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Abstra
t. Medial Axis, also known as Centres of Maximal Disks, is a

useful representation of a shape that interested many resear
hers sin
e

the 60s. The k-�ake digital 
ir
les introdu
ed in [16℄ extends most 
om-

mon notions of digital 
ir
les and o�ers a 
ontrol over the topology of

the digital 
ir
le leading to a k-tunnel free 
ir
le. This paper addresses

the fundamental problem of 
omputing an exa
t Medial Axis based on

�ake digital 
ir
les. For this purpose we de�ne a family of �ake dis-

tan
es, then we adapt the algorithm proposed for the Eu
lidean distan
e

by Remy and Thiel in [10℄, whi
h 
omputes the look-up table and the

neighbourhood to be tested, to the 
ase of the �ake distan
es, and we


ompare the results.
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1 Introdu
tion

The Medial Axis (MA) is a useful representation of a shape for image des
ription,

analysis and 
ompression. It has been introdu
ed by Blum in the 60s [1℄ as a

set of points where di�erent �re fronts 
ollide. The MA 
onsists in dete
ting

the 
entres of maximal disks in a binary shape. A disk is maximal if it is not

in
luded in any other disk in the shape [2℄. The MA is the set of 
entres and radii

of maximal disks. In dis
rete spa
e is often dis
onne
ted, not thin and sensitive

to small 
ontour perturbations.

In the literature, many resear
her worked on 
omputing MA approximately

[3,4,5,6℄ or exa
tly [7,8,9,10℄. Dete
ting MA is usually done based on a Distan
e

Transform (DT), where ea
h pixel is labelled with its distan
e to the ba
kground,

that is the radius of the largest disk in
luded in the shape 
entred on the pixel.

Saito and Toriwaki proposed in [12℄ an e�
ient algorithm, separable in dimen-

sion, for 
omputing the exa
t Squared Eu
lidean Distan
e Transform (SEDT).

Later on, Hirata [13℄ and Meijster et al. [14℄ have optimised this algorithm to

linear time in the number of pixels.

In this work we are interested in proposing an exa
t approa
h for 
omputing

the MA based on �ake digital 
ir
les. Flake digital 
ir
les are disks that 
an

be 
hara
terized analyti
ally [15,16℄. Our approa
h extra
ts the MA based on
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a look-up table (LUT) and a LUT Mask (M
Lut

). The idea of the LUT was

introdu
ed in [7,8℄. Its prin
iple is that it gives for ea
h radius value read in the

DT, the minimum value of the neighbours that forbids a point to be in MA.

The problem is to systemati
ally 
ompute the LUT asso
iated with a distan
e

fun
tion, for any radius, and also to 
ompute the test neighbourhood M
Lut

.

An e�
ient algorithm for 
omputing the LUT and M
Lut

for the exa
t MA

extra
tion is presented in any dimension for 
hamfer norms in [9℄ and for the

Eu
lidean distan
e in [10℄.

In this paper, two major 
ontributions are proposed. First, we present a new

family of dis
rete distan
es whose disks 
oin
ide to the �ake digital 
ir
les. Se
-

ond, we present an exa
t method to 
ompute the MA based on �ake digital 
ir
les

whi
h is an adaptation of [10℄. Our algorithm 
omputes the LUT 
olumns and

the test neighbourhood M
Lut

, and 
erti�es that this neighbourhood is su�
ient

up to a given radius.

The arti
le is divided as follows. We re
all in Se
t. 2 some basi
 notions and

the de�nitions of adja
en
y norms and k-�akes. We study the k-�ake digital

hyperspheres in Se
t. 3 and we present the family of k-�ake distan
es in Z
n
.

In Se
t. 4 we justify the validity of the method thanks to the de�nition of the

k-�ake dis
rete distan
es in G(Zn), and we present the adapted algorithms for

the 
omputation of the LUT 
olumns and M
Lut

. Results are given in Se
t. 5 in

the 2D 
ase, and we �nally 
on
lude in Se
t. 6 .

2 Norms, adja
en
y and �akes

We 
onsider R
n
as the Eu
lidean ve
tor spa
e, Z

n
as an n-dimensional Z-module

(i.e., a dis
rete ve
tor spa
e), and both of them as their asso
iated a�ne spa
e.

