Exact Medial Axis based on Flake Digital Circles

Edouard THIEL! and Rita ZROUR?

1 LIS, Aix-Marseille University, CNRS, Marseille, France

edouard.thiel@Quniv-amu.fr

2 XLIM, ASALI, University of Poitiers, CNRS, Poitiers, France

rita.zrour@univ-poitiers.fr

Abstract. Medial Axis, also known as Centres of Maximal Disks, is a
useful representation of a shape that interested many researchers since
the 60s. The k-flake digital circles introduced in [I6] extends most com-
mon notions of digital circles and offers a control over the topology of
the digital circle leading to a k-tunnel free circle. This paper addresses
the fundamental problem of computing an exact Medial Axis based on
flake digital circles. For this purpose we define a family of flake dis-
tances, then we adapt the algorithm proposed for the Euclidean distance
by Remy and Thiel in [10], which computes the look-up table and the
neighbourhood to be tested, to the case of the flake distances, and we
compare the results.
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1 Introduction

The Medial Axis (MA) is a useful representation of a shape for image description,
analysis and compression. It has been introduced by Blum in the 60s [I] as a
set of points where different fire fronts collide. The MA consists in detecting
the centres of maximal disks in a binary shape. A disk is maximal if it is not
included in any other disk in the shape [2]. The MA is the set of centres and radii
of maximal disks. In discrete space is often disconnected, not thin and sensitive
to small contour perturbations.

In the literature, many researcher worked on computing MA approximately
[3I41516] or exactly [7I8I9UTI0]. Detecting MA is usually done based on a Distance
Transform (DT), where each pixel is labelled with its distance to the background,
that is the radius of the largest disk included in the shape centred on the pixel.
Saito and Toriwaki proposed in [12] an efficient algorithm, separable in dimen-
sion, for computing the exact Squared Euclidean Distance Transform (SEDT).
Later on, Hirata [I3] and Meijster et al. [14] have optimised this algorithm to
linear time in the number of pixels.

In this work we are interested in proposing an exact approach for computing
the MA based on flake digital circles. Flake digital circles are disks that can
be characterized analytically [I5JI6]. Our approach extracts the MA based on
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a look-up table (LUT) and a LUT Mask (Mypyt). The idea of the LUT was
introduced in [78]. Its principle is that it gives for each radius value read in the
DT, the minimum value of the neighbours that forbids a point to be in MA.
The problem is to systematically compute the LUT associated with a distance
function, for any radius, and also to compute the test neighbourhood My.
An efficient algorithm for computing the LUT and My, for the exact MA
extraction is presented in any dimension for chamfer norms in [9] and for the
Euclidean distance in [10].

In this paper, two major contributions are proposed. First, we present a new
family of discrete distances whose disks coincide to the flake digital circles. Sec-
ond, we present an exact method to compute the MA based on flake digital circles
which is an adaptation of [I0]. Our algorithm computes the LUT columns and
the test neighbourhood My, and certifies that this neighbourhood is sufficient
up to a given radius.

The article is divided as follows. We recall in Sect. 2] some basic notions and
the definitions of adjacency norms and k-flakes. We study the k-flake digital
hyperspheres in Sect. Bl and we present the family of k-flake distances in Z".
In Sect. @ we justify the validity of the method thanks to the definition of the
k-flake discrete distances in G(Z™), and we present the adapted algorithms for
the computation of the LUT columns and Myp,;. Results are given in Sect. [Blin
the 2D case, and we finally conclude in Sect. [Gl.

2 Norms, adjacency and flakes

We consider R™ as the Euclidean vector space, Z™ as an n-dimensional Z-module
(i.e., a discrete vector space), and both of them as their associated affine space.

