp1,inp2 :(Stream I))

(inp1 ∼ inp2)→ (A1 inp1 s1) ∼ (A2 inp2 s2).

Proof. The proof consists in establishing first that for all automata A, for all
states s, and for all equivalent input streams inp1 and inp2, (A inp1 s) ∼
(A inp2 s). Then one uses the transitivity of the relation ∼ .

Lemma 8 The relation ≡ is an equivalence relation over the set of automata.

The proof is straightforward.

Lemma 9 The relation ≡ over the set of automata is a congruence for the three
interconnection rules.

That means that if A1, B1, A2, and B2 are automata, under the conditions
over the input, output and state types for the interconnections to be correct,
if A1 ≡ B1 and A2 ≡ B2 then PCA1,A2 ≡ PCB1,B2, SCA1,A2 ≡ SCB1,B2, and
FCA1,A2 ≡ FCB1,B2. Here SCA1,A2, PCA1,A2, and FCA1,A2 denote the Mealy auto-
mata resulting from the sequential, parallel and feedback composition of A1 and
A2.

Finally, let us state precisely the equivalence between the Moore and Mealy
definitions. In the two following lemmas we denote similarly the automata and
their Moore or Mealy functions. It is trivial that for all Moore automata, there
exists an equivalent Mealy automaton.

Lemma 10 Let A = (I, O, S, Trans, Out) be a Moore automaton and let
B the Mealy automaton defined by

B = (I, O, S, Trans, (λs:S)(λi:I)(Out s)) .
Then:

(∀s:S)(∀inp:(Stream I)) (A inp s) ∼ (B inp s)

In the converse implication, the two automata process on input streams one of
them is the tail of the other.

Lemma 11 For all Mealy automata, there exists an equivalent Moore auto-
maton in the following sense. Let A = (I, O, S, Trans, Out) be a Mealy
automaton. Let us define the functions:

Trans’ := (λi:I)(λ(s,o):S*O)((Trans i s),(Out i s)) and
Out’ := (λ(s,o):S*O)o.
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Let B be the Moore automaton defined by B = (I, O, S*O, Trans’, Out’).
Then:

(∀i:I)(∀inp:(Stream I))(∀s:S)
(A (Cons i inp) s) ∼ (B inp (Trans i s) (Out i s))

Proofs. The proofs of both lemmas are performed by co-induction.

4.4 Proof Schema for Circuit Correctness

Proving that a circuit is correct amounts to proving that, under certain condi-
tions, the output stream of the structural automaton and that of the behavioral
automaton are equivalent. We present in this section a generic lemma, all our
correctness proofs rely on. It is in fact a kind of pre-established proof schema
which handles the main temporal aspects of these proofs. Let us first introduce
some specific notions.

In the following, we consider two Mealy automata :

A1 = (I,O, S1,Trans1,Out1) and A2 = (I, O, S2, Trans2, Out2)

that have the same input set and the same output set.

Invariant. Given p streams, a relation which holds for all p-tuples of elements
at the same rank is called an invariant for these p streams. For instance, if p=3,
a predicate inv is defined co-inductively as follows.

Let I, S1 and S2 be three sets, P: I→S1→S2 →Prop be a predicate, and inp,

st1, st2 three variables of respective type (Stream I), (Stream S1), and
(Stream S2). The predicate P is said to be invariant on the streams inp, st1,

st2 and one writes (inv P inp st1 st2) if P holds on the heads of the streams
and if P is invariant on the tails of the streams.

Invariant state relation. Let R: S1→S2→Prop and P: I→S1→S2 →Prop be
two predicates. R is invariant under P for the automata A1 and A2, if and only if:

(∀i:I)(∀s1:S1)(∀s2:S2) (P i s1 s2) → (R s1 s2) →
(R (Trans1 i s1) (Trans2 i s2)).

Output relation. Let R: S1→S2→Prop be a relation over the states of two
automata. R is an output relation if it is strong enough to induce the equality of
the outputs, that is if and only if:

(∀i:I)(∀s1:S1)(∀s2:S2) (R s1 s2) → (Out1 i s1) = (Out2 i s2).

