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Abstrat. Medial Axis, also known as Centres of Maximal Disks, is a

useful representation of a shape that interested many researhers sine

the 60s. The k-�ake digital irles introdued in [16℄ extends most om-

mon notions of digital irles and o�ers a ontrol over the topology of

the digital irle leading to a k-tunnel free irle. This paper addresses

the fundamental problem of omputing an exat Medial Axis based on

�ake digital irles. For this purpose we de�ne a family of �ake dis-

tanes, then we adapt the algorithm proposed for the Eulidean distane

by Remy and Thiel in [10℄, whih omputes the look-up table and the

neighbourhood to be tested, to the ase of the �ake distanes, and we

ompare the results.

Keywords: Medial axis; Flake irles; Look-up tables; Maximal disks;

Eulidean distane transform

1 Introdution

The Medial Axis (MA) is a useful representation of a shape for image desription,

analysis and ompression. It has been introdued by Blum in the 60s [1℄ as a

set of points where di�erent �re fronts ollide. The MA onsists in deteting

the entres of maximal disks in a binary shape. A disk is maximal if it is not

inluded in any other disk in the shape [2℄. The MA is the set of entres and radii

of maximal disks. In disrete spae is often disonneted, not thin and sensitive

to small ontour perturbations.

In the literature, many researher worked on omputing MA approximately

[3,4,5,6℄ or exatly [7,8,9,10℄. Deteting MA is usually done based on a Distane

Transform (DT), where eah pixel is labelled with its distane to the bakground,

that is the radius of the largest disk inluded in the shape entred on the pixel.

Saito and Toriwaki proposed in [12℄ an e�ient algorithm, separable in dimen-

sion, for omputing the exat Squared Eulidean Distane Transform (SEDT).

Later on, Hirata [13℄ and Meijster et al. [14℄ have optimised this algorithm to

linear time in the number of pixels.

In this work we are interested in proposing an exat approah for omputing

the MA based on �ake digital irles. Flake digital irles are disks that an

be haraterized analytially [15,16℄. Our approah extrats the MA based on
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a look-up table (LUT) and a LUT Mask (M
Lut

). The idea of the LUT was

introdued in [7,8℄. Its priniple is that it gives for eah radius value read in the

DT, the minimum value of the neighbours that forbids a point to be in MA.

The problem is to systematially ompute the LUT assoiated with a distane

funtion, for any radius, and also to ompute the test neighbourhood M
Lut

.

An e�ient algorithm for omputing the LUT and M
Lut

for the exat MA

extration is presented in any dimension for hamfer norms in [9℄ and for the

Eulidean distane in [10℄.

In this paper, two major ontributions are proposed. First, we present a new

family of disrete distanes whose disks oinide to the �ake digital irles. Se-

ond, we present an exat method to ompute the MA based on �ake digital irles

whih is an adaptation of [10℄. Our algorithm omputes the LUT olumns and

the test neighbourhood M
Lut

, and erti�es that this neighbourhood is su�ient

up to a given radius.

The artile is divided as follows. We reall in Set. 2 some basi notions and

the de�nitions of adjaeny norms and k-�akes. We study the k-�ake digital

hyperspheres in Set. 3 and we present the family of k-�ake distanes in Z
n
.

In Set. 4 we justify the validity of the method thanks to the de�nition of the

k-�ake disrete distanes in G(Zn), and we present the adapted algorithms for

the omputation of the LUT olumns and M
Lut

. Results are given in Set. 5 in

the 2D ase, and we �nally onlude in Set. 6 .

2 Norms, adjaeny and �akes

We onsider R
n
as the Eulidean vetor spae, Z

n
as an n-dimensional Z-module

(i.e., a disrete vetor spae), and both of them as their assoiated a�ne spae.

The lassial ℓp norms, denoted ||·||p, are de�ned by: ∀~x = (x1, . . . , xn) ∈ R
n
,

||~x||p = (|x1|p + . . .+ |xn|p)
1

p
. The Manhattan distane d1 is indued by ||~x||1 =

|x1|+ . . .+ |xn|, the Eulidean distane d
E

by ||~x||2 =
√

|x1|2 + . . .+ |xn|2, and
the Thebyhev distane d∞ by ||~x||∞ = max (|x1|, . . . , |xn|).