The classical £, norms, denoted |||, are defined by: VZ = (z1,...,z,) € R,
1Z|lp = (|z1]P + ... + |xn|p)% The Manhattan distance d; is induced by ||Z||; =
|z1| + ...+ |2n|, the Euclidean distance dg by ||Z||2 = v/|z1]2 + ... + |2,[2, and
the Tchebychev distance doo by ||Z]|cc = max (|21], ..., |zn])-

While in Z™, the values provided by d; and d., are integers, those of dg
are real. Since dg values are integers, many algorithms compute and store d%,
with the drawback that the distance d% is not a metric (it does not respect the
triangular inequality).

A wvoxel P, where P = (Py,...,P,) € Z", is the axis-aligned closed unit
cube centred on P in R™, that is {Q € R™ : ||Q — P||oc < 3}. A k-face is a face
of dimension k. Two voxels are said k-adjacent if they share at least a k-face.
Formally, let P,@Q € Z™ and 0 < k < n; P and Q are k-adjacent iff |Q;— P;| < 1Vi
and "7 | |Q; — P;| < n—k (that is, P and @ share at least k equal coordinates).

This notion of adjacency can also be expressed in terms of norms [I6]: the
k-adjacency norm, denoted [ -], is defined in R™ for any 0 < k < n as VZ € R™,
[#]r = max {||Z]|ec, ||Z|]1/(n — k)}. Let P and @ € Z™, then P and Q are k-
adjacent iff [Q — P], < 1. Note that by the well-known inequality o, < f2 <
{1 <n-ly wehave [-]o =] ||oo and [ ]n—1 =] - ||1-




Exact MA based on Flake Digital Circles 3

In the literature in Z2, d; and do. are also named d,; and dg after the number
of pixels in their unit balls; the 0- and 1-adjacency correspond to the 8- and
4-neighbours, respectively.

A k-path is a sequence P, ..., P, of distinct points in Z" where P; and P; 1
are k-adjacent, 1 < ¢ < m. A set E of points in Z" is said k-connected if for
any two points in E there exists a k-path in E joining them. The set E is said
k-separating Z™, or k-tunnel free, if the complement Z" \ E admits exactly two
maximum k-connected subsets.

Given a distance d in R™, the (closed) ball of centre P € R™ and radius
r € Ry is Bg(P,r) = {Q € R" : d(P,Q) < r}, and the corresponding disk is
Dy(P,r) = {Q € R™ : d(P,Q) = r}. A discrete ball is written as B = Bq N Z".
By extension for a norm A in R™, we denote by B; and Dy, the ball and the disk
for the distance induced by h. Any ball By, is necessarily convex.

Let A and B be two non-empty sets. The Minkowski sum of A and B is
defined by A®@B ={a+b : a € A, b € B}. This operation is also called dilation
of A by the structuring element B.

The adjacency flakes are introduced in [16] as structuring elements, resulting
from the intersection of a ball of an adjacency norm and a finite number of
straight lines through the origin. Let V}!(p) be the set of extremal points of the
convex ball By, (O, p) of radius p € Ry in R"; we have

Vi (p) = {pPER”  Pe{-1,0,1}", 30 |P] :n—k}. (1)

For instance in R?, Vi (p) = {(0, +p), (£p,0)} and V3(p) = {(£p, £p)}. Remark

that YV € V(p) we have ||[OV]| = pv/n — k.
Following [17], the minimal k-adjacency-flake F}'(p) for [-]r and p is then
defined in R™ as

Fio) = {P eV A€ 0,01}, (2)

which is the set of straight line segments joining the vertices V}!(p) to the origin,
see Fig.[Il. In the sequel, we will use the term k-flake for short.

- X

a) F7(1 F3(1) (c) F3(1) (d) FP(1) (e) F5(1)

Fig. 1. Flakes of radius 1, (a,b) in R? and (c,d,e) in R®. Integer points are represented
by small circles, Vi (1) points by black bullets, flakes F;'(1) by black segments, the
k-adjacency norm balls B, (O, 1) in light grey.
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Since the k-flakes are defined from adjacency norms, they also allow to char-
acterize the k-adjacency using a radius of %: two points P, Q € Z™ are k-adjacent

iff ({P} e F(3) N({Q} & Fi(3)) # 0.

