Dynamics on Games: Simulation-Based Techniques and Applications to Routing

Benjamin Monmege (Aix-Marseille University, France) Thomas Brihaye Marion Hallet Bruno Quoitin (Mons, Belgium) Gilles Geeraerts (Université libre de Bruxelles, Belgium)

FSTTCS 2019

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Static approach

	R	Р	S
R	(0,0)	(-1, 1)	(-1,1)
Ρ	(1,-1)	(0,0)	(-1, 1)
S	$\left(\left(-1,1 ight) ight)$	(1, -1)	(0,0)

Classical game theory

Players are

- Clever: they reason perfectly;
- Rational: they want to maximize their payoff;
- Selfish: they only bother about their own payoff.

Notions of equilibrium (Nash Equilibria, Subgame Perfect Equilibria...)

Benjamin Monmege

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

If we discover a new game

• Find immediately a good strategy is concretely impossible.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

- Find immediately a good strategy is concretely impossible.
- If we play several times, we will improve our strategy.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

- Find immediately a good strategy is concretely impossible.
- If we play several times, we will improve our strategy.
- With enough different plays, will we eventually stabilize?

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

- Find immediately a good strategy is concretely impossible.
- If we play several times, we will improve our strategy.
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

- Find immediately a good strategy is concretely impossible.
- If we play several times, we will improve our strategy.
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?
- \rightarrow Learning in games (e.g. fictitious play)
- \rightarrow Strategy improvement (e.g. in parity games)
- \rightarrow Evolutionary game theory (continuous time)

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Equivalence

Static approach Dynamic approach

Equilibria

Stable Points

Picture taken from Evolutionnary game theory by W. H. Sandholm

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Equivalence

Static approach Dynamic approach

Equilibria Carbon Stable Points

Our Goal

- Apply this idea of improvement on games played on graphs
- Prove termination via reduction/minor of games
- Show some links with Interdomain routing

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

 v_1 prefers the route $v_1 v_2 v_{\perp}$ to the route $v_1 v_{\perp}$ (preferred to $(v_1 v_2)^{\omega}$) v_2 prefers the route $v_2 v_1 v_{\perp}$ to the route $v_2 v_{\perp}$ (preferred to $(v_2 v_1)^{\omega}$)

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Interdomain routing problem as a game played on a graph

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

 v_1 prefers the route $v_1v_2v_{\perp}$ to the route v_1v_{\perp} (preferred to $(v_1v_2)^{\omega}$) v_2 prefers the route $v_2v_1v_{\perp}$ to the route v_2v_{\perp} (preferred to $(v_2v_1)^{\omega}$)

$$v_1v_\perp \prec_1 v_1v_2v_\perp$$
 and $v_2v_\perp \prec_2 v_2v_1v_\perp$

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Games played on a graph – The strategic game approach

We have two Nash equilibria: (c_1, s_2) and (s_1, c_2) .

Static vision of the game: players are perfectly informed and supposed to be **intelligent**, **rational** and **selfish**

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Games played on a graph – The evolutionnary approach

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Games played on a graph – The evolutionnary approach

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Games played on a graph – The evolutionnary approach

Asynchronous nature of the network could block the packets in an undesirable cycle...

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Interdomain routing problem - open problem

The game **G**

Identify necessary and sufficient conditions on **G** such that $\mathbf{G}(\rightarrow)$ has no cycle.

Ideally, the conditions should be algorithmically simple, locally testable...

Numerous interesting partial solutions are proposed in the literature.

Daggitt, Gurney, Griffin. Asynchronous convergence of policy-rich distributed Bellman-Ford routing protocols. 2018

Benjamin Monmege

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Games played on a graph – The evolutionnary approach Different dynamics

 D_1 with no cycle

 D_2 with a cycle

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Positional 1-step dynamics $\xrightarrow{P_1}$

$$profile_1 \xrightarrow{P_1} profile_2$$

if:

- a single player changes at a single node
- this player improves his own outcome

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Positional 1-step dynamics $\xrightarrow{P_1}$

$$profile_1 \xrightarrow{P_1} profile_2$$

if:

- a single player changes at a single node
- this player improves his own outcome

Static vs. Dynamic	Interdomain routing	Two dynamics □■□	Relations	More realistic

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

	Static vs. Dynamic Interdomain routing	Two dynamics Rela	tions More realistic
--	--	-------------------	----------------------

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

Static vs. Dynamic	Interdomain routing	Two dynamics ■	Relations	More realistic

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

both players intend to reach their best outcome $(v_1v_{\perp} \prec_1 v_1v_2v_{\perp} \text{ and } v_2v_{\perp} \prec_2 v_2v_1v_{\perp})$, even if they do not manage to do it (as the reached outcome is $(v_1v_2)^{\omega}$ and $(v_2v_1)^{\omega}$)

Benjamin Monmege

Static vs. Dynamic Interdomain routing Two dynamics Relations More realistic Image: Comparison of the state of the s	Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic
---	--------------------	---------------------	--------------	-----------	----------------

Questions

What condition ${\boldsymbol{\mathsf{G}}}$ should satisfy to ensure that

 $\mathbf{G} \langle \rightarrow \rangle$ has no cycle, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

Static vs. Dynamic Interdomain routing Two dynamics Relations More realistic Image: Comparison of the state of the s	Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic
---	--------------------	---------------------	--------------	-----------	----------------

Questions

What condition ${\boldsymbol{\mathsf{G}}}$ should satisfy to ensure that

 $\mathbf{G} \langle \rightarrow \rangle$ has no cycle, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

What relations \rightarrow_1 and \rightarrow_2 should satisfy to ensure that

 $\mathbf{G}\langle \rightarrow_1 \rangle$ has no cycle if and only if $\mathbf{G}\langle \rightarrow_2 \rangle$ has no cycle?