The 
lassi
al ℓp norms, denoted ||·||p, are de�ned by: ∀~x = (x1, . . . , xn) ∈ R
n
,

||~x||p = (|x1|p + . . .+ |xn|p)
1

p
. The Manhattan distan
e d1 is indu
ed by ||~x||1 =

|x1|+ . . .+ |xn|, the Eu
lidean distan
e d
E

by ||~x||2 =
√

|x1|2 + . . .+ |xn|2, and
the T
heby
hev distan
e d∞ by ||~x||∞ = max (|x1|, . . . , |xn|).

While in Z
n
, the values provided by d1 and d∞ are integers, those of d

E

are real. Sin
e d2
E

values are integers, many algorithms 
ompute and store d2
E

,

with the drawba
k that the distan
e d2
E

is not a metri
 (it does not respe
t the

triangular inequality).

A voxel P , where P = (P1, . . . , Pn) ∈ Z
n
, is the axis-aligned 
losed unit


ube 
entred on P in R
n
, that is

{
Q ∈ R

n : ||Q− P ||∞ 6
1
2

}
. A k-fa
e is a fa
e

of dimension k. Two voxels are said k-adja
ent if they share at least a k-fa
e.
Formally, let P,Q ∈ Z

n
and 0 6 k < n; P andQ are k-adja
ent i� |Qi−Pi| 6 1 ∀i

and

∑n

i=1 |Qi−Pi| 6 n−k (that is, P and Q share at least k equal 
oordinates).

This notion of adja
en
y 
an also be expressed in terms of norms [16℄: the

k-adja
en
y norm, denoted [ · ]k, is de�ned in R
n
for any 0 6 k < n as ∀~x ∈ R

n
,

[~x]k = max {||~x||∞ , ||~x||1/(n− k)}. Let P and Q ∈ Z
n
, then P and Q are k-

adja
ent i� [Q − P ]k 6 1. Note that by the well-known inequality ℓ∞ 6 ℓ2 6

ℓ1 6 n · ℓ∞ we have [ · ]0 = || · ||∞ and [ · ]n−1 = || · ||1.
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In the literature in Z
2
, d1 and d∞ are also named d4 and d8 after the number

of pixels in their unit balls; the 0- and 1-adja
en
y 
orrespond to the 8- and
4-neighbours, respe
tively.

A k-path is a sequen
e P1, . . . , Pm of distin
t points in Z
n
where Pi and Pi+1

are k-adja
ent, 1 6 i < m. A set E of points in Z
n
is said k-
onne
ted if for

any two points in E there exists a k-path in E joining them. The set E is said

k-separating Z
n
, or k-tunnel free, if the 
omplement Z

n \ E admits exa
tly two

maximum k-
onne
ted subsets.

Given a distan
e d in R
n
, the (
losed) ball of 
entre P ∈ R

n
and radius

r ∈ R+ is Bd(P, r) = {Q ∈ R
n : d(P,Q) 6 r}, and the 
orresponding disk is

Dd(P, r) = {Q ∈ R
n : d(P,Q) = r}. A dis
rete ball is written as BZ

d = Bd ∩ Z
n
.

By extension for a norm h in R
n
, we denote by Bh and Dh the ball and the disk

for the distan
e indu
ed by h. Any ball Bh is ne
essarily 
onvex.

Let A and B be two non-empty sets. The Minkowski sum of A and B is

de�ned by A⊕B = {a+ b : a ∈ A, b ∈ B}. This operation is also 
alled dilation
of A by the stru
turing element B.

The adja
en
y �akes are introdu
ed in [16℄ as stru
turing elements, resulting

from the interse
tion of a ball of an adja
en
y norm and a �nite number of

straight lines through the origin. Let Vn
k (ρ) be the set of extremal points of the


onvex ball B[·]k(O, ρ) of radius ρ ∈ R+ in R
n
; we have

Vn
k (ρ) =

{

ρP ∈ R
n : P ∈ {−1, 0, 1}n , ∑n

i=1|Pi| = n− k
}

. (1)

For instan
e in R
2
, V2

1 (ρ) =
{
(0,±ρ), (±ρ, 0)

}
and V2

0 (ρ) =
{
(±ρ,±ρ)

}
. Remark

that ∀V ∈ Vn
k (ρ) we have ||

−−→
OV || = ρ

√
n− k.