3 Flake digital hyperspheres, balls and distance

We are interested in the morphological digitization scheme using a Minkowski

sum with a k-flake of radius 3 as a structuring element [I8]. Let S be a subset

of R™, the flake-digitization of S is defined by
Fus)={Pez: ((Pto Fp()ns#0}. (3)
Since f,’:(%) is central-symmetric we can equivalently write
Fp(9) = (S@ Fi(3) nz", (4)
and by commutativity we have
Fp(S) = (Fr(z)@S)nz. (5)

The flake-digitization F} of a Euclidean disk C(P,r) = Dy (P,r) of centre
P € R"™ and radius r € Ry is called a k-flake digital hypersphere (or circle
for n = 2). A graphical construction using (@) of a k-flake digital hypersphere
F2(C(P,r)) is shown in Fig. @in Z?; the selected points are delimited between
the coloured circles, centred over the corresponding coloured k-flake vertices.

This digitization has an important topological property, which motivated our
study: the k-flake digital hypersphere F}(C(P,)) is k-tunnel free if r > @,
see [I7/19]. The property of k-tunnel freeness can be observed in Fig. 2.

Let us characterize the k-flake digital hypersphere points. Given P € R™ and
r € Ry, by @B) we have

FRC(Pr) ={Qez" : {Q+T : Te F(d)}ne(Pr) £0},

(6)
:{QeZ” : ETE.FI?(%)7dE(P7Q+T):T}'

Since ]-',?(%) is constituted by segments, we can bound the selected points by

min {dg(P,Q +T) : T € F}!

FpC(P.r) = Qe - @r<rl
max {de(P,Q +T) : Te]-',?(%)} >

or equivalently, by translation and symmetry,

min {dg(P+7T,Q) : T € F}(

Fe(C(P,r)) = {QEZ" 5 max {dg(P +T,Q) : T € F}(3)
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(a) k=1

Fig. 2. Flake-digitizations F; of the Euclidean circle (dotted line) C(O,4). Integer
points are represented by small circles, corresponding pixels by squares, flakes .7-",3(%)
by black segments, integer points and pixels belonging to F3(C(O,4)) in black.

We can then split (8) as
FpC(pr) = {Q €Z" : min{dp(P+T,Q) : T € Ff(})} < r} \

9
{QEZ” : max {dg(P+T,Q) : TE]-“,?(%)}<T} , ©)
where the first term (with the min) is the discrete ball relative to the k-flake
digital hypersphere, called k-flake digital ball, while the second term (with the
max) stands for the hypersphere interior.
We aim to express a k-flake digital ball as a distance ball. Let P, @ € R™ be
two points, we define the k-flake pseudo-distance between P and @Q as

drp(P,Q) =min {ds(P +T,Q) : T € FF(3)}. (10)

This function is symmetric but not positive definite, because VA € F*(3) \ {O}
we have dzp (0,A4) =0; so drp is only a pseudo-distance. However, it allows to
express the k-flake digital ball of (@) as the distance ball BZFTL (P,r).
k
Now in the discrete case where P,Q € Z", to express dzp it is sufficient to
consider the k-flake vertices, as well as the origin O for the special case P = @:

It is plain that dzp is symmetric yet positive definite, thus is a distance in Z".
However, dzr is not a metric, since we can find counter-examples to the tri-
angular inequality: take for instance A = (1,0), B = (2,0) and C = (3,0),
we have dz2(A, B) = dz2(B,C) = 1 and dr2(A,C) = 3, s0 drz2(4,C) £
d]:12 (A, B) + d]:12 (B, C).
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4 Exact medial axis for k-flake digital balls

We present an adaptation of the LUT-mask method in [I0] to compute the exact
medial axis for k-flake digital balls in Z™. For simplicity, we consider images of
size L™, and algorithms and examples are given in dimension 2.