While in Z
n
, the values provided by d1 and d∞ are integers, those of d

E

are real. Sine d2
E

values are integers, many algorithms ompute and store d2
E

,

with the drawbak that the distane d2
E

is not a metri (it does not respet the

triangular inequality).

A voxel P , where P = (P1, . . . , Pn) ∈ Z
n
, is the axis-aligned losed unit

ube entred on P in R
n
, that is

{
Q ∈ R

n : ||Q− P ||∞ 6
1
2

}
. A k-fae is a fae

of dimension k. Two voxels are said k-adjaent if they share at least a k-fae.
Formally, let P,Q ∈ Z

n
and 0 6 k < n; P andQ are k-adjaent i� |Qi−Pi| 6 1 ∀i

and

∑n

i=1 |Qi−Pi| 6 n−k (that is, P and Q share at least k equal oordinates).

This notion of adjaeny an also be expressed in terms of norms [16℄: the

k-adjaeny norm, denoted [ · ]k, is de�ned in R
n
for any 0 6 k < n as ∀~x ∈ R

n
,

[~x]k = max {||~x||∞ , ||~x||1/(n− k)}. Let P and Q ∈ Z
n
, then P and Q are k-

adjaent i� [Q − P ]k 6 1. Note that by the well-known inequality ℓ∞ 6 ℓ2 6

ℓ1 6 n · ℓ∞ we have [ · ]0 = || · ||∞ and [ · ]n−1 = || · ||1.
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In the literature in Z
2
, d1 and d∞ are also named d4 and d8 after the number

of pixels in their unit balls; the 0- and 1-adjaeny orrespond to the 8- and
4-neighbours, respetively.

A k-path is a sequene P1, . . . , Pm of distint points in Z
n
where Pi and Pi+1

are k-adjaent, 1 6 i < m. A set E of points in Z
n
is said k-onneted if for

any two points in E there exists a k-path in E joining them. The set E is said

k-separating Z
n
, or k-tunnel free, if the omplement Z

n \ E admits exatly two

maximum k-onneted subsets.

Given a distane d in R
n
, the (losed) ball of entre P ∈ R

n
and radius

r ∈ R+ is Bd(P, r) = {Q ∈ R
n : d(P,Q) 6 r}, and the orresponding disk is

Dd(P, r) = {Q ∈ R
n : d(P,Q) = r}. A disrete ball is written as BZ

d = Bd ∩ Z
n
.

By extension for a norm h in R
n
, we denote by Bh and Dh the ball and the disk

for the distane indued by h. Any ball Bh is neessarily onvex.

Let A and B be two non-empty sets. The Minkowski sum of A and B is

de�ned by A⊕B = {a+ b : a ∈ A, b ∈ B}. This operation is also alled dilation
of A by the struturing element B.

The adjaeny �akes are introdued in [16℄ as struturing elements, resulting

from the intersetion of a ball of an adjaeny norm and a �nite number of

straight lines through the origin. Let Vn
k (ρ) be the set of extremal points of the

onvex ball B[·]k(O, ρ) of radius ρ ∈ R+ in R
n
; we have

Vn
k (ρ) =

{

ρP ∈ R
n : P ∈ {−1, 0, 1}n , ∑n

i=1|Pi| = n− k
}

. (1)

For instane in R
2
, V2

1 (ρ) =
{
(0,±ρ), (±ρ, 0)

}
and V2

0 (ρ) =
{
(±ρ,±ρ)

}
. Remark

that ∀V ∈ Vn
k (ρ) we have ||

−−→
OV || = ρ

√
n− k.

Following [17℄, the minimal k-adjaeny-�ake Fn
k (ρ) for [ · ]k and ρ is then

de�ned in R
n
as

Fn
k (ρ) =

{

P ∈ Vn
k (λ) : λ ∈ [0, ρ]

}

, (2)

whih is the set of straight line segments joining the verties Vn
k (ρ) to the origin,

see Fig. 1 . In the sequel, we will use the term k-�ake for short.

