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Motivations

Theorem (Kruml and Paseka 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The quantale [L , L ]

∨
of join-preserving endomaps of L is a Frobenius

quantale.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of the category of complete sup-lattices are exactly the
completely distributive lattice.
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Motivations

Conjecture
Let A be an object of an autonomous category (symmetric monoidal closed). The
following are equivalent:
• A is nuclear.
• The object [A ,A ] of endomorphisms of A is a Frobenius structure.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of the category of complete sup-lattices are exactly the
completely distributive lattices.
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Preprints available:

For details and many more beautiful properties

• About unitless Frobenius quantale (first part of the talk):
https://hal-amu.archives-ouvertes.fr/LIS-LAB/hal-03661651v1

(Currently being reviewed by ACS)

• About Frobenius structure (second part of the talk):
https://hal.archives-ouvertes.fr/hal-03739197/

(Accepted by CSL 2023)

https://hal-amu.archives-ouvertes.fr/LIS-LAB/hal-03661651v1
https://hal.archives-ouvertes.fr/hal-03739197/
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Quantales

Definition
A quantale (Q , ?) is a complete lattice Q with an associative law

? : Q × Q → Q

which distributes over the sup on both variables:

(
∨
i∈I

xi) ? y =
∨
i∈I

(xi ? y) and x ? (
∨
i∈I

yi) =
∨
i∈I

(x ? yi).

Remark
• A quantale is a semigroup in the category SLatt.

• A quantale is a posetal monoidal bi-closed category (without unit).
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Recall on adjoint

Adjoint theorem for lattices
Let L and M be two complete lattices. A map f : L → M is join-preserving iff there
exist a meet-preserving map ρ(f) : M → L such that

f(x) ≤ y

x ≤ ρ(f)(y) .

Remark
A meet-preserving map g : M → L is a join-preserving map g : Mop → Lop. The
adjoint operation, ρ, is a natural isomorphim hom(L ,M) � hom(Mop, Lop).

Implications of a quantale
The maps (x ? −) : Q → Q and (− ? y) : Q → Q are sup-preserving.
They both have a right adjoint written (x\−) and (−/y):

x ? y ≤ z

y ≤ x\z

x ≤ z/y .
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Important examples of quantales

Examples

• A Heyting algebra is a commutative quantale with ? = ∧:
x ∧ y ≤ z

y ≤ x ⇒ z .

• Let (S, ∗) be a semigroup, (P(S), ?) is the free quantale over S with:

X ? Y = {xy | x ∈ X , y ∈ Y }

X\Y = {s ∈ S | x ∗ s ∈ Y , for all x ∈ X}

Y/X = {s ∈ S | s ∗ x ∈ Y , for all x ∈ X}

• The set of endomorphisms ([L , L ], ◦) over L in SLatt. The joins are
calculated point-wise (ie : (

∨
i∈I fi)(x) =

∨
i∈I fi(x)). We have:

f ◦ (
∨
i∈I

gi)(x) = f(
∨
i∈I

gi(x)) =
∨
i∈I

f(gi(x)) =
∨
i∈I

(f ◦ gi)(x) ,

(
∨
i∈I

fi)(g(x)) =
∨
i∈I

fi(g(x)) =
∨
i∈I

(fi ◦ g)(x) .
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Linear logic

It is well known that every symmetric monoidal closed category is a model of
proofs of multiplicative intuitionist linear logic.

Proposition
A quantale (Q , ?) is a model of provability of non-commutative intuitionist
multiplicative and additive linear logic.

Indeed
As usual,
• The connective ⊗ is interpreted by the operation ? ;
• The two implications( and� by \ and / ;
• The two additive connective & and ⊕ by the inf ∧ and the sup ∨.

What about linear negation?
That’s Frobenius quantales!
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Frobenius quantales as usually defined

Usual definition
A Frobenius quantale is a tuple (Q , ?, 0) with 0 a dualizing element. That is, we
have, for all x in Q ,

(0/x)\0 = x = 0/(x\0) (dualizing element).