We can now set forth the equivalence theorem:

Theorem 12 Let P: I→S1→S2→Prop and R: S1→S2→Prop be two predic-
ates. Let us assume that R is an output relation that is invariant under P, and
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Figure 8: Arbitration Unit

that holds on two initial states s1 and s2. Then, for all input streams inp:

(Inv P inp (States Trans1 Out1 inp s1)(States Trans2 Out2 inp s2))

→ (A1 inp s1) ∼ (A2 inp s2).

In other words if R is an output relation invariant under P that holds for the
initial states, if P is an invariant for the common input stream and the state
streams of each automata, then the two output streams are equivalent.

Proof. The proof of this lemma is done by co-induction.

This theorem will be systematically invoked when establishing the correctness
of a circuit component as an equivalence between its structural automaton and
its behavioral automaton.

5 Certification of a Realistic Circuit

In this section, we outline the certification process of a realistic circuit. It illus-
trates our methodology and gives evidence for its feasibility. The specifications
rely not only on a co-inductive axiomatization of the history of the values car-
ried by the wires but also on the use of dependent types for encoding precisely,
and then reliably, the ports of the different components.

5.1 The 4 by 4 Switching Element

Designed and implemented at Cambridge University by the Systems Research
Group, the Fairisle 4 by 4 Switch Fabric is an experimental local area network
based on Asynchronous Transfer Mode (ATM).

The switching element is the heart of the 4 by 4 Switch Fabric, connecting 4
input ports to 4 output ports. Its main role is performing switching of data from
input ports to output ports and arbitrating data clashes according to the output
port requests made by the input ports. We focus here on its ARBITRATION unit,
which is its most significant part, as far as specification and verification are
concerned. This unit decodes requests from input ports and priorities between

21



INV

INV

AND2

AND4 REG

REG

routeEnable
y

fs

act

OR2

OR4
4

1

1

Figure 9: Timing Unit

data to be sent, and then it performs arbitration. It is the interconnection of 3
modules (fig.8) :

• FOUR ARBITERS which performs the arbitration for all output ports, fol-
lowing the Round Robin algorithm,

• TIMING which determines when the arbitration process can be triggered,

• PRIORITY DECODE which decodes the requests and filters them according
to their priority. Its structure is essentially combinatorial.

As an illustration of section 4.4, we present in detail the verification of TIMING,
which is rather simple and significant enough to illustrate the proof of equival-
ence between a structural automaton and a behavioral automaton. Then, we
shall present how ARBITRATION is verified by joining together the various cor-
rectness results of its sub-modules. This will illustrate not only the hierarchical
aspect of our approach, but also that the real objects we have to handle are in
general much more complex than those presented on the example of TIMING.

5.2 Verification of the Unit Timing

The unit TIMING can be specified and proved directly, that is without any de-
composition. It is essentially composed of a combinatorial part connected to
two registers as shown in fig.9.

5.2.1 Structure

The structure of TIMING corresponds exactly to a Mealy automaton. Its trans-
ition function represents the boxed combinatorial part in fig. 9. The state is
the pair of the two register values, encoded as a length-2 list of booleans. The
unit input consists of a wire fs and a 4 wires signal act that is encoded by a
length-4 dependent list of booleans. So, the parameters representing the input,
output, and state types are instantiated as follows:

I := bool * (d list bool 4)

O := bool
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S := (d list bool 2).

The functions neg and andb are the boolean negation and conjunction. The
inverters and the four inputs and gates are defined by:

INV := neg.

AND4 := (λa,b,c,d:bool) (andb a (andb b (andb c d))).

The automaton representing the circuit in fig. 9 is defined by means of its trans-
ition function Trans Timing and its output function Out Timing as follows:

Trans Timing : I→S→S := λ(fs, act) λ(s1, s2)

(List2 (AND4 (OR4 act) s2 (INV fs) (INV s1))

(OR2 fs (AND2 (INV s1) s2)))

Out Timing:I -> S -> O := λi λ(s1, s2) s1

Structure TIMING := (Mealy Trans Timing Out Timing).

In the definitions above, List2 denotes the operator that builds a length-2 list
from its two components.

5.2.2 Behavior

The expected behavior is presented in fig. 10. The output is a boolean value
that indicates when the arbitration can be triggered. This output is false in
general. When the frame start signal fs goes high, the device waits until one of
the four values carried by act is true. In that case the output takes the value
true during one time unit and then it goes low again. The type of the states is
defined inductively as the set S beh={START t, WAIT t, ROUTE t}.

