Deep learning for natural language processing Convolutional and recurrent neural networks

Benoit Favre <benoit.favre@univ-amu.fr>

Aix-Marseille Université, LIF/CNRS

03-2018

Benoit Favre (AMU)

Extracting basic features from text

- Historical approaches
 - Text classification
 - Information retrieval
- The bag-of-word model
 - A document is represented as a vector over the lexicon
 - Its components are weighted by the frequency of the words it contains
 - Compare two texts as the cosine similarity between
- Useful features
 - Word n-grams
 - tf×idf weighting
 - Syntax, morphology, etc
- Limitations
 - Each word is represented by one dimension (no synonyms)
 - Word order is only lightly captured
 - No long-term dependencies

Convolutional Neural Networks (CNN)

- Main idea
 - Created for computer vision
 - How can location independence be enforced in image processing?
 - Solution: split the image in overlapping patches and apply the classifier on each patch
 - Many models can be used in parallel to create filters for basic shapes

CNN for images

• Typical network for image classification (Alexnet)

• Example of filters learned for images

CNN for text

• In the text domain, we can learn from sequences of words

- Moving window over the word embeddings
- Detects relevant word n-grams
- Stack the detections at several scales

CNN Math

- Parallel between text and images
 - Images are of size (width, height, channels)
 - \blacktriangleright Text is a sequence of length n of word embeddings of size d
 - \blacktriangleright \rightarrow Text is treated as an image of width n and height d
- $\bullet \ x$ is a matrix of n word embeddings of size d
 - $x_{i-\frac{l}{2}:i+\frac{l}{2}}$ is a window of word embeddings centered in i, of length l
 - First, we reshape $x_{i-\frac{l}{2}:i+\frac{l}{2}}$ to a size of $(1, l \times d)$ (vertical concatenation)
 - Use this vector for $i \in [\frac{l}{2} \dots n \frac{l}{2}]$ as CNN input
- A CNN is a set of k convolution filters
 - $CNN_{out} = activation(W CNN_{in} + b)$
 - CNN_{in} is of shape $(l \times d, n l)$
 - ▶ W is of shape $(k, l \times d)$, b is of shape (k, 1) repeated n l times
 - CNN_{out} is of shape (k, n l)
- Interpretation
 - ▶ If W(i) is an embedding n-gram, then CNN_{out}(i, j) is high when this embedding n-gram is in the input

Pooling

• A CNN detects word n-grams at each time step

- We need position independence (bag of words, bag of n-grams)
- Combination of n-grams
- Position independence (pooling over time)
 - Max pooling $\rightarrow max_t(CNN_{out}(:,t))$
 - Only the highest activated n-gram is output for a given filter
- Decision layers
 - > CNNs of different lengths can be stacked to capture n-grams of variable length
 - CNN+Pooling can be composed to detect large scale patterns
 - Finish by fully connected layers which input the flatten representations created by CNNs

Online demo

- CNN for image processing
 - Digit recognition
 - * http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
 - 10-class visual concept
 - * http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

< □ > < □ > < □ > < □ > < □ >

Recurrent Neural Networks

• CNNs are good at modeling topical and position-independent phenomena

- Topic classification, sentiment classification, etc
- But they are not very good at modeling order and gaps in the input
 - $\star~$ Not possible to do machine translation with it
- Recurrent NNs have been created for language modeling
 - Can we predict the next word given a history?
 - Can we discriminate between a sentence likely to be correct language and garbage?
- Applications of language modeling
 - Machine translation
 - Automatic speech recognition
 - Text generation...

Language modeling

Measure the quality of a sentence

- Word choice and word order
 - ▶ (+++) the cat is drinking milk
 - ▶ (++) the dog is drinking lait
 - ▶ (+) the chair is drinking milk
 - (-) cat the drinking milk is
 - ▶ (-) cat drink milk
 - ▶ (—) bai toht aict

If $w_1 \ldots w_n$ is a sequence of words, how to compute $P(w_1 \ldots w_n)$?

