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Deep learning for Natural Language Processing

Day 1
▶ Class: intro to natural language processing
▶ Class: quick primer on deep learning
▶ Tutorial: neural networks with Keras

Day 2
▶ Class: word representations
▶ Tutorial: word embeddings

Day 3
▶ Class: convolutional neural networks, recurrent neural networks
▶ Tutorial: sentiment analysis

Day 4
▶ Class: advanced neural network architectures
▶ Tutorial: language modeling

Day 5
▶ Tutorial: Image and text representations
▶ Test
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Extracting basic features from text

Historical approaches
▶ Text classification
▶ Information retrieval

The bag-of-word model
▶ A document is represented as a vector over the lexicon
▶ Its components are weighted by the frequency of the words it contains
▶ Compare two texts as the cosine similarity between

Useful features
▶ Word n-grams
▶ tf×idf weighting
▶ Syntax, morphology, etc

Limitations
▶ Each word is represented by one dimension (no synonyms)
▶ Word order is only lightly captured
▶ No long-term dependencies
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Convolutional Neural Networks (CNN)
Main idea

▶ Created for computer vision
▶ How can location independence be enforced in image processing?
▶ Solution: split the image in overlapping patches and apply the classifier on

each patch
▶ Many models can be used in parallel to create filters for basic shapes

Source: https://i.stack.imgur.com/GvsBA.jpg
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CNN for images
Typical network for image classification (Alexnet)

Source: http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/11/Screen-Shot-2015-11-07-at-7.26.20-AM.png

Example of filters learned for images

Source: http://cs231n.github.io/convolutional-networks
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CNN for text

In the text domain, we can learn from sequences of words
▶ Moving window over the word embeddings
▶ Detects relevant word n-grams
▶ Stack the detections at several scales

Source: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
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CNN Math

Parallel between text and images
▶ Images are of size (width, height, channels)
▶ Text is a sequence of length n of word embeddings of size d
▶ → Text is treated as an image of with n and height d

x is a matrix of n word embeddings of size d
▶ xi− l

2
:i+ l

2
is a window of word embeddings centered in i, of length l

▶ First, we reshape xi− l
2
:i+ l

2
to a size of (1, l × d) (vertical concatenation)

▶ Use this vector for i ∈ [ l
2
. . . n− l

2
] as CNN input

A CNN is a set of k convolution filters
▶ CNNout = activation(W CNNin +b)
▶ CNNin is of shape (l × d, n− l)
▶ W is of shape (k, l × d), b is of shape (k, 1) repeated n− l times
▶ CNNout is of shape (k, n− l)

Interpretation
▶ If W (i) is an embedding n-gram, then CNNout(i, j) is high when this

embedding n-gram is in the input
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Pooling

A CNN detects word n-grams at each time step
▶ We need position independence (bag of words, bag of n-grams)
▶ Combination of n-grams

Position independence (pooling over time)
▶ Max pooling → maxt(CNNout(:, t))
▶ Only the highest activated n-gram is output for a given filter

Decision layers
▶ CNNs of different lengths can be stacked to capture n-grams of variable length
▶ CNN+Pooling can be composed to detect large scale patterns
▶ Finish by fully connected layers which input the flatten representations created

by CNNs
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Online demo

CNN for image processing
▶ Digit recognition

⋆ http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

▶ 10-class visual concept
⋆ http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Recurrent Neural Networks

CNNs are good at modeling topical and position-independent phenomena
▶ Topic classification, sentiment classification, etc
▶ But they are not very good at modeling order and gaps in the input

⋆ Not possible to do machine translation with it

Recurrent NNs have been created for language modeling
▶ Can we predict the next word given a history?
▶ Can we discriminate between a sentence likely to be correct language and

garbage?