(a) F2
1 (1) (b) F2

0 (1) () F3
2 (1) (e) F3

0 (1)(d) F3
1 (1)

Fig. 1. Flakes of radius 1, (a,b) in R
2
and (,d,e) in R

3
. Integer points are represented

by small irles, Vn
k (1) points by blak bullets, �akes Fn

k (1) by blak segments, the

k-adjaeny norm balls B[·]k(O, 1) in light grey.
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Sine the k-�akes are de�ned from adjaeny norms, they also allow to har-

aterize the k-adjaeny using a radius of 1
2 : two points P,Q ∈ Z

n
are k-adjaent

i� ({P} ⊕ Fn
k (

1
2 )) ∩ ({Q} ⊕ Fn

k (
1
2 )) 6= ∅.

3 Flake digital hyperspheres, balls and distane

We are interested in the morphologial digitization sheme using a Minkowski

sum with a k-�ake of radius 1
2 as a struturing element [18℄. Let S be a subset

of R
n
, the �ake-digitization of S is de�ned by

F
n
k (S) =

{

P ∈ Z
n :

(
{P} ⊕ Fn

k (
1
2 )
)
∩ S 6= ∅

}

. (3)

Sine Fn
k (

1
2 ) is entral-symmetri we an equivalently write

F
n
k (S) =

(
S ⊕Fn

k (
1
2 )
)
∩ Z

n , (4)

and by ommutativity we have

F
n
k (S) =

(
Fn

k (
1
2 )⊕ S

)
∩ Z

n . (5)

The �ake-digitization F
n
k of a Eulidean disk C(P, r) = Dd

E

(P, r) of entre

P ∈ R
n
and radius r ∈ R+ is alled a k-�ake digital hypersphere (or irle

for n = 2). A graphial onstrution using (5) of a k-�ake digital hypersphere
F
n
k (C(P, r)) is shown in Fig. 2 in Z

2
; the seleted points are delimited between

the oloured irles, entred over the orresponding oloured k-�ake verties.
This digitization has an important topologial property, whih motivated our

study: the k-�ake digital hypersphere F
n
k (C(P, r)) is k-tunnel free if r >

√
n−k
2 ,

see [17,19℄. The property of k-tunnel freeness an be observed in Fig. 2 .

Let us haraterize the k-�ake digital hypersphere points. Given P ∈ R
n
and

r ∈ R+, by (3) we have

F
n
k (C(P, r)) =

{

Q ∈ Z
n :

{
Q+ T : T ∈ Fn

k (
1
2 )
}
∩ C(P, r) 6= ∅

}

,

=
{

Q ∈ Z
n : ∃T ∈ Fn

k (
1
2 ) , dE(P,Q+ T ) = r

}

.
(6)

Sine Fn
k (

1
2 ) is onstituted by segments, we an bound the seleted points by

F
n
k (C(P, r)) =

{

Q ∈ Z
n :

min
{
d
E

(P,Q + T ) : T ∈ Fn
k (

1
2 )
}
6 r ,

max
{
d
E

(P,Q + T ) : T ∈ Fn
k (

1
2 )
}
> r

}

, (7)

or equivalently, by translation and symmetry,

F
n
k(C(P, r)) =

{

Q ∈ Z
n :

min
{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
6 r ,

max
{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
> r

}

. (8)
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(b) k = 0(a) k = 1

Fig. 2. Flake-digitizations F
2
k of the Eulidean irle (dotted line) C(O, 4). Integer

points are represented by small irles, orresponding pixels by squares, �akes F2
k (

1
2
)

by blak segments, integer points and pixels belonging to F
2
k(C(O, 4)) in blak.

We an then split (8) as

F
n
k (C(P, r)) =

{

Q ∈ Z
n : min

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
6 r

}

\
{

Q ∈ Z
n : max

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
< r

}

,
(9)

where the �rst term (with the min) is the disrete ball relative to the k-�ake
digital hypersphere, alled k-�ake digital ball, while the seond term (with the

max) stands for the hypersphere interior.