• Could be estimated with probabilities over a large corpus

 $P(w_1 \dots w_n) = \frac{count(w_1 \dots w_n)}{count(possible \text{ sentences})}$

Exercise – reorder:

- cat the drinking milk is
- taller is John Josh than

How to estimate a language model

Rewrite probability to marginalize parts of sentence

$$P(w_1 \dots w_n) = P(w_n | w_{n-1} \dots w_1) P(w_{n-1} \dots w_1)$$

= $P(w_n | w_{n-1} \dots w_1) P(w_{n-1} | w_{n-2} \dots w_1)$
= $P(w_1) \prod_i P(w_i | w_{i-1} \dots w_1)$

Note: add $\langle S \rangle$ and $\langle E \rangle$ symbols at beginning and end of sentence

$$\begin{split} P(\langle S \rangle \text{cats like milk} \langle E \rangle) = & P(\langle S \rangle) \\ & \times P(\text{cats} | \langle S \rangle) \\ & \times P(\text{like} | \langle S \rangle \text{cats}) \\ & \times P(\text{milk} | \langle S \rangle \text{cats like}) \\ & \times P(\langle E \rangle | \langle S \rangle \text{cats like milk} \end{split}$$

n-gram language models (Markov chains)

• Markov hypothesis: ignore history after \boldsymbol{k} symbols

$$P(word_i|history_{1..i-1}) \simeq P(word_i|history_{i-k,i-1})$$
$$P(w_i|w_1\dots w_{i-1}) \simeq P(w_i|w_{i-k}\dots w_{i-1})$$

• For k = 2:

$$\begin{split} P(\langle S \rangle \text{cats like milk} \langle E \rangle) \simeq & P(\langle S \rangle) \times P(\text{cats} | \langle S \rangle) \times P(\text{like} | \langle S \rangle \text{cats}) \\ & \times P(\text{milk} | \text{cats like}) \times P(\langle E \rangle | \text{like milk}) \end{split}$$

• Maximum likelihood estimation

$$P(\text{milk}|\text{cats like}) = \frac{count(\text{cats like milk})}{count(\text{cats like})}$$

• n-gram model (n = k + 1), use n words for estimation

• n = 1 : unigram, n = 2 : bigram, n = 3 : trigram...

Recurrent Neural Networks

- N-gram language models have proven useful, but
 - They require lots of memory
 - Make poor estimations in unseen context
 - ignore long-term dependencies
- ullet We would like to account for the history all the way from w_1
 - Estimate $P(w_i|h(w_1 \dots w_{i-1}))$
 - What can be used for h?
- Recurrent definition
 - ▶ $h_0 = 0$
 - $h(w_1 \dots w_{i-1}) = h_i = f(h_{i-1})$
 - That's a classifier that uses its previous output to predict the next word

Simple RNNs

- Back to the $y = neural_network(x)$ notation
 - $x = x_1 \dots x_n$ is a sequence of observations
 - $y = y_1 \dots y_n$ is a sequence of labels we want to predict
 - $h = h_0 \dots h_n$ is a hidden state (or history for language models)
 - t is discrete time (so we can write x_t for the t-th timestep)
- We can define a RNN as

$$h_0 = 0$$
(1)

$$h_t = tanh(Wx_t + Uh_{t-1} + b)$$
(2)

$$y_t = softmax(W_oh_t + b_o)$$
(3)

Tensor shapes

- x_t is of shape (1, d) for embeddings of size d
- h_t is of shape (1, H) for hidden state of size H
- y_t is of shape (1, c) for c labels
- W is of shape (d, H)
- U is of shape (H, H)
- ▶ W_o is of shape (c, H)

03-2018 14 / 25

Training RNNs

- Back-propagation through time (BPTT)
 - Unroll the network
 - Forward
 - * Compute h_t one by one until end of sequence
 - ***** Compute y_t from h_t
 - Backward
 - * Propagate error gradient from y_t to h_t
 - **\star** Consecutively back-propagate from h_n to h_1

- What if the sequence is too long?
 - Cut after n words: truncated-BPTT
 - Sample windows in the input
 - How to initialize the hidden state?
 - * Use the one from the previous window (statefull RNN)

Potential problems with recurrent state

- "On the difficulty of training recurrent neural networks", Pascanu et al ICML 2013
 - Recurrent equations can be rewritten without loss of generality

$$h_t = Uf(h_{t-1}) + \text{input}$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{i=t}^k U^T diag(f'(h_{i-1}))$$

- Vanishing gradient ($det \frac{\partial h_t}{\partial h_{t-1}} < 1$)
 - Gradient quickly goes to zero, preventing to learn long dependencies
- Exploding gradient $(det \frac{\partial h_t}{\partial h_{t-1}} > 1)$
 - Gradient quickly increases, making the system unstable

Long-short term memory

- Idea: use gating mechanism to keep information in the hidden state
 - RNN would have to refresh its memory with every input
 - LSTM output depends on gates which are trained to open at the right time
- Gating mechanism

$$g = f(x_t, h_t) \in [0, 1]$$

$$x_{\text{gated}} = g \odot x_t$$

 $\bullet~{\rm LSTMs}$ have two hidden states: h and c

LSTM Math

LSTM

$$i_t = \sigma(W_i x_t + U_i h_t + b_i)$$
 input

$$f_t = \sigma(W_f x_t + U_f h_t + b_f)$$
 forget

$$o_t = \sigma(W_o x_t + U_o h_t + b_o)$$
 output

$$c'_t = \tanh(W_c x_t + U_c h_t + b_c)$$
 cell state

$$c_{t+1} = f_t \odot c_t + i_t \odot c'_t$$
$$h_{t+1} = o_t \odot \tanh(c_{t+1})$$
$$\text{LSTM}(x_t, h_t, c_t) = h_{t+1}$$