We write ⊥(−) := (−\0) : Q → Qop and (−)⊥ := (0/−) : Q → Qop

Remark
With this definition, a Frobenius quantale is always unital with unit 0\0 = 0/0.

Another remark
In a Frobenius quantale (Q , ?, 0) we have for every x, y ∈ Q ,

x ≤ y⊥ iff y ≤ ⊥x (Galois connection) ,

x\⊥y = x⊥/y (Serre pair or contraposition law) .
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Unitless Frobenius quantales

Definition
A unitless Frobenius quantale is a tuple (Q , ?, ⊥(−), (−)⊥) with
⊥(−), (−)⊥ : Q → Qop inverse maps such that for all x, y ∈ Q , we have

x\⊥y = x⊥/y (Serre pair) ,

or equivalently: ∀x, y, z, x ? z ≤ ⊥y iff z ? y ≤ x⊥ (shift relation) .

Remark
• In a quantale (Q , ?), if 0 is dualizing then 0/0 = 0\0 is the unit of (Q , ?).

• If (Q , ?, ⊥(−), (−)⊥) is a Frobenius quantale with a unit 1 then ⊥1 = 1⊥ is a
dualizing element.

Proposition

1. There exist non unital Frobenius quantales.

2. There is no extension which preserves the two negations from a unitless
quantale to a unital one.
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Sketch of the proof of the last statement

Sketch of the proofs

1. One can easily adapt the standard Chu construction of a ∗-autonomous
category from a monoidal category. In the case of a quantale (Q , ?), the
unitless Frobenius quantale Chu(Q) has a unit iff Q has one. �

2. Let (Q0, ?0,
⊥(−)0, (−)⊥0 ) and (Q1, ?1,

⊥(−)1, (−)⊥1 ) be Frobenius quantales
with i : Q0 ↪→ Q1 an embedding of Q0 which preserves the two negations.
We can suppose that Q0 ⊂ Q1 is closed under joins, meets, multiplication
and implications. Indeed, we have:

x\y = (⊥y ? x)⊥ y/x = ⊥(x ? y⊥)
∧
i∈I

xi = ⊥(
∨
i∈I

xi
⊥)

We set

u :=
∧
x∈Q0

x\x

one can check that we always have x ? u ≤ x and u ? x ≤ x. If Q1 has a unit,
then we also have x ≤ u ? x and x ≤ x ? u. �
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What about interesting examples?

Where do we find unitless Frobenius quantales ?

Recall on usual phase semantic (Girard 1987)
Let M be a commutative monoid and 0 ∈ P(M), then the set of facts

P(M)j = {A ∈ P(M) | (A\0)\0 = A }

is a Frobenius quantale.

Note that j : A 7→ (A\0)\0 is a nucleus (we will recall the definition and basic
properties on the next slide).

Our goal is to generalize this construction for unitless Frobenius quantales of the
form P(S)j with S a a semigroup and j a nucleus.
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Phase quantales

Recall on nuclei
A nucleus on a quantale Q is a map j : Q → Q such that for all x, y ∈ Q :

(j ◦ j)(x) = jx x ≤ j(x) j(x) ? j(y) ≤ j(x ? y) .

The set of fixed points Qj = {x ∈ Q | j(x) = x} is a quantale with

j∨
i∈I

xi = j(
∨
i∈I

xi) and x ?j y = j(x ? y).

We have an epi-mono factorization of j as

We want to caracterize nuclei j : P(S)→ P(S) with S a semigroup such that
P(S)j is a unitless Frobenius quantale.
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xi) and x ?j y = j(x ? y).

We have an epi-mono factorization of j as

Q Q

Qj .

j

j

We want to caracterize nuclei j : P(S)→ P(S) with S a semigroup such that
P(S)j is a unitless Frobenius quantale.
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Caracterization in term of relations

We look at Galois connections (l, r) on P(S) such that

l ◦ r = r ◦ l and x\l(y) = r(x)/y .

Proposition
If (l, r) is a Galois connection respecting the equations above, then
j = l ◦ r = r ◦ l is a nucleus and (P(S)j , ?j , l, r) is a Frobenius quantale.