We aim to express a k-�ake digital ball as a distane ball. Let P,Q ∈ R
n
be

two points, we de�ne the k-�ake pseudo-distane between P and Q as

dFn
k
(P,Q) = min

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
. (10)

This funtion is symmetri but not positive de�nite, beause ∀A ∈ Fn
k (

1
2 ) \ {O}

we have dFn
k
(O,A) = 0; so dFn

k
is only a pseudo-distane. However, it allows to

express the k-�ake digital ball of (9) as the distane ball BZ

dFn
k

(P, r).

Now in the disrete ase where P,Q ∈ Z
n
, to express dFn

k
it is su�ient to

onsider the k-�ake verties, as well as the origin O for the speial ase P = Q:

dFn
k
(P,Q) = min

{
d
E

(P + T,Q) : T ∈ Vn
k (

1
2 ) ∪ {O}

}
. (11)

It is plain that dFn
k
is symmetri yet positive de�nite, thus is a distane in Z

n
.

However, dFn
k
is not a metri, sine we an �nd ounter-examples to the tri-

angular inequality: take for instane A = (1, 0), B = (2, 0) and C = (3, 0),
we have dF2

1

(A,B) = dF2

1

(B,C) = 1
2 and dF2

1

(A,C) = 3
2 , so dF2

1

(A,C) 66
dF2

1

(A,B) + dF2

1

(B,C).
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4 Exat medial axis for k-�ake digital balls

We present an adaptation of the LUT-mask method in [10℄ to ompute the exat

medial axis for k-�ake digital balls in Z
n
. For simpliity, we onsider images of

size Ln
, and algorithms and examples are given in dimension 2.

4.1 Disrete distane and G-symmetry

The LUT-mask method, originally given for d2
E

in Z
n
, is very general and is valid

for any distane balls family, respeting ertain onditions.

(i) The �rst ondition is to provide integer distane values. If we square dFn
k

in (11) we will get multiples of (12 )
2
, that is why we de�ne the disrete distane

d′Fn
k
(P,Q) = 4

(
dFn

k
(P,Q)

)2
= min

{
4 d2

E

(P + T,Q) : T ∈ Vn
k (

1
2 ) ∪ {O}

}
(12)

and denote its balls by B′
Fn

k
(P, r) = BZ

d′

Fn
k

(P, r).

(ii) The seond ondition is to have G-symmetri balls. Let we reall brie�y

this notion. We denote by SG(n) the group of axial and diagonal symmetries of

the retilinear grid of Z
n
; its ardinal is 2nn! (that is 8, 48 for n = 2, 3 resp.). A

subset X ∈ Z
n
is said G-symmetri if ∀σ ∈ SG(n) we have σ(X) = X . We all

generator of X the subset

G(X) =
{
(x1, . . . , xn) ∈ X : x1 > . . . > xn > 0

}
, (13)

that orresponds to the �rst otant in Z
2
. When X is G-symmetri, the subset

G(X) is su�ient to reonstrut X with the G-symmetries, hene its study an

be limited to G(Zn) or G(Rn).

By onstrution, the k-�akes Fn
k (

1
2 ) are G-symmetri, and the same applies

to k-�ake digital balls whose entre is in Z
n
. Moreover, G(Vn

k (
1
2 )) is restrited

to one point Ωn
k , where

Ωn
k =

{
(

n−k
︷ ︸︸ ︷
1
2 , . . . ,

1
2 ,

k
︷ ︸︸ ︷

0, . . . , 0 )
}
. (14)

The points Ω2
1 = (12 , 0) and Ω2

0 = (12 ,
1
2 ) are shown in Fig. 3 (b,) as red bullets.

Any point Q ∈ G(Zn) is loser to Ωn
k than to any other point in Vn

k (
1
2 ):

Lemma 1. Let Q ∈ G(Zn), then ∀P ∈ Vn
k (

1
2 ), d

2
E

(Ωn
k , Q) 6 d2

E

(P,Q).

