Deep learning for natural language processing A short primer on deep learning

Benoit Favre <benoit.favre@univ-mrs.fr>

Aix-Marseille Université, LIF/CNRS

20 Feb 2017

Deep learning for Natural Language Processing

• Day 1

- Class: intro to natural language processing
- Class: quick primer on deep learning
- Tutorial: neural networks with Keras
- Day 2
 - Class: word embeddings
 - Tutorial: word embeddings
- Day 3
 - Class: convolutional neural networks, recurrent neural networks
 - Tutorial: sentiment analysis
- Day 4
 - Class: advanced neural network architectures
 - Tutorial: language modeling
- Day 5
 - Tutorial: Image and text representations
 - Test

Mathematical notations

Just to be make sure we share the same vocabulary

- x can be a scalar, vector, matrix or tensor (n-dimensional array)
 - An "axis" of x is one of the dimensions of x
 - The "shape" of x is the size of the axes of x
 - ► x_{i,j,k} is the element of index i, j, k in the 3 first dimensions
- f(x) is a function on x, it returns a same-shape mathematical object
- $xy = x \cdot y = dot(x, y)$ is the matrix-to-matrix multiplication

• if
$$r = xy$$
, then $r_{i,j} = \sum_k x_{i,k} \times y_{k,j}$

- $x \odot y$ is the elementwise multiplication
- tanh(x) applies the tanh function to all elements of x and returns the result
- σ is the sigmoid function, |x| is the absolute value, max(x) is the largest element...
- $\sum x$ is the sum of elements in x, $\prod x$ is the product of elements in x
- $\frac{\partial f}{\partial \theta}$ is the partial derivative of f with respect to parameter θ

What is machine learning?

Objective

- Train a computer to simulate what humans do
- Give examples to a computer and teach it to do the same
- Actual way of doing machine learning
 - Adjust parameters of a function so that it generates an output that looks like some data
 - Minimize a loss function between the output of the function and some true data
 - Actual minimization target: perform well on new data (empirical risk)

A formalization

- Formalism
 - $x \in \mathbb{R}^k$ is an observation, a vector of real numbers
 - $y \in \mathbb{R}^m$ is a class label among m possible labels

►
$$X, Y = \left\{ (x^{(i)}, y^{(i)}) \right\}_{i \in [1..n]}$$
 is training data

- $f_{\theta}(\cdot)$ is a function parametrized by θ
- $L(\cdot, \cdot)$ is a loss function
- Inference
 - Predict a label by passing the observation through a neural network

$$y = f_{\theta}(x)$$

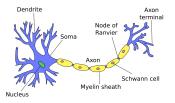
• Training

 Find the parameter vector that minimizes the loss of predictions versus truth on a training corpus

$$\theta^{\star} = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in T} L(f_{\theta}(x), y)$$

Neural networks

- A biological neuron
 - Inputs: dendrite
 - Output: axon
 - Processing unit: nucleus



Source: http://www.marekrei.com/blog/wp-content/uploads/2014/01/neuron.png

- One formal neuron
 - output = activation(weighted sum(inputs) + bias)
- A layer of neurons
 - f is an activation function
 - Process multiple neurons in parallel
 - Implement as matrix-vector multiplication

$$y = f(Wx + b)$$

• A multilayer perceptron

$$y = f_3(W_3f_2(W_2f_1(W_1x + b_1) + b_2) + b_3)$$

$$y = NN_{\theta}(x), qquad\theta = (W_1, b_1, W_2, b_2, W_3, b_3)$$

Encoding inputs and outputs

• Input x

- Vector of real values
- Output y
 - Binary problem: 1 value, can be 0 or 1 (or -1 and 1 depending on activation function)
 - Regression problem: 1 real value
 - Multiclass problem
 - * One-hot encoding
 - ★ Example: class 3 among $6 \rightarrow (0, 0, 1, 0, 0, 0)$