Galois connections on P(X) are in bijection with relations on X :
From a relation R ⊂ X × X , we set l, r : P(X)→ P(X)op by

l(A) = {x ∈ X | xRa ∀a ∈ A } r(A) = {x ∈ X | aRx ∀a ∈ A }

Proposition
A galois connection (l, r) on P(S) respects the equations above iff the
corresponding relation has the following properties:

∀x ∈ S,∃Yx ⊂ S,∀z ∈ S, xRz iff zRy,∀y ∈ Yx weakly-symmetric 1

∀y ∈ S,∃Xy ⊂ S,∀z ∈ S, zRy iff xRz,∀x ∈ Xy weakly-symmetric 2

∀x, y, z ∈ S, x ∗ yRz iff xRy ∗ z, associativity wrt the multiplication
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Examples from the phase quantale construction

Examples

• Let A be a Frobenius algebra over the field K . That is, a K -algebra with a
symmetric pairing 〈−,−〉 : A ⊗ A → K such that 〈x ∗ y, z〉 = 〈x, y ∗ z〉. Then
define xRy iff 〈x, y〉 = 0.

• For the C∗-algebra Mn, we use the pairing 〈A ,B〉 = tr(B∗A). The quantale
P(Mn)j is the set of closed linear subspace of Mn

• Let H be a Hilbert space and B1(H) the algebra of trace-class operator (ie
operators on H such that

∑
e∈ε〈|f |e, e〉 < ∞). With the same construction we

show that closed lineear subspace of B1(H) is a Frobenius quantale which
does not have a unit if H is of infinite dimension.

Representation theorem
Every unitless Frobenius quantale is isomorphic to a unitless Frobenius phase
quantale.
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The unitless Frobenius quantale of tight maps
Let L be a complete lattice.
[L , L ]

∨
and [L , L ]

∧
, are the set of sup/inf-preserving endomaps of L .

Definition
For a map f : L −−−−→ L , we define the two Raney’s transforms:

f∨(x) :=
∨
x�t

f(t) and f∧(x) :=
∧
t�x

f(t) .

We write [L , L ]t
∨

= {f : L → L | f∧∨ = f } the set of tight maps.

Remark
They are defined for every map. But if we restrict them, we have

(−)∨ : [L , L ]
∧
−−−−→ [L , L ]

∨
(−)∧ : [L , L ]

∨
−−−−→ [L , L ]

∧
(−)∨ a (−)∧

[L , L ]t
∨

is the image of (−)∨ : L ∗ ⊗ L � [L , L ]
∧
−−−−→ [L , L ]

∨
.
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L∗ ⊗ L ∼= [L,L]∧ [L,L]

[L,L]
t
∨

(−)∨
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Results on tight maps

Proposition (LS and CL)
For every complete lattice L , ([L , L ]t

∨
, ◦, (−)⊥, (−)⊥) is a Frobenius quantale with

f⊥ = l(f∧).

Theorem
Let L be a complete lattice. The following are equivalent:

1. The lattice L is completely distributive;

2. [L , L ]t
∨

= [L , L ] (Raney, 1960);

3. L is a nuclear object of SLatt (Higgs Rowe 1989);

4. There is a unique sup-preserving map 0 : L → L such that ([L , L ], ◦, 0) is a
Frobenius quantale. (Kruml Paseka 2008, Santocanale 2020);

5. The Frobenius quantale ([L , L ]t
∨
, ◦, (−)⊥, (−)⊥) has a unit. (LS CL).
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What about a categorical study of the last theorem?

Well that’s the rest of the talk !

First let’s define a unitless Frobenius quantale in a
monoidal category !
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Dual pair

For an object A of a ∗-autonomous category, we have the two equivalences:

A ⊗ X −→ 0
X −→ A ∗

X ⊗ A ∗ −→ 0
X −→ A ∗∗ � A .

Definition
A map ε : A ⊗ B −−−−→ 0 inV is said to be a dual pairing (w.r.t. the object 0) if the
two induced natural transformations are isomorphims.

hom(X ,B) −−−−→ hom(A ⊗ X , 0) , hom(X ,A) −−−−→ hom(X ⊗ B , 0) .