The transition function trans T and the output function out T are simple and
defined by cases. The automaton Behavior TIMING is obtained as usual by an
instantiation of Mealy.
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5.2.3 Proof of equivalence

All the notions we use in this paragraph have been introduced in section 4.4.
To prove the equivalence between Behavior TIMING and Structure TIMING we
apply theorem 12. For that, we have to define a relation between the state (s1,

s2) of the structure and the state s of the behavior. This relation, namely
R Timing, expresses that the first register value s1 equals the output of the
behavior in the state s (note that the value of this output does not depend on
the current input), that insures that the relation is an output relation. It also
expresses constraints between s and the second register s2 of the structure.

R Timing:S beh→S→Prop := λs λ(s1, s2)

((∀i:I)s1=(Out T i s)) ∧ (s = START t ∧ s2 = false ∨
s = WAIT t ∧ s2 = true ∨
s = ROUTE t ∧ s2 = true).

No additional hypothesis is needed to prove that R Timing is an invariant rela-
tion over the state streams, and this means that it is invariant under the True

constant predicate over the streams, which is obviously an invariant.

The correction lemma is stated as follows:

Lemma 13 (∀inp:(Stream I))(∀s:S)(∀s beh:S beh)(R Timing s beh s)→
(Behavior TIMING inp s beh) ∼ (Structure TIMING inp s).

In this lemma, as in all the correctness lemmas stating the equivalence between
a structural automaton and a behavioral automaton, the combinatorial part of
the proof and the temporal one are clearly separated. The former essentially
consists in proving that R Timing is an invariant under certain condition (True
in this case), which is done by case analysis. The latter follows straightforwardly
from theorem 12.

5.3 Hierarchical and Modular Aspects

Let us now illustrate the hierarchical modularity of our approach on the spe-
cification and the verification of an interconnection of several modules, namely
the Arbitration unit (fig. 8). Its structure is described in fig. 11.
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5.3.1 Structural Description

The structural description is given in several steps (fig. 12, 13, 14), by using the
parallel and sequential composition rules (PC and SC) on automata presented in
section 4.2.

For example, the final definition representing the structure of ARBITRATION as
a sequential composition of two intermediate automata (fig. 14) is specified by
the following definitions. The input type is:

I := bool*(d list bool 4)*(d list bool 4)*(d list (d list bool 2) 4).

and the circuit architecture is encoded by:

Structure ARBITRATION : (Stream I)→S→(Stream O) :=

(SC TransTPD TransFA OutTPD OutFA).

where TransTPD and OutTPD are the transition and output functions of the
component structure TIMING- PDECODE ID and TransFA and OutFA those of
the component structure FOUR ARBITERS.

Structure_TIMINGPDECODE_ID Structure_FOUR_ARBITERS(fs,act,pri,route)

Figure 14: Structure ARBITRATION
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5.3.2 Behavioral Description

As for TIMING, the behavior of ARBITRATION was initially given in natural lan-
guage by the designers. Several formal descriptions can be derived. For example,
in HOL, Curzon uses classical timing diagrams (waveforms) whereas Tahar, in
MDG, specifies it by means of Abstract State Machines (ASM) the states of
which are located according to two temporal axis [TC96]. Our description is
more abstract, more compact and closer to the designers intuition. We rep-
resent it, as usual, by a Mealy automaton which is described in fig. 15. It is
particularly small (only 5 states). This comes from the fact that a great deal of
information is expressed by the states themselves, the output function and the
transition function.

The input has the same type I as in the structural description. The current
input is then (fs, act, pri, route). The states are 4-tuples consisting of:

• a label (START A for instance),

• a list g of 4 pairs of booleans, each of them being the binary code of the
last input port that gained access to the output port corresponding to its
rank in the list g,

• a list o of 4 booleans indicating if the information of same rank in the list g
above is up to date (an element of g can be out of date if the corresponding
output port has not been requested at the previous cycle),

• the current requests l. It is a list of 4 elements (one for each output port).
Each of these elements is itself a list of 4 booleans (one for each input
port) indicating if the input port actually requests the corresponding out-
put port and if it has a high level of priority or not.
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The transition function computes the new state from the information carried
by the current state and the current input. Hence, it is quite complex. Let us
explain how g and o are updated. This is done by means of an arbitration pro-
cess. Each output port first computes the last port (say last) that got access
to this output port. Then, it makes a call to RoundRobin(4, l, last) where
RoundRobin is described as follows :

RoundRobin(n, l, last) = if n=0 then

(last, true)

else

let succ = (last+1) mod 4 in

if succ ∈ l then

(succ, false)

else

RoundRobin (n-1, l, succ)

The list of the first components returned by the 4 calls (one for each output
port) to RoundRobin constitutes the new value of g and the list of the second
components, that of o. The new requests that are computed by decoding and
filtering the current input.

