Deep learning for natural language processing Advanced architectures

Benoit Favre

benoit.favre@univ-mrs.fr>

Aix-Marseille Université, LIF/CNRS

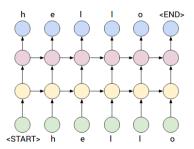
23 Feb 2017

Deep learning for Natural Language Processing

- Day 1
 - Class: intro to natural language processing
 - Class: quick primer on deep learning
 - ► Tutorial: neural networks with Keras
- Day 2
 - Class: word representations
 - Tutorial: word embeddings
- Day 3
 - ► Class: convolutional neural networks, recurrent neural networks
 - Tutorial: sentiment analysis
- Day 4
 - Class: advanced neural network architectures
 - Tutorial: language modeling
- Day 5
 - ► Tutorial: Image and text representations
 - Test

Stacked RNNs

- Increasing hidden state size is very expensive
 - ightharpoonup U is of size $(hidden \times hidden)$
 - Can feed the output of a RNN to another RNN cell
 - ▶ → Multi-resolution analysis, better generalization

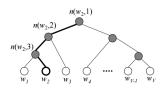


Source: https://i.stack.imgur.com/usSPN.png

• Necessary for large-scale language models

Softmax approximations

- \bullet When vocabulary is large (> 10000), the softmax layer gets too expensive
 - Store a $h \times |V|$ matrix in GPU memory
 - Training time gets very long
- Turn the problem to a sequence of decisions
 - Hierarchical softmax



Source: https://shuuki4.files.wordpress.com/2016/01/hsexample.png?w=1000

- Turn the problem to a small set of binary decisions
 - Noise contrastive estimation, sampled softmax...
 - lacktriangledown Pair target against a small set of randomly selected words
- More here: http://sebastianruder.com/word-embeddings-softmax/

Limits of language modeling

- Train a language model on the One Billion Word benchmark
 - "Exploring the Limits of Language Modeling", Jozefowicz et al. 2016
 - 800k different words
 - ▶ Best model → 3 weeks on 32 GPU
 - ▶ PPL: perplexity evaluation metric (lower is better)

System	PPL
RNN-2048	68.3
Interpolated KN 5-GRAM	67.6
LSTM-512	32.2
2-layer LSTM-2048	30.6
Last row + CNN inputs	30.0
Last row + CNN softmax	39.8

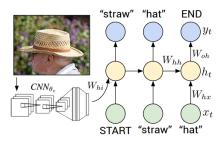


Caption generation

- Language model conditioned on an image
 - Generate image representation with CNN trained to recognize visual concepts
 - Stack image representation with language model input

people skying on a snowy mountain

a woman playing tennis

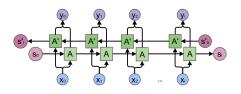


Source: http://cs.stanford.edu/people/karpathy/rnn7.png

More here: https://github.com/karpathy/neuraltalk2

Bidirectional networks

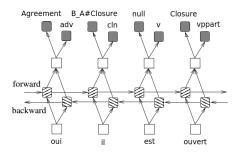
- RNN make predictions independent of the future observations
 - Need to look into the future
- Idea: concatenate the output of a forward and backward RNN
 - ▶ The decision can benefit from both past and future observations
 - Only applicable if we can wait for the future to happen



Source: http://colah.github.io/posts/2015-09-NN-Types-FP/img/RNN-bidirectional.png

Multi-task learning

- Can we build better representations by training the NN to predict different things?
 - ▶ Share the weights of lower system, diverge after representation layer
 - Also applies to feed forward neural networks
- Example: semantic tagging from words
 - Train system to predict low-level and high-level syntactic labels, as well as semantic labels
 - Need training data for each task
 - ▶ At test time only keep output of interest



Machine translation (the legacy approach)

Definitions

- source: text in the source language (ex: Chinese)
- target: text in the target language (ex: English)

Phrase-based statistical translation

Decouple word translation and word ordering

$$P(target|source) = \frac{P(source|target) \times P(target)}{P(source)}$$

Model components

- P(source|target) = translation model
- P(target) =language model
- P(source) = ignored because constant for an input

Translation model

How to compute $P(source|target) = P(s_1, ..., s_n|t_1, ..., t_n)$?

$$P(s_1,\ldots,s_n|t_1,\ldots,t_n) = \frac{nb(s_1,\ldots,s_n \to t_1,\ldots,t_n)}{\sum_x nb(x \to t_1,\ldots,t_n)}$$

Piecewise translation

$$P(I \text{ am your father} \to Je \text{ suis ton père}) = P(I \to je) \times P(\text{am} \to \text{suis})$$

$$\times P(\text{your} \to \text{ton})$$

$$\times P(\text{father} \to \text{père})$$

- To compute those probabilities
 - ▶ Need for alignment between source and target words

Alignements

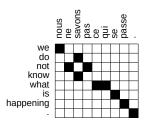
I am your father

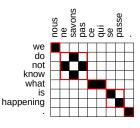
• Use bi-texts and alignment algorithm (such as Giza++)

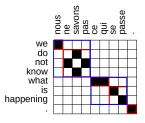
L'avez-vous déjà fait ?