Example

• In a ∗-autonomous category, (A ,A ∗, evA ,0) is a dual pair.

• In Hilb, H and H is a dual pair with pairing 〈−,−〉 : H ⊗ H → C the linear
extension of the inner product of H.
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Some properties of dual pairs

Proposition
Let (A ,B) be a dual pair in a symmetric monoidal closed category.

1. (B ,A) is also a dual pair.

2. We have A � B∗.

3. A is a reflexive object (i.e A � A ∗∗).

4. If Φ : A0 → A is an iso, then (A0,B) is a dual pair.
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Examples of dual pairs

Examples

• In SLatt, (L , Lop, ε), ε(x, y) = ⊥ if x ≤ y, and ε(x, y) = > otherwise.

• In Coh, Xop � X ∗ so (X ,Xop) is also a dual pair.

• In a ∗-autonomous category, A ∗ ⊗ A � [A ,A ]∗ so (A ∗ ⊗ A , [A ,A ], ε) is a dual
pair with ε := ev ◦ σ ◦ ev.

A ∗ ⊗ A ⊗ [A ,A ]
A∗⊗evA ,A
−−−−−−−→ A ∗ ⊗ A

σA∗ ,A
−−−−→ A ⊗ A ∗

evA ,0
−−−−→ 0
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Usual adjunction between lattices

For a join preserving map f : L → M, the right adjoint to it f̃ : Mop → Lop is the
only map s.t:

f(x) ≤ y iff x ≤ f̃(y)

L⊗Mop M ⊗Mop

L⊗ Lop 0 .

L⊗f̃

f⊗Mop

εM

εL
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Adjoints in dual pair

Let (A0,B0), (A1,B1) be two dual pairs. For every morphism f : A0 −−−−→ A1 we
define f̃ : B1 −−−−→ B0 by transposing:

A0 −−−−→ A1

A0 ⊗ B1 −−−−→ 0

B1 −−−−→ B0

A0 ⊗B1 A1 ⊗B1

A0 ⊗B0 0 .

A0⊗f̃

f⊗B1

ε1

ε0

Definition
We say that (f , g) is an adjoint pair if g = f̃ .
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The category of semigroups over a monoidal category

Objects of SemC: pairs (A , µA ) such that

A⊗A⊗A A⊗A

A⊗A A.

µA⊗A

A⊗µA

µA

µA

Morphisms of SemC: arrows f : A0 −−−−→ A1 such that

A0 ⊗A1 A1 ⊗A1

A0 A1.

µA0

f⊗f

µA1

f
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Quantales

Definition
A quantale (Q , ?) is a semigroup in the category SLatt.

Remark
In a quantale, (x ? −) : Q → Q and (− ? y) : Q → Q both have a right adjoint,
the left and right implications:

x ? y ≤ z iff y ≤ x\z iff x ≤ z/y

We have

−/− : Q ⊗ Qop −−−−→ Qop and −\− : Qop ⊗ Q −−−−→ Qop

z/(y ? x) = (z/y)/x and (x ? y)\z = x\(y\z)
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Implications in a quantale

x ? y ≤ z iff x ≤ z/y

Q⊗Q⊗Qop Q⊗Qop

Q⊗Qop 0 .

?⊗Qop

Q⊗−/−

εQ

εQ

z ≥ x ? y iff x\z ≥ y

Qop ⊗Q⊗Q Qop ⊗Q Q⊗Qop

Qop ⊗Q Q⊗Qop 0 .

−\−⊗Q

Qop⊗? σ

εQ

σ εQ
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Implications as actions

Let (A ,B) be a dual pair such that (A , µA ) is a semigroup.
We define α`A : A ⊗ B → B and αρA : B ⊗ A → B as the only morphisms such that

A⊗A⊗B A⊗B

A⊗B 0

µA⊗B

A⊗α`A

ε

ε

B ⊗A⊗A B ⊗A A⊗B

B ⊗A A⊗B 0 .

αρA⊗A

B⊗µA σ

ε

σ ε

Defined that way, αρA and α`A are indeed actions, i.e
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ε

ε

B ⊗A⊗A B ⊗A A⊗B

B ⊗A A⊗B 0 .