Proof. If Q = O then d2
E

(Ωn
k , Q) = d2

E

(P,Q) = (n − k)14 , ∀P ∈ Vn
k (

1
2 ). Now

suppose Q 6= O, Q1 > . . . > Qn > 0 and take P ∈ Vn
k (

1
2 ). Remark that

∀i, (Qi − |Pi|)2 6 (Qi − Pi)
2
, so d2

E

((|P1|, . . . , |Pn|), Q) 6 d2
E

((P1, . . . , Pn), Q).
Remark also that ∀i, j s.t. i < j, (Qi − 1

2 )
2 + (Qj − 0)2 6 (Qi − 0)2 + (Qj − 1

2 )
2
,

thus by shifting all oordinates

1
2 to the left we have d2

E

(Ωn
k , Q) 6 d2

E

(P,Q). ⊓⊔
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(a) (b) ()

0 1 4 9 16 25

2 5 10 17 26

8 13 20 29

18 25 34

32 41

50

0 1 9 25 49 81

5 13 29 53 85

25 41 65 97

61 85 117

113 145

181

0 2 10 26 50 82

2 10 26 50 82

18 34 58 90

50 74 106

98 130

162

Fig. 3. Beginning of CT g
in G(Z2) for (a) d2

E

, (b) d′
F2

1

and () d′
F2

0

. The red bullets

represent the distane origin (a) O, (b,) Ω2
k; in blue, the border of the balls Bd2

E

(O, t2)

and B′

F
n
k
(O, 4 t2) of radius t = 4 pixels.

By lemma 1 and (12), the distane d′Fn
k
from O to Q ∈ G(Zn) is then

d′Fn
k
(O,Q) =

{
0 if Q = O ,
4 d2

E

(Ωn
k , Q) if Q 6= O .

(15)

When Q 6= O, sine 4d2
E

(Ωn
k , Q) = d2

E

(2Ωn
k , 2Q) and by (14) we an still write

d′Fn
k
(O,Q) = (2Q1−1)2+ . . .+(2Qn−k−1)2+(2Qn−k+1)

2+ . . .+(2Qn)
2. (16)

We name Cone distane Transform the image CT g
where eah point from G(Zn)

is labelled to its distane from O. Fig. 3 ompares the distanes values obtained

in CT g
by (16).

4.2 LUT mask and olumns omputation

We an now adapt the LUT-mask algorithm [10℄ to d′Fn
k
. The aim is to ompute

a G-symmetri set M
Lut

of vetors in Z
n
, that is neessary and su�ient to

detet the MA points on a DT with loal tests on the neighbourhood M
Lut

,

together with a LUT olumn for eah vetor of M
Lut

, that maps the minimum

inlusion radii of the balls in that diretion.

Thanks to the G-symmetry, all omputations are proeeded in G(Zn) for

e�ieny, inluding Mg
Lut

= G(M
Lut

). Given a vetor ~v ∈ Z
n
, we denote by ~vg

its G-symmetri in G(Zn).
Let us reall the priniple of the algorithm. At the beginning, we ompute

CT g
one; then, we examine eah distane ball entred in O, of growing radius,

obtained by a simple threshold on CT g
. For eah ball, we extrat MA using the

urrent Mg
Lut

; if a point di�erent from O is deteted, its diretion is added to

Mg
Lut

and the orresponding LUT olumn is omputed on CT g
.

The main funtion CompLutMask is given Fig. 4 ; it is very similar to the

original version, exept lines 4,5. It an ompute the whole Mg
Lut

up to a radius

R
target

, by giving the parametersMg
Lut

= ∅ and R
known

= 0, or be resumed from

an already omputed Mg
Lut

and radius R
known

, to a larger radius R
target

.
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funtion CompLutMask (L, k, Mg

Lut

, R
known

, R
target

, Lut) :

1 CompCTg (L, k, CT g
) ; CompPV (L, CT g

, R
target

, PV ) ; init DT g
to 0

2 for eah ~vg in Mg

Lut

do CompLutCol (CT g
,L,~vg,R

target

,Lut[~vg ])
3 for R = R

known

+ 1 to R
target

do

4 if not PV [R] then ontinue // value R is not possible

5 CompBallDTg (L, k, R, CT g
, DT g

)