We do not give the precise definition of the transition function which is rather
complex. Let us just make clear that, at each step, it describes non trivial
intermediate functions for arbitrating, filtering, decoding. This points out an
essential feature of our specification: due to the high abstraction level of the CC
specification language, we can handle automata which have few states but which
carry a lot of information. This allows us to avoid combinatorial explosions and
leads to short proofs (few cases have to be considered). We refer the interested
reader to [Jak99] for the full details.

5.3.3 Proof of Correctness: an outline

The proof of correctness follows from the verification of the modules that com-
pose the Arbitration unit. We perform it in several steps, hierarchically.

1. We build behavioral automata for TIMING, FOUR ARBITERS, and PRIORITY

DECODE. We prove that these three automata are equivalent to the three
corresponding structural automata.

2. We interconnect the structural automata and we get the global structural
automaton called Structure

ARBITRATION.

3. In the same way, we interconnect the three behavioral automata in 1 and
we get an automaton called Composed Behaviors.

4. We show, from 1 and by applying the lemmas stating that the equivalence
of automata is a congruence for the composition rules, that Composed

Behaviors and Structure ARBITRATION are equivalent.
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5. We prove that Composed Behaviors is equivalent to the global expec-
ted behavior, namely Behavior ARBI- TRATION. This is the essential part
of the global proof and is much simpler than proving directly the equi-
valence between the structure and the behavior. As a matter of fact,
Composed Behaviors is more abstract than Structure ARBITRATIONwhich
takes into account all the details of the implementation.

6. This final result, namely the equivalence of Behavior ARBITRATION and
Structure ARBITRATION, is obtained easily from 4 and 5 by using the
transitivity of the equivalence over the Streams.

Let us point out that theorem 12 has been applied several times (three times in
1 and once in 5).

Moreover, it is worth noticing that the FOUR ARBITERS unit is itself composed
of four sub-units and that its verification requires again a modular verification
process.

6 Related Work

We do not pretend to give here an exhaustive bibliography of the many invest-
igations in the field of hardware verification using theorem provers.

Let us mention the work closest to ours. In [PM95] Paulin-Mohring gives a proof
of a multiplier, using a codification of streams in type theory, but she represents
circuits as functions of time parameters and then she loses the benefit of hand-
ling streams. In [MJ96] streams are defined in PVS as an uninterpreted non
empty data type constrained by axioms about uninterpreted constructor and
accessors functions. This axiomatization is then used to verify a synchronous
fault-tolerant circuit using co-inductive reasoning based on bisimulations. The
Lava system developed at Chalmers University [Lav00] is based on a functional
representation of circuits in Haskell. These circuits can then be simulated by an
interpreter and verified by a prover system based on propositional logic. How-
ever, the verification of sequential devices is classically performed by induction
over time parameters. Moreover the nature of the logic used in this system only
allows to prove circuits of fixed size. More recently, in [BH01] the authors give a
shallow embedding in Coq of a data-flow synchronous language. For that, they
use co-inductive dependent types for encoding streams with “absent elements”
and they apply the “clock as types” paradigm for expressing static synchroniz-
ation constraints with a restricted form of dependent types.

The ATM Switch Fabric has been (and still is) widely used as a benchmark in
the hardware community. For example, Schneider et al. [SK95] formally verified
it using the verification system Mephisto which is based on the HOL theorem
prover. Although they automated the verification of low-level submodules, they
have not accomplished a complete verification. Other approaches on the Fabric
propose abstraction processes in order to cope with the state explosion problem
[LT98]. However, the authors cannot verify the whole fabric. In [GR96], Gar-
cez et al. verify some properties of the fabric using the HSIS model checking
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tool. But no model checking on the whole switch fabric model nor a verifica-
tion against a high-level specification was reported. Curzon [Cur94a, Cur94b]
has specified and proved this circuit using the HOL theorem prover. His study
has been a helpful starting point for our investigations [JCC97] despite his ap-
proach is completely different in the sense that he specifies the structures as
relations that are recursive on a time parameter and he represents the behavi-
ors by timing diagrams. He does not obtain parameterized libraries but rather
libraries related to specific pieces of hardware. As most of his proofs are induct-
ive, each proof requires at least one particular induction, and sometimes several
nested inductions with various base cases. This has to be contrasted with our
unique generic temporal theorem. In [TSC+99] Tahar and al. proved the Fab-
ric using MDG (Multiway Decision Graphs). They handle bigger automata and
their proof is more automatic. However it is not reusable. Several comparisons
between these various approaches can be found in [TCJ98, TC99].