Applications of language modeling
▶ Machine translation
▶ Automatic speech recognition
▶ Text generation...
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Language modeling

Measure the quality of a sentence
Word choice and word order

▶ (+++) the cat is drinking milk
▶ (++) the dog is drinking lait
▶ (+) the chair is drinking milk
▶ (-) cat the drinking milk is
▶ (–) cat drink milk
▶ (—) bai toht aict

If w1 . . . wn is a sequence of words, how to compute P (w1 . . . wn)?
Could be estimated with probabilities over a large corpus

P (w1 . . . wn) =
count(w1 . . . wn)

count(possible sentences)

Exercise – reorder:
cat the drinking milk is
taller is John Josh than
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How to estimate a language model

Rewrite probability to marginalize parts of sentence

P (w1 . . . wn) = P (wn|wn−1 . . . w1)P (wn−1 . . . w1)

= P (wn|wn−1 . . . w1)P (wn−1|wn−2 . . . w1)

= P (w1)
∏
i

P (wi|wi−1 . . . w1)

Note: add ⟨S⟩ and ⟨E⟩ symbols at beginning and end of sentence

P (⟨S⟩cats like milk⟨E⟩) =P (⟨S⟩)
× P (cats|⟨S⟩)
× P (like|⟨S⟩cats)
× P (milk|⟨S⟩cats like)
× P (⟨E⟩|⟨S⟩cats like milk)
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n-gram language models (Markov chains)

Markov hypothesis: ignore history after k symbols

P (wordi|history1..i−1) ≃P (wordi|historyi−k,i−1)

P (wi|w1 . . . wi−1) ≃P (wi|wi−k . . . wi−1)

For k = 2:

P (⟨S⟩cats like milk⟨E⟩) ≃P (⟨S⟩)× P (cats|⟨S⟩)× P (like|⟨S⟩cats)
× P (milk|cats like)× P (⟨E⟩|like milk)

Maximum likelihood estimation

P (milk|cats like) =
count(cats like milk)

count(cats like)

n-gram model (n = k + 1), use n words for estimation
▶ n = 1 : unigram, n = 2 : bigram, n = 3 : trigram...
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Recurrent Neural Networks
N-gram language models have proven useful, but

▶ They require lots of memory
▶ Make poor estimations in unseen context
▶ ignore long-term dependencies

We would like to account for the history all the way from w1

▶ Estimate P (wi|h(w1 . . . wi−1)
▶ What can be used for h?

Recurrent definition
▶ h0 = 0
▶ h(w1 . . . wi−1) = hi = f(hi−1)
▶ That’s a classifier that uses its previous output to predict the next word

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
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Simple RNNs
Back to the y = neural_network(x) notation

▶ x = x1 . . . xn is a sequence of observations
▶ y = y1 . . . yn is a sequence of labels we want to predict
▶ h = h1 . . . hn is a hidden state (or history for language models)
▶ t is discrete time (so we can write xt for the t-th timestep

We can define a RNN as

h1 = 0 (1)
ht = tanh(Wxt + Uht−1 + b) (2)
yt = softmax(Woht + bo) (3)

Tensor shapes
▶ xt is of shape (1, d) for embeddings of size d
▶ ht is of shape (1, H) for hidden state of size H
▶ yt is of shape (1, c) for c labels
▶ W is of shape (d,H)
▶ U is of shape (H,H)
▶ Wo is of shape (c,H)
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Training RNNs
Back-propagation through time (BPTT)

▶ Unroll the network
▶ Forward

⋆ Compute ht one by one until end of sequence
⋆ Compute yt from ht

▶ Backward
⋆ Propagate error gradient from yt to ht
⋆ Consecutively back-propagate from hn to h1

Source: https://pbs.twimg.com/media/CQ0CJtwUkAAL__H.png

What if the sequence is too long?
▶ Cut after n words: truncated-BPTT
▶ Sample windows in the input
▶ How to initialize the hidden state?