Following [17℄, the minimal k-adja
en
y-�ake Fn
k (ρ) for [ · ]k and ρ is then

de�ned in R
n
as

Fn
k (ρ) =

{

P ∈ Vn
k (λ) : λ ∈ [0, ρ]

}

, (2)

whi
h is the set of straight line segments joining the verti
es Vn
k (ρ) to the origin,

see Fig. 1 . In the sequel, we will use the term k-�ake for short.

(a) F2
1 (1) (b) F2

0 (1) (
) F3
2 (1) (e) F3

0 (1)(d) F3
1 (1)

Fig. 1. Flakes of radius 1, (a,b) in R
2
and (
,d,e) in R

3
. Integer points are represented

by small 
ir
les, Vn
k (1) points by bla
k bullets, �akes Fn

k (1) by bla
k segments, the

k-adja
en
y norm balls B[·]k(O, 1) in light grey.
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Sin
e the k-�akes are de�ned from adja
en
y norms, they also allow to 
har-

a
terize the k-adja
en
y using a radius of 1
2 : two points P,Q ∈ Z

n
are k-adja
ent

i� ({P} ⊕ Fn
k (

1
2 )) ∩ ({Q} ⊕ Fn

k (
1
2 )) 6= ∅.

3 Flake digital hyperspheres, balls and distan
e

We are interested in the morphologi
al digitization s
heme using a Minkowski

sum with a k-�ake of radius 1
2 as a stru
turing element [18℄. Let S be a subset

of R
n
, the �ake-digitization of S is de�ned by

F
n
k (S) =

{

P ∈ Z
n :

(
{P} ⊕ Fn

k (
1
2 )
)
∩ S 6= ∅

}

. (3)

Sin
e Fn
k (

1
2 ) is 
entral-symmetri
 we 
an equivalently write

F
n
k (S) =

(
S ⊕Fn

k (
1
2 )
)
∩ Z

n , (4)

and by 
ommutativity we have

F
n
k (S) =

(
Fn

k (
1
2 )⊕ S

)
∩ Z

n . (5)

The �ake-digitization F
n
k of a Eu
lidean disk C(P, r) = Dd

E

(P, r) of 
entre

P ∈ R
n
and radius r ∈ R+ is 
alled a k-�ake digital hypersphere (or 
ir
le

for n = 2). A graphi
al 
onstru
tion using (5) of a k-�ake digital hypersphere
F
n
k (C(P, r)) is shown in Fig. 2 in Z

2
; the sele
ted points are delimited between

the 
oloured 
ir
les, 
entred over the 
orresponding 
oloured k-�ake verti
es.
This digitization has an important topologi
al property, whi
h motivated our

study: the k-�ake digital hypersphere F
n
k (C(P, r)) is k-tunnel free if r >

√
n−k
2 ,

see [17,19℄. The property of k-tunnel freeness 
an be observed in Fig. 2 .

Let us 
hara
terize the k-�ake digital hypersphere points. Given P ∈ R
n
and

r ∈ R+, by (3) we have

F
n
k (C(P, r)) =

{

Q ∈ Z
n :

{
Q+ T : T ∈ Fn

k (
1
2 )
}
∩ C(P, r) 6= ∅

}

,

=
{

Q ∈ Z
n : ∃T ∈ Fn

k (
1
2 ) , dE(P,Q+ T ) = r

}

.
(6)

Sin
e Fn
k (

1
2 ) is 
onstituted by segments, we 
an bound the sele
ted points by

F
n
k (C(P, r)) =

{

Q ∈ Z
n :

min
{
d
E

(P,Q + T ) : T ∈ Fn
k (

1
2 )
}
6 r ,

max
{
d
E

(P,Q + T ) : T ∈ Fn
k (

1
2 )
}
> r

}

, (7)

or equivalently, by translation and symmetry,

F
n
k(C(P, r)) =

{

Q ∈ Z
n :

min
{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
6 r ,

max
{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
> r

}

. (8)
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(b) k = 0(a) k = 1

Fig. 2. Flake-digitizations F
2
k of the Eu
lidean 
ir
le (dotted line) C(O, 4). Integer

points are represented by small 
ir
les, 
orresponding pixels by squares, �akes F2
k (

1
2
)

by bla
k segments, integer points and pixels belonging to F
2
k(C(O, 4)) in bla
k.

We 
an then split (8) as

F
n
k (C(P, r)) =

{

Q ∈ Z
n : min

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
6 r

}

\
{

Q ∈ Z
n : max

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
< r

}

,
(9)

where the �rst term (with the min) is the dis
rete ball relative to the k-�ake
digital hypersphere, 
alled k-�ake digital ball, while the se
ond term (with the

max) stands for the hypersphere interior.