Leur metier est de vendre des maisons

Phrase table







"Phrase table"

we > nous
do not know > ne savons pas
what > ce qui
is happening > se passe
we do not know > nous ne savons pas
what is happening > ce qui se passe

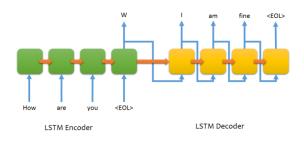
- Compute translation probability for all known phrases (an extension of n-gram language models)
 - Combine with LM and find best translation with decoding algorithm

Neural machine translation (NMT)

- Phrase-based translation
 - Same coverage problem as with word-ngrams
 - ► Alignment still wrong in 30% of cases
 - ▶ A lot of tricks to make it work
 - Researchers have progressively introduced NN
 - ★ Language model
 - ★ Phrase translation probability estimation
 - ▶ The google translate approach until mid-2016
- End-to-end approach to machine translation
 - Can we directly input source words and generate target words?

Encoder-decoder framework

- Generalisation of the conditioned language model
 - Build a representation, then generate sentence
 - ► Also called the seq2seq framework

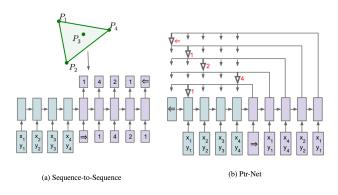


Source: https://github.com/farizrahman4u/seq2seq

- But still limited for translation
 - ▶ Bad for long sentences
 - How to account for unknown words?
 - How to make use of alignments?

Interlude: Pointer networks

- Decision is an offset in the input
 - Number of classes dependent on the length of the input
 - Decision depends on hidden state in input and hidden state in output
 - ► Can learn simple algorithms, such as finding the convex hull of a set of points



Source: http://www.itdadao.com/articles/c19a1093068p0.html

Attention mechanisms

- Loosely based on human visual attention mechanism
 - Let neural network focus on aspects of the input to make its decision
 - Learn what to attend based on what it has produced so far
 - ▶ More of a mechanism for memorizing the input

$$enc_j = \text{encoder hidden state}$$

$$dec_t = \text{decoder hidden state}$$

$$u_t^j = v^T tanh(W_e enc_j + W_d dec_t)$$

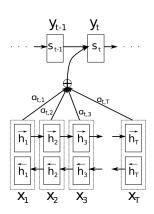
$$\forall j \in [1..n]$$

$$\alpha_t = softmax(u_t)$$

$$s_t = dec_t + \sum_j \alpha_t^j enc_j$$

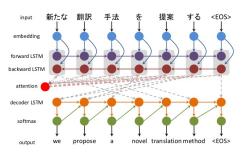
$$y_t = softmax(W_o s_t + b_o)$$

• New parameters: W_e, W_d, v



Machine translation with attention

Attention-based Neural Machine Translation



• Learns the word-to-word alignment

How to deal with unknown words

- If you don't have attention
 - lacktriangle Introduce unk symbols for low frequency words
 - ▶ Realign them to the input a posteriori
 - Use large translation dictionary or copy if proper name
- ullet Use attention MT, extract lpha as alignment parameter
 - ► Then translate input word directly
- What about morphologically rich languages?
 - Reduce vocabulary size by translating word factors
 - * Byte pair encoding algorithm
 - Use word-level RNN to transliterate word

Zero-shot machine translation

- How to deal with the quadratic need for parallel data?
 - ▶ n languages $\rightarrow n^2$ pairs
 - ▶ So far, people have been using a pivot language $(x \to \text{english} \to y)$
- Parameter sharing across language pairs
 - Many to one → share the target weights
 - ▶ One to many → share the source weights
 - lacktriangle Many to many o train single system for all pairs
- Zero-shot learning
 - Use token to identify target language (ex: <to-french>)
 - Let model learn to recognize source language
 - Can process pairs never seen in training!
 - The model learns the "interlingua"
 - Can also handle code switching

"Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation", Johnson et al., arXiv:1611.04558

Conversation as translation

- Can we translate a question to its answer?
 - "Hello, how are you?" → "I am fine, thank you."
 - "What is the largest planet in the solar system?" \rightarrow "It is Jupiter."
- "A Neural Conversational Model", Vinyals et al, 2015
 - ► Train a seq2seq model to generate the next turn in a dialog
 - ▶ Led to the "auto answer" feature in Google Inbox

Source: http://cdn.ghacks.net/wp-content/uploads/2015/11/google-inbox-smart-reply.jpg

What is a chatbot?