4.1 Discrete distance and G-symmetry

The LUT-mask method, originally given for d%, in Z", is very general and is valid
for any distance balls family, respecting certain conditions.

(i) The first condition is to provide integer distance values. If we square dzp
in ([T we will get multiples of (3)?, that is why we define the discrete distance

dy (P,Q) = 4(drp (P,Q))" = min {4d3(P +T,Q) : T € Vi(3) U{0}} (
and denote its balls by B, (P,r) = B} (P,r).
k ]:;L

(ii) The second condition is to have G-symmetric balls. Let we recall briefly
this notion. We denote by Si(n) the group of axial and diagonal symmetries of
the rectilinear grid of Z"; its cardinal is 2"n! (that is 8, 48 for n = 2, 3 resp.). A
subset X € Z" is said G-symmetric if Yo € Sg(n) we have o(X) = X. We call
generator of X the subset

GX)={(@1,...z) €X :my > ... 2w, >0}, (13)

that corresponds to the first octant in Z2. When X is G-symmetric, the subset
G(X) is sufficient to reconstruct X with the G-symmetries, hence its study can
be limited to G(Z™) or G(R").

By construction, the k-flakes f"( ) are G-symmetric, and the same applies
to k-flake digital balls whose centre is in Z". Moreover, G(V}!(%)) is restricted
to one point (2}, where

n—k k
——

——
2 ={(%,...,4,0,...,0) }. (14)

The points 2§ = (3,0) and 23 = (3, 1) are shown in Fig. B (b,c) as red bullets.
Any point Q € G(Z™) is closer to than to any other point in Vy'(1):

o)
=3

Lemma 1. Let Q € G(Z"), then VP € V}(3), dg(2,Q) < di(P, Q).

Proof. If @ = O then d(£2',Q) = d%(P,Q) = (n — k)3, VP € V}(3). Now
suppose Q@ # O, Q1 = ... 2 @, = 0 a dtkePer() Remark that
Q= [PIF < (@ = P so di((R) . P).Q) < dEi(R, .. Po). )
Remark also that Vi, j s.t. i < j, ( 7)? (QJ —0)2<(Qi—0)2+(Q; — 3)%,
thus by shifting all coordinates 3 to the left we have d? (Q,?, Q) <di(P,Q). O



Exact MA based on Flake Digital Circles 7

@ 1 4 9 16|25 0e1 9 25 49|81 0 2 10 26 50|82
2 5 10|17 26 5 13 29 5385 "9 10 26 5082

8 13]20 29 25 41|65 97 18 34 58|90
118 25 34 6185 117 (50| 74 106

J: 32 41 : 113 145 ' 98 130
(a) 50 (b) 181 (c) 162

Fig. 3. Beginning of CTY in G(Z?) for (a) dg, (b) d'}.lg and (c) d'}.g. The red bullets
represent the distance origin (a) O, (b,c) £27; in blue, the border of the balls Bz (0, 1%)
and B}g (0, 4t%) of radius t = 4 pixels.

By lemma [ and ([I2), the distance d’ n from O to @ € G(Z"™) is then

’ _J0 ifQ=0,
7 (0.@) = {4%(92,@) Q40

When Q # O, since 4d% (27, Q) = d%(2627,2Q) and by ([I4) we can still write
A (0,Q) = 2Q1 = 1)*+.. .+ (2Qu—k — 1)* + (2Qn—k+1)" +. .. +(2Qn)*. (16)

We name Cone distance Transform the image CTY where each point from G(Z")
is labelled to its distance from O. Fig. Bl compares the distances values obtained

in CTY by (16).