We aim to express a k-�ake digital ball as a distan
e ball. Let P,Q ∈ R
n
be

two points, we de�ne the k-�ake pseudo-distan
e between P and Q as

dFn
k
(P,Q) = min

{
d
E

(P + T,Q) : T ∈ Fn
k (

1
2 )
}
. (10)

This fun
tion is symmetri
 but not positive de�nite, be
ause ∀A ∈ Fn
k (

1
2 ) \ {O}

we have dFn
k
(O,A) = 0; so dFn

k
is only a pseudo-distan
e. However, it allows to

express the k-�ake digital ball of (9) as the distan
e ball BZ

dFn
k

(P, r).

Now in the dis
rete 
ase where P,Q ∈ Z
n
, to express dFn

k
it is su�
ient to


onsider the k-�ake verti
es, as well as the origin O for the spe
ial 
ase P = Q:

dFn
k
(P,Q) = min

{
d
E

(P + T,Q) : T ∈ Vn
k (

1
2 ) ∪ {O}

}
. (11)

It is plain that dFn
k
is symmetri
 yet positive de�nite, thus is a distan
e in Z

n
.

However, dFn
k
is not a metri
, sin
e we 
an �nd 
ounter-examples to the tri-

angular inequality: take for instan
e A = (1, 0), B = (2, 0) and C = (3, 0),
we have dF2

1

(A,B) = dF2

1

(B,C) = 1
2 and dF2

1

(A,C) = 3
2 , so dF2

1

(A,C) 66
dF2

1

(A,B) + dF2

1

(B,C).
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4 Exa
t medial axis for k-�ake digital balls

We present an adaptation of the LUT-mask method in [10℄ to 
ompute the exa
t

medial axis for k-�ake digital balls in Z
n
. For simpli
ity, we 
onsider images of

size Ln
, and algorithms and examples are given in dimension 2.

4.1 Dis
rete distan
e and G-symmetry

The LUT-mask method, originally given for d2
E

in Z
n
, is very general and is valid

for any distan
e balls family, respe
ting 
ertain 
onditions.

(i) The �rst 
ondition is to provide integer distan
e values. If we square dFn
k

in (11) we will get multiples of (12 )
2
, that is why we de�ne the dis
rete distan
e

d′Fn
k
(P,Q) = 4

(
dFn

k
(P,Q)

)2
= min

{
4 d2

E

(P + T,Q) : T ∈ Vn
k (

1
2 ) ∪ {O}

}
(12)

and denote its balls by B′
Fn

k
(P, r) = BZ

d′

Fn
k

(P, r).

(ii) The se
ond 
ondition is to have G-symmetri
 balls. Let we re
all brie�y

this notion. We denote by SG(n) the group of axial and diagonal symmetries of

the re
tilinear grid of Z
n
; its 
ardinal is 2nn! (that is 8, 48 for n = 2, 3 resp.). A

subset X ∈ Z
n
is said G-symmetri
 if ∀σ ∈ SG(n) we have σ(X) = X . We 
all

generator of X the subset

G(X) =
{
(x1, . . . , xn) ∈ X : x1 > . . . > xn > 0

}
, (13)

that 
orresponds to the �rst o
tant in Z
2
. When X is G-symmetri
, the subset

G(X) is su�
ient to re
onstru
t X with the G-symmetries, hen
e its study 
an

be limited to G(Zn) or G(Rn).

By 
onstru
tion, the k-�akes Fn
k (

1
2 ) are G-symmetri
, and the same applies

to k-�ake digital balls whose 
entre is in Z
n
. Moreover, G(Vn

k (
1
2 )) is restri
ted

to one point Ωn
k , where

Ωn
k =

{
(

n−k
︷ ︸︸ ︷
1
2 , . . . ,

1
2 ,

k
︷ ︸︸ ︷

0, . . . , 0 )
}
. (14)

The points Ω2
1 = (12 , 0) and Ω2

0 = (12 ,
1
2 ) are shown in Fig. 3 (b,
) as red bullets.

Any point Q ∈ G(Zn) is 
loser to Ωn
k than to any other point in Vn

k (
1
2 ):

Lemma 1. Let Q ∈ G(Zn), then ∀P ∈ Vn
k (

1
2 ), d

2
E

(Ωn
k , Q) 6 d2

E

(P,Q).