Non linearity

- Activation function
 - If f is identity, composition of linear applications is still linear
 - Need non linearity (tanh, σ, ...)
 - For instance, 1 hidden-layer MLP

$$NN_{\theta}(x) = \sigma(W_2 z(x) + b_2)$$
$$z(x) = \sigma(W_1 x + b_1)$$

• Non linearity

- Neural network can approximate any¹ continuous function [Cybenko'89, Hornik'91, ...]
- Deep neural networks
 - A composition of many non-linear functions
 - Faster to compute and better expressive power than very large shallow network
 - Used to be hard to train

 $^{{}^{1} \}tt{http://neuralnetworksanddeeplearning.com/chap4.html}$

Loss

• Loss suffered by wrongfully predicting the class of an example

$$L(X,Y) = \frac{1}{n} \sum_{i=1}^{n} l(y^{(i)}, NN_{\theta}(x))$$

- Well-known losses
 - y_t is the true label, y_p is the predicted label

$$\begin{split} l_{\text{mae}}(y_t, y_p) &= |y_t - y_p| & \text{absolute loss} \\ l_{\text{mse}}(y_t, y_p) &= (y_t - y_p)^2 & \text{mean square error} \\ l_{\text{ce}}(y_t, y_p) &= y_t \ln y_p + (1 - y_t) \ln(1 - y_p) & \text{cross entropy} \\ r_{\text{hinge}}(y_t, y_p) &= \max(0, 1 - y_t y_p) & \text{hinge loss} \end{split}$$

- The most common loss for classification
 - Cross entropy

Training as loss minimization

• As a loss minimization problem

$$\theta^{\times} = \operatorname*{argmin}_{\theta} L(X, Y)$$

• So 1-hidden layer MLP with cross entropy loss

$$\theta^{\times} = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} y_{t} \ln y_{p} + (1 - y_{t}) \ln(1 - y_{p})$$
$$y_{p} =$$

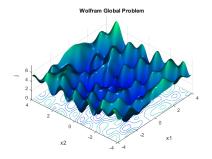
• We have a multilayer perceptron with two hidden layers

$$y_p = NN_{\theta}(x) = \sigma(W_2 z(x) + b_2)$$
$$z(x) = \sigma(W_1 x + b_1)$$

 \bullet \rightarrow Need to minimize a non linear, non convex function

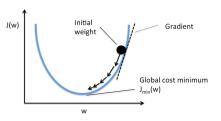
Function minimization

$\bullet \ {\sf Non \ convext} \to {\sf local \ minima}$



Source: https://www.inverseproblem.co.nz/OPTI/Images/plot_ex2nlpb.png

• Gradient descent



Source: https://qph.ec.quoracdn.net/main-qimg-1ec77cdbb354c3b9d439fbe436dc5d4f

Gradient descent

- Start with random θ
- $\bullet\,$ Compute gradient of loss with respect to θ

$$\nabla L(Y,X) = \left(\frac{\partial L(X,Y)}{\partial \theta_1}, \dots, \frac{\partial L(X,Y)}{\partial \theta_n}\right)$$

• Make a step towards the direction of the gradient

$$\theta^{(t+1)} = \theta^{(t)} + \lambda \nabla L(X, Y)$$

• λ is a small value called *learning rate*

Chain rule

- Differentiation of function composition
 - Remember calculus class

$$\begin{split} g \circ f(x) &= g(f(x)) \\ \frac{\partial (g \circ f)}{\partial x} &= \frac{\partial g}{\partial f} \frac{\partial f}{\partial x} \end{split}$$

• So if you have function compositions, you can compute their derivative with respect to a parameter by multiplying a series of factors

$$\frac{\partial (f_1 \circ \dots \circ f_n)}{\partial \theta} = \frac{\partial f_1}{\partial f_2} \dots \frac{\partial f_{n-1}}{\partial f_n} \frac{\partial f_n}{\partial \theta}$$