6 for x = 0 to L− 1 , for y = 0 to x do

7 if DT g[x, y] 6= 0 and IsMAg ((x, y),Mg

Lut

,Lut,DT g
) then

8 Mg

Lut

= Mg

Lut

∪ ((x, y) , R) // Insert the new vetor

9 CompLutCol (CT g
, L, (x, y), R

target

, Lut[(x, y)])
10 if IsMAg ((x, y), Mg

Lut

, Lut, DT g
) then error

Fig. 4. Full Mg

Lut

and Lut Computation. Input: L the side length, k ∈ {0, 1}, Mg

Lut

,

R
known

and R
target

. Output: Lut and Mg

Lut

.

funtion CompCTg (L, k, CT g
) :

1 CT g[0, 0] = 0
2 for x = 1 to L− 1, for y = 0 to x do

3 dx = 2 ∗ x− 1 ; dy = 2 ∗ y − 1 + k
4 CT g[x, y] = dx2 + dy2

Fig. 5. Cone distane Transform. Input: L
the side length, k ∈ {0, 1}. Output: CT g

the L× L distane image to O for d′
F2

k
.

funtion CompPV (L, CT g
, rmax, PV ) :

1 for r = 1 to rmax do PV [r] = false

2 for x = 1 to L− 1, for y = 0 to x do

3 r = CT g[x, y]
4 if r 6 rmax then PV [r] = true

Fig. 6. Possible distane Values. Input:

L, CT g
, rmax. Output: PV is �lled with

true for possible distane values.

During the �rst step (line 1) we ompute CT g
using CompCTg. The imple-

mentation of CompCTg in Fig. 5 is straightforward by (15) and (16). Sine the

resulting image CT g
ontains all the possible distane values, it is then used in

CompPV, shown in Fig. 6, to reate an array PV of Possible Values, in order to

speed up the omputations (line 4 in Fig. 4); it might optionally be used to save

memory spae when storing the LUT olumns.

The seond step (line 2) is the omputation of the LUT olumns in the ase

where Mg
Lut

is not empty. For eah vetor ~vg ∈ Mg
Lut

, the funtion CompLutCol

is alled to �ll the olumn Lut[~vg], suh that for any radius r read in a DT,

Lut[~vg][r] is the minimum value of a neighbour in diretion ~vg (and its G-

symmetries) that forbids a point to be in MA. The funtion CompLutCol is

the original funtion presented in [10, Fig. 8℄.

The next part (lines 3�10) heks eah possible radius. The DT on the

ball of radius R is omputed for the k-�ake disrete distane d′Fn
k
in line 5 by

CompBallDTg, desribed in Set. 4.3 . The fundamental idea is that the MA of a

ball should be its sole entre, so if another MA point is deteted (line 7) in its

DT using the already known Mg
Lut

, then this point is a diretion that should be

inserted (lines 8,9) in Mg
Lut

to remove it as a MA point. The funtion IsMAg,

used to detet if a point is in MA, is the original funtion given in [10, Fig. 10℄.

The onsisteny test line 10 validates the whole method.
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funtion CompBallDTg (L, k, R, CT g
, DT g

) :

1 for xM = 0 to L− 1 do if CT g[0, xM ] > R then break // searh bound xM

2 if xM > L then error

3 // First san on olumns, dereasing order

4 for x = 0 to xM do

5 i = 0 ; propag = false

6 for y = x downto 0 do

7 if CT g[x, y] > R then // outside the ball : bakground

8 propag = true

R

propag

−1

xM

9 else if propag then // inside the ball, mark to distane from bg

10 i = i+ 1 ; DT g[x, y] = (2 ∗ i− 1 + k)2

11 else DT g[x, y] = −1 // inside the ball, no distane propagated

12 // Final san on lines

13 for y = 0 to xM , for x = y to xM do

14 if DT g[x, y] == 0 then ontinue // outside the ball

15 dmin = 8 ∗ L2

16 for j = 0 to xM − x do

17 t1 = DT g[x+ j, y]

−1

R xM

18 if t1 == −1 then ontinue // no distane propagated

19 if k == 0 and t1 == 0 then t1 = 1
20 u2 = (2 ∗ j − 1)2 ; t2 = t1 + u2

21 if t2 < dmin then dmin = t2 else if u2 > dmin then break

22 DT g[x, y] = dmin

Fig. 7. Ball Distane Transform. Input: L the side length, k ∈ {0, 1}, R the radius,

CT g
. Output: DT g

is the DT of G(B′

F
n
k
(O,R)).