(15)

4.2 LUT mask and columns computation

We can now adapt the LUT-mask algorithm [10] to d’ .- The aim is to compute
a G-symmetric set My of vectors in Z", that is necessary and sufficient to
detect the MA points on a DT with local tests on the neighbourhood M ¢,
together with a LUT column for each vector of My, that maps the minimum
inclusion radii of the balls in that direction.

Thanks to the G-symmetry, all computations are proceeded in G(Z™) for
efficiency, including M{ , = G(Mzyys). Given a vector ¥ € Z™, we denote by 09
its G-symmetric in G(Z").

Let us recall the principle of the algorithm. At the beginning, we compute
CTY once; then, we examine each distance ball centred in O, of growing radius,
obtained by a simple threshold on CTY. For each ball, we extract MA using the
current M7 . if a point different from O is detected, its direction is added to
M . and the corresponding LUT column is computed on C'T.

The main function CompLutMask is given Fig. Hl; it is very similar to the
original version, except lines 4,5. It can compute the whole M{ . up to a radius
Riarget, by giving the parameters M‘Eut = () and Ripown = 0, or be resumed from
an already computed Mﬁut and radius Ripown, to a larger radius Rigrget-
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function CompLutMask (L, k, M{ ., Rknown, Riarget, Lut) :

1 CompCTg (L, k, CT?) ; CompPV (L, CTY, Riarget, PV) ; init DTY to 0
2 for each 77 in M{ , do CompLutCol (CTY, L, ¥, Riarget, Lut[t?])

3 for R = Rinown + 1 to Rigrget do
4

if not PV[R] then continue value R is not possible
5 CompBallDTg (L, k, R, CT?, DT9)
6 forx=0to L—1, for y=0 to x do
7 if DTY[z,y] # 0 and IsMAg ((z,y), M7, Lut, DT?) then
8 M =M{ U (=), R) Insert the new vector
9 CompLutCol (CTY, L, (z,y), Riarget, Lut[(z,y)])
10 if IsMAg ((z,y), M{ ., Lut, DT?) then error

Fig. 4. Full M} . and Lut Computation. Input: L the side length, k € {0,1}, M{ .,
Rinown and Riarger. Output: Lut and M7 ..

function CompCTg (L, k, CT?) : function CompPV (L, CTY, rmax, PV) :

CT9[0,0] =0 1 for r =1 to rmax do PV[r] = false

forz=1toL—1,fory=0toxrdo > forz=1toL—1,fory=0tozdo
dr =2xxz—1;dy=2*xy—14+k 3 r=CTz,y]

‘ CTIz,y] = da® + dy* A if r < rmaz then PV|[r] = true

w N =

Fig. 5 Cone distance Transform. Input: L Fig. 6. Possible distance Values. Input:
the side length, k € {0, 1}. Output:/CTg L, CT?, rmaz. Output: PV is filled with
the L x L distance image to O for d. true for possible distance values.

During the first step (line 1) we compute CT? using CompCTg. The imple-
mentation of CompCTg in Fig. [ is straightforward by ([I3) and (I6). Since the
resulting image C'TY contains all the possible distance values, it is then used in
CompPV, shown in Fig. [0 to create an array PV of Possible Values, in order to
speed up the computations (line 4 in Fig. d); it might optionally be used to save
memory space when storing the LUT columuns.

The second step (line 2) is the computation of the LUT columns in the case
where M{ . is not empty. For each vector t9 € M7 ., the function CompLutCol
is called to fill the column Lut[?¥9], such that for any radius r read in a DT,
Lut[t9][r] is the minimum value of a neighbour in direction #9 (and its G-
symmetries) that forbids a point to be in MA. The function CompLutCol is
the original function presented in [10), Fig. 8].