αρA⊗A

B⊗µA σ

ε

σ ε

Defined that way, αρA and α`A are indeed actions, i.e

A⊗A⊗X A⊗X X.
µA⊗X

A⊗α`

α`
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The case of Frobenius quantales

In a Frobenius quantale (Q , ?, ⊥(−), (−)⊥), we have
• (Q ,Qop, ε) is a dual pair;
• (Q , ?) is a semigroup;
• ⊥(−), (−)⊥ : Q → Qop and x ≤ ⊥y iff y ≤ x⊥;

x\⊥y = x⊥/y
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The case of Frobenius quantales

In a Frobenius quantale (Q , ?, ⊥(−), (−)⊥), we have
• (Q ,Qop, ε) is a dual pair;
• (Q , ?) is a semigroup;
• ⊥(−), (−)⊥ : Q → Qop and x ≤ ⊥y iff y ≤ x⊥;

x\⊥y = x⊥/y

Q⊗Q Q⊗Qop

Qop ⊗Q Qop.

⊥(−)⊗A

A⊗(−)⊥

α`A

αρA
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Frobenius structures

Definition
A Frobenius structure is a tuple (A ,B , ε, µA , l, r) where
• (A ,B , ε) is a dual pair;
• (A , µA ) is a semigroup;
• l, r : A −−−−→ B and (l, r) is an invertible adjoint pair

such that
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A Frobenius structure is a tuple (A ,B , ε, µA , l, r) where
• (A ,B , ε) is a dual pair;
• (A , µA ) is a semigroup;
• l, r : A −−−−→ B and (l, r) is an invertible adjoint pair

such that

A⊗A A⊗B

B ⊗A B.

l⊗A

A⊗r

α`A

αρA
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Co-multiplication

In a quantale, we can define two comultiplications

x ⊕⊥ y := ⊥(y⊥ ? x⊥) x ⊥⊕ y := (⊥y ? ⊥x)⊥ .

In a Frobenius quantale they are actually the same and we have

x

&

y = ⊥x\y = x/y⊥ .



Quantales Frobenius quantales Dual pairings Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear CCL

Co-multiplication

In a quantale, we can define two comultiplications

x ⊕⊥ y := ⊥(y⊥ ? x⊥) x ⊥⊕ y := (⊥y ? ⊥x)⊥ .

In a Frobenius quantale they are actually the same and we have

x

&

y = ⊥x\y = x/y⊥ .



Quantales Frobenius quantales Dual pairings Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear CCL

The multiplication on B

Proposition
The diagram on the left commutes iff the diagram on the right does,

A⊗A A⊗B

B ⊗A B

l⊗A

A⊗r

α`A

αρA

B ⊗B B ⊗A

A⊗B B

µB

B⊗r−1

l−1⊗B αρA

α`A

defining a multiplication on B.

Lemma

1. (B , µB ) is a semigroup ;

2. l and r are semigroup morphisms from (A , µA ) to (B , µB ).

3. (A ,B , ε, µA , l, r) is Frobenius iff (B ,A , ε ◦ σ, µB , r−1, l−1) is.
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Frobenius structure and associative bracketed semigroups

Proposition
For a Frobenius structure (A ,B , ε, µA , l, r), we can define

πl
A := ε ◦ (A ⊗ l) : A ⊗ A → 0 ,

We have :
• (A , µA , π

l
A ) is an associative bracketed semigroup;

• πl
A is a dual pairing.

Conversely, from an associative bracketed semigroup (A , µA , πA ) for which πA is
a dual pairing, one obtains a Frobenius structure.
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Previous work on Frobenius structure

Various work have been done such:
• Lawvere 1969: Frobenius monad;

• Kock 2003: Monoid and comonoid in a monoidal category (same tensor);

• Street 2004: Pseudo-monoid with a pairing A ⊗ A → I making A his own
bidual;

• Egger 2010: Monoid and comonoid on a linear distributive category (two
different tensor).
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Nuclearity

From here, C is symmetric monoidal closed and 0 = I.