4.3 DT on a ball in the generator

The funtion CompBallDTg is given in Fig. 7 . It omputes in DT g
the DT on

Bg(R) = G(B′
Fn

k
(O,R)). The ball is obtained by thresholding CT g

with R, any

value > R being onsidered as bakground. The funtion is alled numerous

times in CompLutMask (Fig. 4 , line 5), but it is su�ient to initialize one time

DT g
to 0 at the start of CompLutMask (line 1) sine R and the ball are growing.

We start (Fig. 7 , lines 1,2) by searhing on the �rst row the bound xM suh

that Bg(R) is ompletely inluded in the subspae 0 6 x < xM .

The next part of the funtion (lines 3-22) is inspired from the separable

in dimension algorithm of Saito and Toriwaki [12℄ and ideas from [10℄. The

omplexity is in O(xM
n+1). The parts spei� to d′Fn

k
are lines 10,20 (to get

bak to d2
E

, replae the expressions by i2 and j2) and line 19 for k = 0, see
below.

The �rst san is made lines 4�11 on olumns in dereasing order, using a �ag

propag whih indiates if a distane information an be propagated, that is, if

there was a bakground pixel during the san. If not, a value of −1 is stored.

The seond san is made on rows, lines 13�22. There is no need to make a

opy of the urrent row to ompute the min (lines 16�21) for a pixel of absissa
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x, sine the andidates x + j for the min are after the urrent pixel during a

j san. The else part in line 21 is a lassial optimisation of the Saito and

Toriwaki algorithm.

The funtion CompBallDTg omputes for eah point x, y the min

h(x, y) = min
{
(2j − 1)2 + (2i− 1 + k)2 : (x+ j, y + i) ∈ Bg(R)

}
(17)

over 0 6 x + j, y + i 6 xM < L. The k-�ake distane formula that is evaluated

is obtained using (16) by taking (x, y) as the origin. The �rst san omputes

g(x, y) = min
i

{
(2i− 1 + k)2 : (x, y + i) ∈ Bg(R)

}
(18)

exept for non propagated values (set to -1 in DT g
) and bakground pixels

(whih must stat at 0 in DT g
); the �nal san alulates

h(x, y) = min
j

{
(2j − 1)2 + g(x+ j, y)

}
. (19)

The line 19 is a orretion for k = 0 in the ase where (x+ j, y) is a bakground
pixel (the min over i, not stored in DT g

, is then (−1)2 and is added to t1).

5 Results and experiments

In this setion we present the results that we have obtained for the k-�ake
disrete distanes in 2D. The full soure ode in C++, together with some more

examples, are given in an eletroni annex, available online in [20℄.

5.1 Appearane radii in M
Lut

The beginning of Mg
Lut

in Z
2
is shown in Fig. 8 (left) for d2

E

, d′F2

1

and d′F2

0

. As

for d2
E

, all these vetors are visible points, that is, their oordinates are mutually

prime. They do not appear in the same order, but their number grows slowly

with R in a similar way.

On a larger sale, the behavior of the numberm of vetors in Mg
Lut

aording

to the appearane radius in pixels up to 1000 is ompared in Fig. 8 (right) for

the three distanes; the three urves remain fairly lose.

It has been shown in Z
n
for d2

E

in [11℄ that Mg
Lut

tends to the set of visible

point when R tends to in�nity. Our experiments show that we an reasonably

onjeture the same property for d′F2

k

.

5.2 DT, RDT and MA examples

In order to ompute the MA we need a Distane Transform (DT) algorithm,

that labels eah shape point with the distane to the losest bakground point.