The next part (lines 3-10) checks each possible radius. The DT on the
ball of radius R is computed for the k-flake discrete distance d’F;: in line 5 by
CompBallDTg, described in Sect.[d3]. The fundamental idea is that the MA of a
ball should be its sole centre, so if another MA point is detected (line 7) in its
DT using the already known My . then this point is a direction that should be
inserted (lines 8,9) in M7 . to remove it as a MA point. The function IsMAg,
used to detect if a point is in MA, is the original function given in [I0, Fig. 10].
The consistency test line 10 validates the whole method.
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function CompBallDTg (L, k, R, CTY, DTY) :
1 forxym =0to L —14do if CT?[0,za] > R then break // search bound zas
2 if xp > L then error

3 First scan on columns, decreasing order

1 for x =0 to xy do R zm
5 1 =0 ; propag = false |

6 for y = x downto 0 do |

7 if CTY[x,y] > R then // outside the ball : background propag
8 propag = true :

9 else if propag then // inside the ball, mark to distance from bg

10 | i=i+1;DT%z,y]= (2%i—1+k)?

11 else DTY[z,y] = —1 // inside the ball, no distance propagated

12 Final scan on lines

: Rz
3 for y=0to zpm, for x =y to xp do

14 if DTY(z,y] == 0 then continue // outside the ball |

15 dmin = 8 L* : ‘

16 for j =0 to xym —x do }
17 t1 = DTz + 4, y] !

18 if t; == —1 then continue // no distance propagated

19 if k==0and t1 == 0 then t; =1

20 UQI(Q*j—1)2;t2=t1+UQ

21 if to < dmin then dmin = to else if us > dmin then break

22 DTY [$7 y] = dmin

Fig. 7. Ball Distance Transform. Input: L the side length, k € {0,1}, R the radius,
CT?. Output: DT is the DT of G(B% (O, R)).

4.3 DT on a ball in the generator

The function CompBallDTg is given in Fig. [7. It computes in DT the DT on
BY(R) = G( /F;; (O, R)). The ball is obtained by thresholding CT? with R, any
value > R being considered as background. The function is called numerous
times in CompLutMask (Fig. [, line 5), but it is sufficient to initialize one time
DTY to 0 at the start of CompLutMask (line 1) since R and the ball are growing.

We start (Fig. [, lines 1,2) by searching on the first row the bound z s such
that BY(R) is completely included in the subspace 0 < = < x .

The next part of the function (lines 3-22) is inspired from the separable
in dimension algorithm of Saito and Toriwaki [I2] and ideas from [I0]. The
complexity is in O(xp"*1). The parts specific to d’ o are lines 10,20 (to get
back to d%, replace the expressions by i? and j2) and line 19 for k = 0, see
below.

The first scan is made lines 4-11 on columns in decreasing order, using a flag
propag which indicates if a distance information can be propagated, that is, if
there was a background pixel during the scan. If not, a value of —1 is stored.

The second scan is made on rows, lines 13-22. There is no need to make a
copy of the current row to compute the min (lines 16-21) for a pixel of abscissa
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x, since the candidates x + j for the min are after the current pixel during a
j scan. The else part in line 21 is a classical optimisation of the Saito and
Toriwaki algorithm.

The function CompBallDTg computes for each point z,y the min

h(z,y) =min{ (2j —1)> + (2i —1+k)*> : (x+j,y+i)€BI(R)} (17

over 0 < x4+ j,y+1 < zp < L. The k-flake distance formula that is evaluated
is obtained using ([I8) by taking (z,y) as the origin. The first scan computes

glz,y) = Iniin{ (2 —1+k)*: (z,y+1i) € BI(R)} (18)

except for non propagated values (set to -1 in DT9) and background pixels
(which must stat at 0 in DTY); the final scan calculates

h(z,y) = mjin{ (25— 12 +gx+4.y) }. (19)

The line 19 is a correction for k¥ = 0 in the case where (z + j,y) is a background
pixel (the min over i, not stored in DT, is then (—1)? and is added to ¢;).

5 Results and experiments

In this section we present the results that we have obtained for the k-flake
discrete distances in 2D. The full source code in C++-, together with some more
examples, are given in an electronic annex, available online in [20].