7 Conclusion

In this paper, we have thoroughly investigated how to take advantage of the
expressiveness of the Calculus of (Co)-Inductive Constructions in the field of
hardware verification. After a short case study on the use of dependent types
and extraction for specifying and synthesizing arithmetic linear structures, we
have presented a high level generic methodology, entirely implemented in Coq,
for modeling and verifying synchronous sequential circuits. The starting point
of this approach is a uniform co-inductive description of the structures and the
expected behaviors of circuits by means of Mealy automata. Then we have
demonstrated its applicability to a realistic circuit.

The points of our work that must be emphasized are the following:

1. The use of extraction for synthesizing a class of circuits We have used the
constructive aspect of the logic to synthesize a class of circuits that im-
plement proper and factorizable arithmetic relations. The Coq extraction
mechanism allowed us to get a certified description of these devices from
a proof term of an existential lemma.

2. The use of dependent types for reliable specifications. Although the bene-
fit of dependent types for hardware specification has often been pointed
out by several authors([HDL90, Lee92] . . .), few significant developments
using them have actually been achieved, since they are known to be rather
tricky to use. Curzon reported that some errors in its specifications caused
a big lost of time in his verification process. An early detection of these
errors (at the specification stage) would have been possible by using de-
pendent types. Thus, we have introduced dependent types whenever they
contributed to a better reliability of the specifications and we have shown
that an heavy use of this kind of encoding was feasible in practice. Several
reusable axiomatizations have been done (for handling lists, numeration
systems, repetitive arithmetic structures) in which generic properties and
theorems have been proven.
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3. The use of co-inductive types for neat specifications. We could obtain a
clear and natural modeling of the history of the wires in a circuit as well
as the automata behaviors without introducing any temporal parameter.

4. Co-inductive reasoning for elegant and clear proofs processes. We could
capture once and for all in one generic theorem most of the temporal
aspects of the proofs. In each specific case, only combinatorial parts need
to be developed. So, the proof process is clarified, simplified and is made
more generic.

5. High abstraction level in axiomatizing automata. Our definition of auto-
mata is generic enough to represent in a uniform way, both low level
automata that are related to the structures and more complex ones that
represent behaviors. Due to the high abstraction level of this axiomatiza-
tion, we get extremely compact behavioral automata (at most 5 states in
the example given as an application). This comes from the complex struc-
ture of the states that carry a lot of information. Therefore the proofs by
cases are short but they make use of high level transition functions on rich
data types.

6. The feasibility of our approach, that has been demonstrated on the ex-
ample of a realistic non trivial circuit. Our whole development (including
the generic tools and the case study on the linear arithmetic structures)
takes approximatively 13,000 lines.

7. The hierarchical and modular approach. Not only does this lead to clearer
and easier proof processes but also it allows us to use, in a complex veri-
fication process, correctness results related to pre-proven components.

This work results in several reusable Coq libraries.
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théorie des types. Studies in —Logic and the Foundations of Math-
ematics, 63, 1971.

[GR96] E. Garcez and W. Rosenstiel. The Verification of an ATM Switching
Fabric using the HSIS Tool. IX Brazilian Symposium on the Design
of Integrated Circuits, 1996.

[HDL90] F.K. Hanna, N Daeche, and M Longley. Specification and Verification
Using Dependent Types. IEEE Transactions on Software Engineering,
16(9):949–964, September 1990.

[HU79] L. Hopcroft and L. Ullman. Introduction to automata theory, lan-
guages and computation. Addison-Wesley Publishing Company, 1979.

[Jak99] Line Jakubiec. Vérification de Circuits dans Coq. Thèse d’université,
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