The original shape an then be reonstruted from MA using a Reverse Distane

Transform (RDT).
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(a) (b) ()

i x ,y R 4R x , y R x , y R

1 1 , 0 1 4 1 , 0 1 1 , 0 2

2 1 , 1 2 8 1 , 1 5 1 , 1 2

3 2 , 1 101 404 2 , 1 369 2 , 1 442

4 3 , 1 146 584 3 , 1 1233 3 , 1 746

5 3 , 2 424 1696 3 , 2 1413 4 , 1 2826

6 4 , 1 848 3392 4 , 1 4765 3 , 2 3538

7 5 , 1 1370 5480 5 , 1 5337 5 , 1 8298

8 6 , 1 2404 9616 5 , 2 9601 4 , 3 9810

9 4 , 3 3049 12196 4 , 3 10229 6 , 1 13698

10 7 , 1 3250 13000 5 , 4 14965 5 , 3 15850

11 5 , 2 3257 13028 5 , 3 16417 5 , 2 17194

12 7 , 5 3700 14800 7 , 1 20457 7 , 1 28594

13 5 , 3 4709 18836 6 , 1 24085 8 , 1 29258

14 7 , 3 5954 23816 7 , 2 26821 7 , 5 30266

15 5 , 4 9805 39220 8 , 1 44525 5 , 4 38666

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

(a)
(b)
(c)

Fig. 8. Beginning of Mg

Lut

in Z
2
for (a) d2

E

, (b) d′
F2

1

and () d′
F2

0

. Left: appearane

rank i, oordinates, appearane radius R (and 4R for omparison). Right: diagram of

the number m of vetors in Mg

Lut

aording to the appearane radius in pixels up to

1000 (

√
R for (a),

√
R/2 for (b,)).

(a) (b) ()1 1 1 1 1

1 1 1

1

1 1

1

1

1

1

1

1

2 2 2 2

2

2

2

2

2 2

1 1 1 1 1

1 2 4 2 1 2 2 1

1 2 5 8 5 4

1 4 8 13 10 9 5 2 1

1 4

1

1

1

1

1

5

8 9 8 5 4 1

2 4 4 4 2 1 2

1 1 1 1

4

5 9 5 5 5

5 13 25 13 9 13 9

9 25 41 29 25 13 5

9 25 25 25 13 9 1

5 9 9 9 5 1 5

1 1 1 1

2 2 2 2 2

2 10 2 2

2 10 18 10 10 10 10 2

2 10 18 34 26 26 10 2

2 10 18 26 18 10 10

2 2 10 10 10 2 2 2

2 2 2 2

Fig. 9. Medial Axis over DT for (a) d2
E

, (b) d′
F2

1

and () d′
F2

0

. DT values are in blak,

MA points are irled in blue.

For this paper we have hosen to adapt in 2D the Saito and Toriwaki algo-

rithms [12℄ that ompute the exat DT and RDT in O(Ln+1) for an image of size

Ln
. Due to lak of spae we only give the soure ode in [20℄; the adaptations

are rather triky and quite di�erent for k = 0 and k = 1. An example of DT and

MA of a shape is shown in Fig. 9 for the three distanes d2
E

, d′F2

1

and d′F2

0

.

6 Conlusion and future work

In this paper we have proposed an exat method for omputing the medial axis

based on �ake digital irles. For that purpose, we have de�ned a family of �ake

distanes and adapt the algorithm proposed for the Eulidean distane by Remy

and Thiel in [10℄, whih omputes the look-up table and the neighbourhood to be

tested, to the ase of the �ake distanes. Due to the lak of spae, DT and RDT

are given in annex [20℄ and are not detailed in this work. Their desriptions are

not trivial and should be explained in a further paper. One of the perspetives

of this work will be the study of the adaptation to a DT based on Hirata [13℄
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optimised linear time algorithm, see also [3℄. This adaptation is not guaranteed,

beause it depends on a property of uniqueness of intersetion of parabolas,

whih has not yet been studied in the ase of k-�akes irles.
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