- $\blacktriangleright W_i, U_i, b_i, W_f, U_f, b_f, W_o, U_o, b_o, W_c, U_c, b_c$
- LSTMs output their hidden state like simple RNNs
 - Need to add a dense layer to predict labels

LSTM: how can it memorize things?

• Let's have a closer look at the gated output

$$\operatorname{cell}_{t+1} = \operatorname{forget}_t \odot \operatorname{cell}_t + \operatorname{input}_t \odot \operatorname{cell}_t'$$

$$\operatorname{hidden}_{t+1} = \operatorname{output}_t \odot \operatorname{tanh}(\operatorname{cell}_{t+1})$$

Interpretation

- if $forget_t = 1$ and $input_t = 0$: previous cell state is used
- if $forget_t = 0$ and $input_t = 1$: previous cell state is ignored
- if $output_t = 1$: output is set to cell state
- if $output_t = 0$: output is set to 0

Gated recurrent units (GRU)

- Same principle but less operations / parameters (Cho et al, 2014)
 - s_t is the hidden state
 - Has to balance between update and forget

• GRU

$$z_t = \sigma(W_z x_t + U_z s_t + b_z) \qquad \text{update}$$

$$r_t = \sigma(W_r x_t + U_r s_t + b_r)$$
 forget

$$h_t = \tanh(W_h x_t + U_h (r_t \odot s_t) + b_h) \qquad \text{input}$$

$$s_{t+1} = (1 - z_t) \odot h_t + z_t \odot s_t$$
 new state

 $\mathrm{GRU}(s_t, x_t) = s_{t+1}$

- Parameters
 - $\blacktriangleright W_z, U_z, b_z, W_r, U_r, b_r, W_h, U_h, b_h$
- Interpretation
 - If $r_t = 0$, h_t does not depend on s_t
 - If $z_t = 0$, use h_t as new state
 - If $z_t = 1$, use s_t as new state

03-2018 20 / 25

RNNs as fast as CNNs

- RNNs do not parallelize very well (one time step at a time)
 - Quasi-RNNs (Socher et al, ICLR 2017)
 - Simple Recurrent Unit (Lei et al, ICLR 2018)

$\tilde{x}_t = W_x x_t$	input convolution		
$f_t = \sigma(W_f x_t + b_f)$	forget gate		
$r_t = \sigma(W_r x_t + b_r)$	reset gate		
$c_t = f_t \odot c_{t-1} + (1 - f_t) \odot \tilde{x}_t$	recurrent state		
$h_t = r_t \odot \tanh(c_t) + (1 - r_t) \odot x_t$	skip connection		

< □ > < □ > < □ > < □ > < □ >

How to use RNNs

- Sentence/document-level classification
 - Drop the prediction of yt
 - Build hidden state
 - Use the final hidden state as representation for classification
- Word-level classification
 - predict one label y_t per word
 - Useful for part-of-speech tagging, named entity detection, etc.
 - Can do segmentation with (Begin, Inside, Outside) labels
- Language models
 - *x_t* is the current word
 - y_t is the next word
 - So we estimate $P(w_i|w_{i-1}, h_{i-1})$

イロン イ団 とく ヨン イヨン

Batches

- $\bullet\,$ We saw that for training we need to unroll the RNN
 - Cannot process sequences in parallel because they have different length
- Need to introduce a padding symbol
 - Example for 3 sequences of size 3, 6 and 2:

×1	x2	x3	pad	pad	pad
y1	y2	у3	y4	y5	y6
z1	z2	pad	pad	pad	pad

• RNN cells like LSTMs have no problem learning the padding symbol

< □ > < □ > < □ > < □ > < □ >

Online demo

- Deep Recurrent Nets character generation demo
 - http://cs.stanford.edu/people/karpathy/recurrentjs/

Conclusion

• Convolutional Neural Networks (CNN)

- Learn to apply a filter on a moving window of the input
- Position independent
- Interpretable as word n-grams
- Useful for topic classification, sentiment analysis
- Recurrent Neural Networks (RNN)
 - State depends on previous state
 - Can model varying length history
 - Potentially model the whole history
 - Useful for language models, sequence prediction