Proof. If Q = O then d2
E

(Ωn
k , Q) = d2

E

(P,Q) = (n − k)14 , ∀P ∈ Vn
k (

1
2 ). Now

suppose Q 6= O, Q1 > . . . > Qn > 0 and take P ∈ Vn
k (

1
2 ). Remark that

∀i, (Qi − |Pi|)2 6 (Qi − Pi)
2
, so d2

E

((|P1|, . . . , |Pn|), Q) 6 d2
E

((P1, . . . , Pn), Q).
Remark also that ∀i, j s.t. i < j, (Qi − 1

2 )
2 + (Qj − 0)2 6 (Qi − 0)2 + (Qj − 1

2 )
2
,

thus by shifting all 
oordinates

1
2 to the left we have d2

E

(Ωn
k , Q) 6 d2

E

(P,Q). ⊓⊔
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(a) (b) (
)

0 1 4 9 16 25

2 5 10 17 26

8 13 20 29

18 25 34

32 41

50

0 1 9 25 49 81

5 13 29 53 85

25 41 65 97

61 85 117

113 145

181

0 2 10 26 50 82

2 10 26 50 82

18 34 58 90

50 74 106

98 130

162

Fig. 3. Beginning of CT g
in G(Z2) for (a) d2

E

, (b) d′
F2

1

and (
) d′
F2

0

. The red bullets

represent the distan
e origin (a) O, (b,
) Ω2
k; in blue, the border of the balls Bd2

E

(O, t2)

and B′

F
n
k
(O, 4 t2) of radius t = 4 pixels.

By lemma 1 and (12), the distan
e d′Fn
k
from O to Q ∈ G(Zn) is then

d′Fn
k
(O,Q) =

{
0 if Q = O ,
4 d2

E

(Ωn
k , Q) if Q 6= O .

(15)

When Q 6= O, sin
e 4d2
E

(Ωn
k , Q) = d2

E

(2Ωn
k , 2Q) and by (14) we 
an still write

d′Fn
k
(O,Q) = (2Q1−1)2+ . . .+(2Qn−k−1)2+(2Qn−k+1)

2+ . . .+(2Qn)
2. (16)

We name Cone distan
e Transform the image CT g
where ea
h point from G(Zn)

is labelled to its distan
e from O. Fig. 3 
ompares the distan
es values obtained

in CT g
by (16).

4.2 LUT mask and 
olumns 
omputation

We 
an now adapt the LUT-mask algorithm [10℄ to d′Fn
k
. The aim is to 
ompute

a G-symmetri
 set M
Lut

of ve
tors in Z
n
, that is ne
essary and su�
ient to

dete
t the MA points on a DT with lo
al tests on the neighbourhood M
Lut

,

together with a LUT 
olumn for ea
h ve
tor of M
Lut

, that maps the minimum

in
lusion radii of the balls in that dire
tion.

Thanks to the G-symmetry, all 
omputations are pro
eeded in G(Zn) for

e�
ien
y, in
luding Mg
Lut

= G(M
Lut

). Given a ve
tor ~v ∈ Z
n
, we denote by ~vg

its G-symmetri
 in G(Zn).
Let us re
all the prin
iple of the algorithm. At the beginning, we 
ompute

CT g
on
e; then, we examine ea
h distan
e ball 
entred in O, of growing radius,

obtained by a simple threshold on CT g
. For ea
h ball, we extra
t MA using the


urrent Mg
Lut

; if a point di�erent from O is dete
ted, its dire
tion is added to

Mg
Lut

and the 
orresponding LUT 
olumn is 
omputed on CT g
.

The main fun
tion CompLutMask is given Fig. 4 ; it is very similar to the

original version, ex
ept lines 4,5. It 
an 
ompute the whole Mg
Lut

up to a radius

R
target

, by giving the parametersMg
Lut

= ∅ and R
known

= 0, or be resumed from

an already 
omputed Mg
Lut

and radius R
known

, to a larger radius R
target

.
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fun
tion CompLutMask (L, k, Mg

Lut

, R
known

, R
target

, Lut) :

1 CompCTg (L, k, CT g
) ; CompPV (L, CT g

, R
target

, PV ) ; init DT g
to 0

2 for ea
h ~vg in Mg

Lut

do CompLutCol (CT g
,L,~vg,R

target

,Lut[~vg ])
3 for R = R

known

+ 1 to R
target

do

4 if not PV [R] then 
ontinue // value R is not possible

5 CompBallDTg (L, k, R, CT g
, DT g

)