Example for MLP

• Multilayer perceptron with one hidden layer (z_2)

$$L(X,Y) = \frac{1}{n} \sum_{i=1}^{n} l_{ce}(y^{(i)}, NN_{\theta}(x^{(i)}))$$
$$NN_{\theta}(x) = z_1(x) = \sigma(W_2 z_2(x) + b_2)$$
$$z_2(x) = \sigma(W_1 x + b_1)$$
$$\theta = (W_1, b_1, W_2, b_2)$$

• So we need to compute

$$\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial l_{ce}} \frac{\partial l_{ce}}{\partial z_1} \frac{\partial z_1}{\partial W_2}$$
$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial l_{ce}} \frac{\partial l_{ce}}{\partial z_1} \frac{\partial z_1}{\partial b_2}$$
$$\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial l_{ce}} \frac{\partial l_{ce}}{\partial z_1} \frac{\partial z_1}{\partial z_2} \frac{\partial z_2}{\partial W_1}$$
$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial l_{ce}} \frac{\partial l_{ce}}{\partial z_1} \frac{\partial z_1}{\partial z_2} \frac{\partial z_2}{\partial b_1}$$

• A lot of the computation is redundant

Benoit Favre (AMU)

Back propagation

- A lot of computations are shared
 - No need to recompute them
 - Similar to dynamic programming
- Information propagates back through the network
 - We call it "back-propagation"

Training a neural network

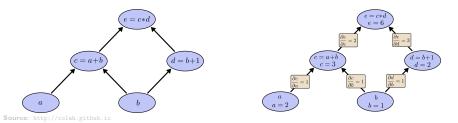
- $\theta_0 = \text{random}$
- while not converged
 - **1** forward: $L_{\theta_t}(X, Y)$
 - ★ Predict y_p
 - ★ Compute loss
 - **2** backward: $\nabla L_{\theta_t}(X, Y)$
 - * Compute partial derivatives

3 update
$$\theta_{t+1} = \theta_t + \lambda \nabla L_{\theta_t}(X, Y)$$

Computational Graphs

 \bullet Represent operations in L(X,Y) as a graph

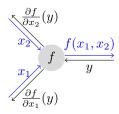
Every operation, not just high-level functions



• More details: http://outlace.com/Computational-Graph/

Building blocks for neural networks

- Can build a neural network like lego
 - Each block has inputs, parameters and outputs
 - Examples
 - * Logarithm: forward: y = ln(x), backward: $\frac{\partial ln}{\partial x}(y) = 1/y$
 - * Linear: forward: $y = f_{W,b}(x) = W \cdot x + b$ backward: $\frac{\partial f}{\partial x}(y) = y^T \cdot x$, $\frac{\partial f}{\partial W}(y) = y \cdot W$, $\frac{\partial f}{\partial b}(y) = y$
 - ★ Sum, product: …
- Provides auto-differentiation
 - A key component of modern deep learning toolkits



Stochastic optimization

- Stochastic gradient descent (SGD)
 - Look at one example at a time
 - Update parameters every time
 - Learning rate λ
- Many optimization techniques have been proposed
 - \blacktriangleright Sometimes we should make larger steps: adaptive λ
 - Add inertia to skip through local minima
 - Adagrad, Adadelta, Adam, NAdam, RMSprop...
 - The key is that fancier algorithms use more memory
 - \star But they can converge faster
- Regularization
 - Prevent model from fitting too well to the data
 - Penalize loss by magnitude of parameter vector $(loss + ||\theta||)$
 - Dropout: randomly disable
 - Mini-batches
 - Averages SGD updates over a set of examples
 - * Much faster because computations are parallel

Deep learning toolkits

- Low level toolkits
 - Tensorflow: https://www.tensorflow.org
 - Theano: http://deeplearning.net/software/theano
 - Torch: http://torch.ch
 - mxnet: http://mxnet.io
- High level frameworks
 - Keras: http://keras.io
 - Tflearn: http://tflearn.org
 - Lasagne: https://lasagne.readthedocs.io
- Some can do both
 - Chainer: http://chainer.org
 - Pytorch: http://pytorch.org