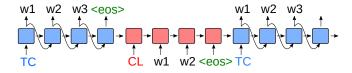
- Dialog system which can have an entertaining conversation
 - Chat-chat
 - Task oriented
- History
 - ► Eliza, virtual therapist
 - http://www.masswerk.at/elizabot/
 - Mitsuku (best chatbot at Loebner price 2013/2016)
 - ★ http://www.mitsuku.com/
 - The Microsoft Tay fiasco
 - * Humans will always try to defeat an IA
 - A new industry hype
 - ★ Facebook, google...
- Question: can we spare dialog model engineering?
 - ► Train a model directly from conversation traces

Related work

- Models
 - Generate next turn given previous turn with an encoder-decoder
 - ★ "A Neural Conversational Model" [Vynials et al. 2015]
 - Add turn-level representations
 - "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models" [Serban et al., AAAI 2016]
 - Add attention mechanism to the hiearchical model
 - "Attention with Intention for a Neural Network Conversation Model" [Yao et al., SLUNIPS-2015]
 - Chatbot as information retrieval
 - ★ "Improved Deep Learning Baselines for Ubuntu Corpus Dialogs" [Kadlec et al., SLUNIPS-2015]
- Dialog specifics
 - Introduce long term reward
 - ★ "Deep Reinforcement Learning for Dialogue Generation", [Li et al., ACL 2016]
 - ▶ How generate diverse responses?
 - "A Diversity-Promoting Objective Function for Neural Conversation Models" [Li et al., NAACL 2016]
 - Enforce consistency by explicitly modeling speakers
 - ★ "A Persona-Based Neural Conversation Model" [Li et al., ACL 2016]
- Evaluation: automatic metrics do not correlate with manual evaluation
 - ▶ "How NOT To Evaluate Your Dialogue System" [Liu et al, EMNLP 2016]

Chatbot 1: alternating language model

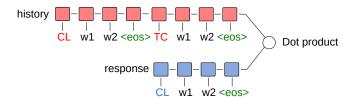
- A simplified version of the encoder-decoder (or seq2seq) framework
 - ► Trained the same way as a regular word-based language model
 - At prediction time, alternate between user input and generation
 - ★ Training data needs to be in the same form



```
Human: my name is david . what is my name ?
Machine: david .
Human: my name is john . what is my name ?
Machine: john .
Human: are you a leader or a follower ?
Machine: i m a leader .
Human: are you a follower or a leader ?
Machine: i m a leader .
```

Chatbot 2: bi-encoder

- Learn a model that gives the same representation to an answer and the context that led to it
 - ► Information retrieval which can retrieve the next turn given a history
 - Encode history with a first recurrent model
 - ▶ Encode next turn with a second recurrent model
 - Compute a similarity between those representations (dot product)
- Training objective
 - Make sure the correct association has a higher score than a randomly selected pair
- Problem: the cost of retrieving a turn
 - Everything can be precomputed, just the dot product remains
 - Many approaches for finding approximate nearest neighbors in a high dimensional space (ie. locality preserving hashing)

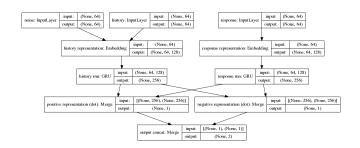


Bi-encoder training

- Maximize margin between the result of $h_i \cdot r_i$ and $n_i \cdot r_i$
 - $ightharpoonup h_i$ is the history
 - $ightharpoonup n_i$ is a random history
 - $ightharpoonup r_i$ is the response

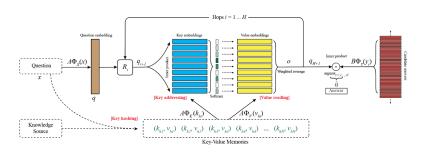
$$Loss = \frac{1}{n} \sum_{i} \max(0, 1 - h_i \cdot r_i + n_i \cdot r_i))$$

Keras model



The future

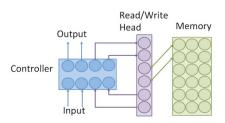
- Limitations of RNNs
 - Rewrite their memory at every time step
 - They have a fixed size memory
 - ▶ They need to reuse the same location in memory to perform the same action
- What if we had better memory devices
 - Static memory: Memory Networks (Weston et al., 2014)
 - * Memory containing representations (learned as part of the model)
 - * The model can do multiple passes over the memory to "deduce" its output



Source: http://www.thespermwhale.com/jaseweston/icml2016/mems1.png

The future

- Dynamic memory: Neural Turing Machines
 - ► At each round
 - * Get memory read address from previous round
 - * Combine input, state and memory into new memory
 - ★ Generate memory read address for next round
 - Can learn basic algorithms
 - ★ Copy, sort...



Source: http://lh3.googleusercontent.com/-QOZMIPrbLkU/ViucASG4HrI/AAAAAAAAAk4-ZL4sny1-gO/s532-Ic42/ntm1.jpeg

Conclusion

- Add more prediction power to RNNs
 - Stacking
 - Bidirectional
 - Multitask
- Make better use of the input
 - Attention mechanisms
- Fancy applications
 - Machine translation
 - Caption generation
 - Chatbots

Remaining challenges

Deep learning for NLP

- Language independence
 - We still need training data in all languages
- Domain adaptation
 - Often, we have plenty of data where we don't need it, and none where we would need it
 - What if the test data does not follow the distribution of training data?
- Dealing with small datasets
 - Annotating complex phenomena is expensive

Deep learning

- Efficient training on CPU, mobile devices
 - Binary neural networks
- Training non differentiable systems
 - Reinforcement learning
- Reasoning, world knowledge...
 - ► AI, here we are