6 for x = 0 to L− 1 , for y = 0 to x do

7 if DT g[x, y] 6= 0 and IsMAg ((x, y),Mg

Lut

,Lut,DT g
) then

8 Mg

Lut

= Mg

Lut

∪ ((x, y) , R) // Insert the new ve
tor

9 CompLutCol (CT g
, L, (x, y), R

target

, Lut[(x, y)])
10 if IsMAg ((x, y), Mg

Lut

, Lut, DT g
) then error

Fig. 4. Full Mg

Lut

and Lut Computation. Input: L the side length, k ∈ {0, 1}, Mg

Lut

,

R
known

and R
target

. Output: Lut and Mg

Lut

.

fun
tion CompCTg (L, k, CT g
) :

1 CT g[0, 0] = 0
2 for x = 1 to L− 1, for y = 0 to x do

3 dx = 2 ∗ x− 1 ; dy = 2 ∗ y − 1 + k
4 CT g[x, y] = dx2 + dy2

Fig. 5. Cone distan
e Transform. Input: L
the side length, k ∈ {0, 1}. Output: CT g

the L× L distan
e image to O for d′
F2

k
.

fun
tion CompPV (L, CT g
, rmax, PV ) :

1 for r = 1 to rmax do PV [r] = false

2 for x = 1 to L− 1, for y = 0 to x do

3 r = CT g[x, y]
4 if r 6 rmax then PV [r] = true

Fig. 6. Possible distan
e Values. Input:

L, CT g
, rmax. Output: PV is �lled with

true for possible distan
e values.

During the �rst step (line 1) we 
ompute CT g
using CompCTg. The imple-

mentation of CompCTg in Fig. 5 is straightforward by (15) and (16). Sin
e the

resulting image CT g

ontains all the possible distan
e values, it is then used in

CompPV, shown in Fig. 6, to 
reate an array PV of Possible Values, in order to

speed up the 
omputations (line 4 in Fig. 4); it might optionally be used to save

memory spa
e when storing the LUT 
olumns.

The se
ond step (line 2) is the 
omputation of the LUT 
olumns in the 
ase

where Mg
Lut

is not empty. For ea
h ve
tor ~vg ∈ Mg
Lut

, the fun
tion CompLutCol

is 
alled to �ll the 
olumn Lut[~vg], su
h that for any radius r read in a DT,

Lut[~vg][r] is the minimum value of a neighbour in dire
tion ~vg (and its G-

symmetries) that forbids a point to be in MA. The fun
tion CompLutCol is

the original fun
tion presented in [10, Fig. 8℄.

The next part (lines 3�10) 
he
ks ea
h possible radius. The DT on the

ball of radius R is 
omputed for the k-�ake dis
rete distan
e d′Fn
k
in line 5 by

CompBallDTg, des
ribed in Se
t. 4.3 . The fundamental idea is that the MA of a

ball should be its sole 
entre, so if another MA point is dete
ted (line 7) in its

DT using the already known Mg
Lut

, then this point is a dire
tion that should be

inserted (lines 8,9) in Mg
Lut

to remove it as a MA point. The fun
tion IsMAg,

used to dete
t if a point is in MA, is the original fun
tion given in [10, Fig. 10℄.

The 
onsisten
y test line 10 validates the whole method.
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fun
tion CompBallDTg (L, k, R, CT g
, DT g

) :

1 for xM = 0 to L− 1 do if CT g[0, xM ] > R then break // sear
h bound xM

2 if xM > L then error

3 // First s
an on 
olumns, de
reasing order

4 for x = 0 to xM do

5 i = 0 ; propag = false

6 for y = x downto 0 do

7 if CT g[x, y] > R then // outside the ball : ba
kground

8 propag = true

R

propag

−1

xM

9 else if propag then // inside the ball, mark to distan
e from bg

10 i = i+ 1 ; DT g[x, y] = (2 ∗ i− 1 + k)2

11 else DT g[x, y] = −1 // inside the ball, no distan
e propagated

12 // Final s
an on lines

13 for y = 0 to xM , for x = y to xM do

14 if DT g[x, y] == 0 then 
ontinue // outside the ball

15 dmin = 8 ∗ L2

16 for j = 0 to xM − x do

17 t1 = DT g[x+ j, y]

−1

R xM

18 if t1 == −1 then 
ontinue // no distan
e propagated

19 if k == 0 and t1 == 0 then t1 = 1
20 u2 = (2 ∗ j − 1)2 ; t2 = t1 + u2

21 if t2 < dmin then dmin = t2 else if u2 > dmin then break

22 DT g[x, y] = dmin

Fig. 7. Ball Distan
e Transform. Input: L the side length, k ∈ {0, 1}, R the radius,

CT g
. Output: DT g

is the DT of G(B′

F
n
k
(O,R)).