Definition
For every object A of C, there exists a canonical arrow

mixA : A ∗ ⊗ A −−−−→ [A ,A ].

An object A is nuclear if mixA is an isomorphism.

Example

• In k -Vect they are the vector spaces of finite dimension.
• In a commutative unital quantale (Q , ?, 1), they are the invertible elements.
• In Coh they are necessarily the trivial coherent space.
• In HypCoh there is no nuclear object.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects of SLatt are exactly the completely distributive lattices.
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Adjunction and Nuclearity

Definition
For η : I → B ⊗ A , and ε : A ⊗ B → I, (A ,B , ε, η) is an adjunction if

A⊗B ⊗A A⊗ I

I ⊗A A

ε⊗A

A⊗η

ρA

`A

I ⊗B B ⊗A⊗B

B B ⊗ I .

η⊗B

`B B⊗ε

ρB

Proposition
An object is nuclear iff there exist a (right or left) adjoint to it.
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Recall : nuclearity and Frobenius quantale

Theorem Kruml and Paseka 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The set of endomorphisms of L is a Frobenius quantale.

The first implication is actually a corollary of a more general result.

Theorem (LS and CL)
Let L be a complete lattice. The image of the Raney’s transform
(−)∨ : [L , L ]

∧
→ [L , L ] can always be endowed with a Frobenius quantale

structure.
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From Nuclearity to Frobenius structure

Theorem (LS and CL)
In a symmetric monoidal closed category, if A is nuclear then [A ,A ] can be
endowed with a Frobenius structure.

Sketch of the proof

• We verify that if mix is invertible, then (A ∗ ⊗ A , [A ,A ], ε, µA∗⊗A , mix, mix) is a
Frobenius structure.

• As A ∗ ⊗ A is isomorphic to [A ,A ]∗ and Frobenius structures are closed
under iso, we obtain the desired theorem.

It has already been noticed that

Theorem (Street 2004)
If X has a (right or left) adjoint X ∗ and X � X ∗∗, then X ∗ ⊗ X is a Frobenius
pseudo-monoid.
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Result

Theorem (LS and CL)
Let C be a ∗-autonomous category such that SemC has an epi-mono factorization
system and A an object of C.
The image of mixA can always be endowed with a Frobenius structure.

A∗ ⊗A [A,A]

=mixA

mixA

Corollary

If A is nuclear then [A ,A ] can always be endowed with a Frobenius structure.
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From Frobenius structure to nuclearity

Conjecture
Let ([A ,A ], [A ,A ]∗, µ, r , l) be a Frobenius structure in an autonomous category.
Then A is a nuclear object.

We actually need to add a technical hypothesis.

Sketch of a proof
We use the caracterisation of nuclearity with adjoints. So we want:

η : I −−−−→ A ∗ ⊗ A ε : A ⊗ A ∗ −−−−→ I

such that (A ,A ∗, ε, η) is an adjunction.
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From Frobenius structure to nuclearity

• We identify [A ,A ]∗ with A ∗ ⊗ A . Suppose ([A ,A ],A ∗ ⊗ A , ev , µ, r , l) is a
Frobenius structure.

• [A ,A ] is a monoid. As r : [A ,A ]→ A ∗ ⊗ A is an iso, A ∗ ⊗ A is also a monoid
with unit η : I → A ∗ ⊗ A .
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Its multiplication is given by

A∗ ⊗A⊗A∗ ⊗A A∗ ⊗A⊗ [A,A]

[A,A]⊗A∗ ⊗A A∗ ⊗A .

A∗⊗A⊗l−1

r−1⊗A∗⊗A
µA∗⊗A

A∗⊗ev

µA,A,0⊗A
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From Frobenius structure to nuclearity

That is, we have a diagram of the shape

A∗ ⊗A⊗A∗ ⊗A

A∗ ⊗A

A∗⊗g h⊗A
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From Frobenius structure to nuclearity

We want:

A∗ ⊗A⊗A∗ ⊗A

A∗ ⊗ I ⊗A

A∗ ⊗A

A∗⊗g h⊗A

A∗⊗ε⊗A

This map actually exits if we ask I to embed into A as a retract, i.e if there exists
p : I → A and c : A → I such that c ◦ p = idI.
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From Frobenius structure to nuclearity

Definition
If for every object A in C, I embeds into A as a retract, C is pseudoaffine.