What they provide

- Low level toolkits
 - Can "implement paper from the equations"
 - Static or dynamic computation graph compilation and optimization
 - Hardware acceleration (CUDA, BLAS...)
 - But lots of house keeping
- High level frameworks
 - Generally built on top of low level toolkits
 - Implementation of most basic layers, losses, etc.
 - Your favourite model in 10 lines
 - Data processing pipeline
 - Harder to customize
- At some point, you will need to jump from high-level to low-level

Comparison

Framework Comparison: Basic information*

Viewpoint	Torch.nn**	Theano***	Caffe	autograd (NumPy, Torch)	Chainer	MXNet	Tensor- Flow
GitHub stars	4,719	3,457	9,590	N: 654 T: 554	1,295	3,316	20,981
Started from	2002	2008	2013	2015	2015	2015	2015
Open issues/PRs	97/26	525/105	407/204	N: 9/0 T: 3/1	95/25	271/18	330/33
Main developers	Facebook, Twitter, Google, etc.	Université de Montréal	BVLC (U.C. Berkeley)	N: HIPS (Harvard Univ.) T: Twitter	Preferred Networks	DMLC	Google
Core languages	C/Lua	C/Python	C++	Python/Lua	Python	C++	C++/Python
Supported languages	Lua	Python	C++/Python MATLAB	Python/Lua	Python	C++/Python R/Julia/Go etc.	C++/Python

* Data was taken on Apr. 12, 2016

** Includes statistics of Torch7

*** There are many frameworks on top of Theano, though we omit them due to the space constraints

Graphical Processing Units

- Most toolkits can take advantage of hardware acceleration
 - Graphical Processing Units
 - ★ GPGPU → accelerate matrix product
 - Take advantage of highly parallel operations
 - ×10-×100 acceleration
 - * Things that would take weeks to compute, can be done in days
 - * The limiting factor is often data transfer from and to GPU

NVIDIA

- Currently the best (only?) option
- High-end gamer cards: cheaper but limited
 - * Gforce GTX 1080 (\$800)
 - Titan X (\$1,200)
- Professional cards
 - * Can run 24/7 for years, passive cooling
 - * K40/K80: previous generation cards (\$3.5k)
 - ★ P100: current generation (\$6k)
 - DGX-1: datacenter with 8 P100 (\$129k)
- Renting: best way to scale
 - * Amazon AWS EC2 P2 (\$1-\$15 per hour)

Information sources

- The Deep learning landscape is moving fast
 - Conferences: NIPS, ICML, ICLR...
 - Need to read scientific papers from arxiv
 - Plenty of reading lists on the web
 - * https://github.com/ChristosChristofidis/awesome-deep-learning
 - https://github.com/kjw0612/awesome-rnn
 - https://github.com/kjw0612/awesome-deep-vision
 - * https://github.com/keon/awesome-nlp
- Where to get news from
 - Twitter http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
 - Reddit https://www.reddit.com/r/MachineLearning/
 - HackerNews http://www.datatau.com/

Keras: short presentation

- Keras is an abstraction over Theano and Tensorflow
 - Advice: follow the tutorial at https://keras.io/

```
from keras.models import Sequential
from keras.layers import Dense, Activation
# build and compile the model
model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=10))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
# assumes you have loaded data in X train and Y train
model.fit(X train, Y train, nb epoch=5, batch size=32)
# get the classes predicted by the model
proba = model.predict classes(X test, batch size=32)
```

Conclusion

• Deep learning is loosely modeled after the brain

- Neural network is a parametrisable function composition
- Learns a non-linear function of its input
- Back-propagation of the error
 - ★ Chain rule
 - ★ Computation graph
- Loss minimization
- Many toolkits available today
 - High-level programming language
 - Automatic differentiation
 - Accelerated with GPU