4.3 DT on a ball in the generator

The fun
tion CompBallDTg is given in Fig. 7 . It 
omputes in DT g
the DT on

Bg(R) = G(B′
Fn

k
(O,R)). The ball is obtained by thresholding CT g

with R, any

value > R being 
onsidered as ba
kground. The fun
tion is 
alled numerous

times in CompLutMask (Fig. 4 , line 5), but it is su�
ient to initialize one time

DT g
to 0 at the start of CompLutMask (line 1) sin
e R and the ball are growing.

We start (Fig. 7 , lines 1,2) by sear
hing on the �rst row the bound xM su
h

that Bg(R) is 
ompletely in
luded in the subspa
e 0 6 x < xM .

The next part of the fun
tion (lines 3-22) is inspired from the separable

in dimension algorithm of Saito and Toriwaki [12℄ and ideas from [10℄. The


omplexity is in O(xM
n+1). The parts spe
i�
 to d′Fn

k
are lines 10,20 (to get

ba
k to d2
E

, repla
e the expressions by i2 and j2) and line 19 for k = 0, see
below.

The �rst s
an is made lines 4�11 on 
olumns in de
reasing order, using a �ag

propag whi
h indi
ates if a distan
e information 
an be propagated, that is, if

there was a ba
kground pixel during the s
an. If not, a value of −1 is stored.

The se
ond s
an is made on rows, lines 13�22. There is no need to make a


opy of the 
urrent row to 
ompute the min (lines 16�21) for a pixel of abs
issa



10 E. Thiel, R. Zrour

x, sin
e the 
andidates x + j for the min are after the 
urrent pixel during a

j s
an. The else part in line 21 is a 
lassi
al optimisation of the Saito and

Toriwaki algorithm.

The fun
tion CompBallDTg 
omputes for ea
h point x, y the min

h(x, y) = min
{
(2j − 1)2 + (2i− 1 + k)2 : (x+ j, y + i) ∈ Bg(R)

}
(17)

over 0 6 x + j, y + i 6 xM < L. The k-�ake distan
e formula that is evaluated

is obtained using (16) by taking (x, y) as the origin. The �rst s
an 
omputes

g(x, y) = min
i

{
(2i− 1 + k)2 : (x, y + i) ∈ Bg(R)

}
(18)

ex
ept for non propagated values (set to -1 in DT g
) and ba
kground pixels

(whi
h must stat at 0 in DT g
); the �nal s
an 
al
ulates

h(x, y) = min
j

{
(2j − 1)2 + g(x+ j, y)

}
. (19)

The line 19 is a 
orre
tion for k = 0 in the 
ase where (x+ j, y) is a ba
kground
pixel (the min over i, not stored in DT g

, is then (−1)2 and is added to t1).

5 Results and experiments

In this se
tion we present the results that we have obtained for the k-�ake
dis
rete distan
es in 2D. The full sour
e 
ode in C++, together with some more

examples, are given in an ele
troni
 annex, available online in [20℄.

5.1 Appearan
e radii in M
Lut

The beginning of Mg
Lut

in Z
2
is shown in Fig. 8 (left) for d2

E

, d′F2

1

and d′F2

0

. As

for d2
E

, all these ve
tors are visible points, that is, their 
oordinates are mutually

prime. They do not appear in the same order, but their number grows slowly

with R in a similar way.

On a larger s
ale, the behavior of the numberm of ve
tors in Mg
Lut

a

ording

to the appearan
e radius in pixels up to 1000 is 
ompared in Fig. 8 (right) for

the three distan
es; the three 
urves remain fairly 
lose.

It has been shown in Z
n
for d2

E

in [11℄ that Mg
Lut

tends to the set of visible

point when R tends to in�nity. Our experiments show that we 
an reasonably


onje
ture the same property for d′F2

k

.