⋆ Use the one from the previous window (statefull RNN)
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Potential problems with recurrent state
“On the difficulty of training recurrent neural networks", Pascanu et al ICML
2013

▶ Recurrent equations can be rewritten without loss of generality

ht = Uf(ht−1) + input

∂ht

∂hk
=

k∏
i=t

UT diag(f ′(hi−1))

Vanishing gradient (det ∂ht

∂ht−1
< 1)

▶ Gradient quickly goes to zero, preventing to learn long dependencies

Exploding gradient (det ∂ht

∂ht−1
> 1)

▶ Gradient quickly increases, making the system unstable

Source: https://www.researchgate.net/profile/Zachary_Lipton/publication/277603865/figure/fig8/AS:294356339707931@1447191428668/Figure-8-A-visualization-of-the-vanishing-gradient-problem-using-the-architecture.png
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Long-short term memory
Idea: use gating mechanism to keep information in the hidden state

▶ RNN would have to refresh its memory with every input
▶ LSTM output depends on gates which are trained to open at the right time

Gating mechanism

g =f(xt, ht) ∈ [0, 1]

xgated =g ⊙ xt

LSTMs have two hidden states: h and c
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LSTM Math

LSTM

it =σ(Wixt + Uiht + bi) input
ft =σ(Wfxt + Ufht + bf ) forget
ot =σ(Woxt + Uoht + bo) output
c′t =tanh(Wcxt + Ucht + bc) cell state

ct+1 =ft ⊙ ct + it ⊙ c′t

ht+1 =ot ⊙ tanh(ct+1)

LSTM(xt, ht, ct) =ht+1

Parameters
▶ Wi, Ui, bi,Wf , Uf , bf ,Wo, Uo, bo,Wc, Uc, bc

LSTMs output their hidden state like simple RNNs
▶ Need to add a dense layer to predict labels
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LSTM: how can it memorize things?

Let’s have a closer look at the gated output

cellt+1 = forgett ⊙ cellt + inputt ⊙ cell′t
hiddent+1 = outputt ⊙ tanh(cellt+1)

Interpretation
▶ if forgett = 1 and inputt = 0: previous cell state is used
▶ if forgett = 0 and inputt = 1: previous cell state is ignored
▶ if outputt = 1: output is set to cell state
▶ if outputt = 0: output is set to 0
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Gated recurrent units (GRU)
Same principle but less operations / parameters (Cho et al, 2014)

▶ st is the hidden state
▶ Has to balance between update and forget

GRU

zt =σ(Wzxt + Uzst + bz) update
rt =σ(Wrxt + Urst + br) forget
ht =tanh(Whxt + Uh(rt ⊙ st) + bh) input

st+1 =(1− zt)⊙ ht + zt ⊙ st new state
GRU(st, xt) =st+1

Parameters
▶ Wz, Uz, bz,Wr, Ur, br,Wh, Uh, bh

Interpretation
▶ If rt = 0, ht does not depend on st
▶ If zt = 0, use ht as new state
▶ If zt = 1, use st as new state
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How to use RNNs

Classification
▶ Drop the prediction of yt
▶ Build hidden state
▶ Use the final hidden state as representation for classification

Language models
▶ xt is the current word
▶ yt is the next word
▶ So we estimate P (wi|wi−1, hi−1)
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Batches

We saw that for training we need to unroll the RNN
▶ Cannot process sequences in parallel because they have different length

Need to introduce a padding symbol
▶ Example for 3 sequences of size 3, 6 and 2:

x1 x2 x3 pad pad pad
y1 y2 y3 y4 y5 y6
z1 z2 pad pad pad pad

RNN cells like LSTMs have no problem learning the padding symbol
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Online demo

Deep Recurrent Nets character generation demo
▶ http://cs.stanford.edu/people/karpathy/recurrentjs/
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Conclusion

Convolutional Neural Networks (CNN)
▶ Learn to apply a filter on a moving window of the input
▶ Position independent
▶ Interpretable as word n-grams
▶ Useful for topic classification, sentiment analysis

Recurrent Neural Networks (RNN)
▶ State depends on previous state
▶ Can model varying length history
▶ Potentially model the whole history
▶ Useful for language models, sequence prediction
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