Examples

• SLatt
• k -Vect
• Coh
• HypCoh

Theorem (LS and CL)
If C is pseudoaffine and ([A ,A ], [A ,A ]∗, ev , µ, r , l) is a Frobenius structure then A
is a nuclear object.
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Discussing condition of the last theorem

Let (P,≤) be a poset (the base category) and F an endofunctor of Rel. Then one
can form the category PF -Set:
• Objects: maps A : FX → P;
• Arrows A → B : relations FR with R ∈ P(X × Y) such that xFRy implies

A(x) ≤ B(y).

Theorem (Schalk and De Paiva 2004)
If (Q , ?, 1) is a unital commutative Frobenius quantale, the category QF -Set is a
∗-autonomous category.

Examples
Of course one can construct many nice ∗-autonomous categories.
Among them, Coh and HypCoh are subcategories of 3∆-Set and 3Pfin

-Set where
3 is a quantale over the 3 element chain (cf. Schalk and de Paiva 2004 for the
multiplication).
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Discussing condition of the last theorem
To study nuclearity, we take F = idRel and ask that 1 = 0 in Q which implies that
I = 0 in Q-Set.

Lemmas
A Q-Set A is nuclear if the image of A is included in the invertible element of Q ,
ie if for all x, y ∈ X ,

A(x)\A(y) = A(x)⊥ ? A(y) .

A Frobenius structure on [A ,A ] in Q-Set is given by a pair of inverse map (f , g)
over the underlyng set X such that for all x, y ∈ X :

A(x)\A(y) = A(fx)⊥ ? A(y) = A(x)⊥ ? A(gy) .

Theorem(LS and CL)
In Q-Set, the statement that [A ,A ] endows a Frobenius structure is equivalent to
A being nuclear if one of the following conditions is true:
• The Frobenius quantale Q has no infinite chain;
• The underlyng set X is finite;
• The two negations of the Frobenius structure in [A ,A ] are the same (it is a

Girard structure).
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And in general?

We found no reason why it should be true in general.
After some time we were able to construct an infinite quantale Q such that a
Frobenius structure on [A ,A ] is not nuclear !

Counterexample
It is just the infinite chain Z with ∞ and −∞ and another unit between −1 and 0.
Then X could be Z, A the inclusion and f and g the antecedent and successor (cf
drawing).
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Conclusion

Results
• A new definition of Frobenius quantale which does not involve unit and its

study;

• A definition of Frobenius structures in autonomous categories;

• Generalisation of the double negation construction;

• Proof of our conjecture up to a technical (but quite natural) hypothesis.

What we will do next
• Connect with linear logic semantic;

• Study the logic of pseudoaffine category;

• Understand ”how much” we need ∗-autonomous categories;

• Use our results on differents categories such as Banach spaces.
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Thank you!



Quantales Frobenius quantales Dual pairings Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear CCL

References

D. A.Higgs et K. A. Rowe (1989)

Nuclearity in the category of complete semilattices, Journal of Pure and Applied Algebra, Volume
57, Issue 1, 1989, Pages 67-78

R. Street (2004)

Frobenius monads and pseudomonoids, Journal of Mathematical Physics, Vol. 45, 2004, pp
3930-3948

J.M. Egger (2010)

The Frobenius relations meet linear distributivity, Theory and Applications of Categories, Vol. 24,
2010, No. 2, pp 25-38

P-A. Melliès (2013)

Dialogue categories and Frobenius monoids Lecture Notes in Computer Science, vol 7860



Quantales Frobenius quantales Dual pairings Semigroups Frobenius structures Nuclearity Nuclear to Frobenius Frobenius to nuclear CCL

References

David Kruml and Jan Paseka (2008)

Algebraic and Categorical Aspects of Quantales, Handbook of Algebra, Vol. 5, pp 323-362

P. Eklund, J. Gutiérrez Garcia, U. Höhle et J. Kortelainen (2018)
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