5.2 DT, RDT and MA examples

In order to 
ompute the MA we need a Distan
e Transform (DT) algorithm,

that labels ea
h shape point with the distan
e to the 
losest ba
kground point.

The original shape 
an then be re
onstru
ted from MA using a Reverse Distan
e

Transform (RDT).
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(a) (b) (
)

i x ,y R 4R x , y R x , y R

1 1 , 0 1 4 1 , 0 1 1 , 0 2

2 1 , 1 2 8 1 , 1 5 1 , 1 2

3 2 , 1 101 404 2 , 1 369 2 , 1 442

4 3 , 1 146 584 3 , 1 1233 3 , 1 746

5 3 , 2 424 1696 3 , 2 1413 4 , 1 2826

6 4 , 1 848 3392 4 , 1 4765 3 , 2 3538

7 5 , 1 1370 5480 5 , 1 5337 5 , 1 8298

8 6 , 1 2404 9616 5 , 2 9601 4 , 3 9810

9 4 , 3 3049 12196 4 , 3 10229 6 , 1 13698

10 7 , 1 3250 13000 5 , 4 14965 5 , 3 15850

11 5 , 2 3257 13028 5 , 3 16417 5 , 2 17194

12 7 , 5 3700 14800 7 , 1 20457 7 , 1 28594

13 5 , 3 4709 18836 6 , 1 24085 8 , 1 29258

14 7 , 3 5954 23816 7 , 2 26821 7 , 5 30266

15 5 , 4 9805 39220 8 , 1 44525 5 , 4 38666

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

(a)
(b)
(c)

Fig. 8. Beginning of Mg

Lut

in Z
2
for (a) d2

E

, (b) d′
F2

1

and (
) d′
F2

0

. Left: appearan
e

rank i, 
oordinates, appearan
e radius R (and 4R for 
omparison). Right: diagram of

the number m of ve
tors in Mg

Lut

a

ording to the appearan
e radius in pixels up to

1000 (

√
R for (a),

√
R/2 for (b,
)).

(a) (b) (
)1 1 1 1 1

1 1 1

1

1 1

1

1

1

1

1

1

2 2 2 2

2

2

2

2

2 2

1 1 1 1 1

1 2 4 2 1 2 2 1

1 2 5 8 5 4

1 4 8 13 10 9 5 2 1

1 4

1

1

1

1

1

5

8 9 8 5 4 1

2 4 4 4 2 1 2

1 1 1 1

4

5 9 5 5 5

5 13 25 13 9 13 9

9 25 41 29 25 13 5

9 25 25 25 13 9 1

5 9 9 9 5 1 5

1 1 1 1

2 2 2 2 2

2 10 2 2

2 10 18 10 10 10 10 2

2 10 18 34 26 26 10 2

2 10 18 26 18 10 10

2 2 10 10 10 2 2 2

2 2 2 2

Fig. 9. Medial Axis over DT for (a) d2
E

, (b) d′
F2

1

and (
) d′
F2

0

. DT values are in bla
k,

MA points are 
ir
led in blue.

For this paper we have 
hosen to adapt in 2D the Saito and Toriwaki algo-

rithms [12℄ that 
ompute the exa
t DT and RDT in O(Ln+1) for an image of size

Ln
. Due to la
k of spa
e we only give the sour
e 
ode in [20℄; the adaptations

are rather tri
ky and quite di�erent for k = 0 and k = 1. An example of DT and

MA of a shape is shown in Fig. 9 for the three distan
es d2
E

, d′F2

1

and d′F2

0

.

6 Con
lusion and future work

In this paper we have proposed an exa
t method for 
omputing the medial axis

based on �ake digital 
ir
les. For that purpose, we have de�ned a family of �ake

distan
es and adapt the algorithm proposed for the Eu
lidean distan
e by Remy

and Thiel in [10℄, whi
h 
omputes the look-up table and the neighbourhood to be

tested, to the 
ase of the �ake distan
es. Due to the la
k of spa
e, DT and RDT

are given in annex [20℄ and are not detailed in this work. Their des
riptions are

not trivial and should be explained in a further paper. One of the perspe
tives

of this work will be the study of the adaptation to a DT based on Hirata [13℄
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optimised linear time algorithm, see also [3℄. This adaptation is not guaranteed,

be
ause it depends on a property of uniqueness of interse
tion of parabolas,

whi
h has not yet been studied in the 
ase of k-�akes 
ir
les.
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