5.1 Appearance radii in My

The beginning of M{  in Z? is shown in Fig. B (left) for d,, d'f12 and d’Fg. As
for d%, all these vectors are visible points, that is, their coordinates are mutually
prime. They do not appear in the same order, but their number grows slowly
with R in a similar way.

On a larger scale, the behavior of the number m of vectors in M{ . according
to the appearance radius in pixels up to 1000 is compared in Fig. [ (right) for
the three distances; the three curves remain fairly close.

It has been shown in Z™ for df, in [11] that M{ . tends to the set of visible
point when R tends to infinity. Our experiments show that we can reasonably
conjecture the same property for d/]-',f'

5.2 DT, RDT and MA examples

In order to compute the MA we need a Distance Transform (DT) algorithm,
that labels each shape point with the distance to the closest background point.
The original shape can then be reconstructed from MA using a Reverse Distance
Transform (RDT).
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(a) (b) () 100 [
ilz,y R 4R |z ,y Rlz,y R
11,0 1 4[1,0 11,0 2
2(1,1 2 81,1 5(1,1 2| 80
3|2,1 101 404|2,1 369[2,1 442
4|3,1 146 584(3,1 1233[3,1 746
5|3,2 424 1696(3,2 1413[4,1 2826| 60
6|4,1 848 3392|4,1 4765[3,2 3538
7|5,1 1370 5480|5,1 5337[5,1 8298
8|6,1 2404 9616|5,2 9601[4,3 9810| 40
9|4,3 3049 12196|4,3 10229(6,1 13698
10(7,1 3250 13000|5,4 14965|5,3 15850
11{5,2 3257 13028|5,3 16417|5,2 17194| o
12(7,5 3700 14800(7,1 20457|7,1 28594
13(5,3 4709 18836|6,1 24085|8,1 29258 f
14(7,3 5954 23816|7,2 26821|7,5 30266 ! ! ! !
15|5,4 9805 39220|8,1 44525|5,4 38666 0 200 400 600 800 1000

Fig. 8. Beginning of M{ , in Z? for (a) d%, (b) d'}.lg and (c) d'}.g. Left: appearance
rank ¢, coordinates, appearance radius R (and 4R for comparison). Right: diagram of
the number m of vectors in M{ , according to the appearance radius in pixels up to

1000 (VR for (a), VR/2 for (b,c)).
© 222 @O

2 2102 2 2 2 2
2 10 18 10 10 10(10) 2
10 18 102 2
10(18)(26)18)10 10 2
2101010 2 2 2
2.2 2 2 2

(a)

= = = e
N NN

Fig. 9. Medial Axis over DT for (a) d%, (b) dlff and (c) lfg DT values are in black,
MA points are circled in blue.

For this paper we have chosen to adapt in 2D the Saito and Toriwaki algo-
rithms [12] that compute the exact DT and RDT in O(L"*!) for an image of size
L™. Due to lack of space we only give the source code in [20]; the adaptations
are rather tricky and quite different for k¥ = 0 and k& = 1. An example of DT and

U

MA of a shape is shown in Fig. [ for the three distances d%, CZ’F12 and dfg.

6 Conclusion and future work

In this paper we have proposed an exact method for computing the medial axis
based on flake digital circles. For that purpose, we have defined a family of flake
distances and adapt the algorithm proposed for the Euclidean distance by Remy
and Thiel in [I0], which computes the look-up table and the neighbourhood to be
tested, to the case of the flake distances. Due to the lack of space, DT and RDT
are given in annex [20] and are not detailed in this work. Their descriptions are
not trivial and should be explained in a further paper. One of the perspectives
of this work will be the study of the adaptation to a DT based on Hirata [13]
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optimised linear time algorithm, see also [3]. This adaptation is not guaranteed,
because it depends on a property of uniqueness of intersection of parabolas,
which has not yet been studied in the case of k-flakes circles.
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