Static vs. Dynamic Interdomain routing Two dynamics Relations More realistic Image: Comparison of the state of the s	Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic
---	--------------------	---------------------	--------------	-----------	----------------

Questions

What condition ${\boldsymbol{\mathsf{G}}}$ should satisfy to ensure that

 $\mathbf{G} \langle \rightarrow \rangle$ has no cycle, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

What relations \rightarrow_1 and \rightarrow_2 should satisfy to ensure that

 $\mathbf{G}\langle \rightarrow_1 \rangle$ has no cycle if and only if $\mathbf{G}\langle \rightarrow_2 \rangle$ has no cycle?

What should \mathbf{G}_1 and \mathbf{G}_2 have in common to ensure that

 $\mathsf{G}_1\langle {\twoheadrightarrow} \rangle$ has no cycle $% \mathsf{G}_1 \langle {\Longrightarrow} \rangle$ if and only if $\mathsf{G}_2 \langle {\Longrightarrow} \rangle$ has no cycle?

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Folklore

If $G_1 \langle \rightarrow_1 \rangle$ simulates $G_2 \langle \rightarrow_2 \rangle$ and the dynamics \rightarrow_1 terminates on G_1 , then the dynamics \rightarrow_2 terminates on G_2 .

	Static vs. Dynamic Interdomain routing	Two dynamics	Relations	More realistic
--	--	--------------	-----------	----------------

Relation between games

 \mathbf{G}' is a minor of \mathbf{G} if it is obtained by a succession of operations:

- deletion of an edge (and all the corresponding outcomes);
- deletion of an isolated node;
- deletion of a node v with a single edge $v \rightarrow v'$ and no predecessor $u \rightarrow v$ such that $u \rightarrow v'$.

Static vs. Dynamic Interdomain routing Two dynamics Relations More real	istic
---	-------

Relation between games

 \mathbf{G}' is a minor of \mathbf{G} if it is obtained by a succession of operations:

- deletion of an edge (and all the corresponding outcomes);
- deletion of an isolated node;
- deletion of a node v with a single edge $v \rightarrow v'$ and no predecessor $u \rightarrow v$ such that $u \rightarrow v'$.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Relation between simulation and minor

Theorem

If **G**' is a minor of **G**, then $\mathbf{G}\langle \stackrel{\mathbb{P}_1}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathbb{P}_1}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathbb{P}_1}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Relation between simulation and minor

Theorem

If **G**' is a minor of **G**, then $\mathbf{G}\langle \stackrel{\mathbb{P}_1}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathbb{P}_1}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathbb{P}_1}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

Theorem

If **G**' is a minor of **G**, then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

Remark: $\mathbf{G} \langle \xrightarrow{P_1} \rangle \sqsubseteq \mathbf{G} \langle \xrightarrow{P_C} \rangle$

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of *fair termination*

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of fair termination

More realistic dynamics

Consider *best reply* variants $\xrightarrow{bP1}$ and \xrightarrow{bPC} of the two dynamics, where each player that modifies its strategy changes in the best possible way

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

What results?

Previous theorem

If **G**' is a minor of **G**, then $\mathbf{G} \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}' \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in **G** but not in the minor **G**'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

What results?

Previous theorem

If **G**' is a minor of **G**, then $\mathbf{G} \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}' \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in **G** but not in the minor **G**'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Theorem

If **G**' is a *dominant minor* of **G**, then $\xrightarrow{\text{bPC}} / \xrightarrow{\text{bP1}}$ fairly terminates for **G** if and only if it fairly terminates for **G**'.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

What results?

Previous theorem

If **G**' is a minor of **G**, then $\mathbf{G} \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}' \langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for **G**, it terminates for **G**' too.

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in **G** but not in the minor **G**'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Theorem

If **G**' is a *dominant minor* of **G**, then $\xrightarrow{\text{bPC}} / \xrightarrow{\text{bP1}}$ fairly terminates for **G** if and only if it fairly terminates for **G**'.

Use of simulations that are partially invertible...

Static vs. Dynamic Interdomain routing Two dynamics Relations More realist IIII IIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realist
--	--------------------	---------------------	--------------	-----------	--------------

Application to interdomain routing

 Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Sami, Shapira, Zohar, 2009]

If **G** is a one-target game for which $\xrightarrow{\text{bPC}}$ fairly terminates, that it has exactly one *equilibrium*.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Application to interdomain routing

 Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Sami, Shapira, Zohar, 2009]

If **G** is a one-target game for which $\xrightarrow{\text{bPC}}$ fairly terminates, that it has exactly one *equilibrium*.

Theorem [Griffin, Shepherd, Wilfong, 2002]

There exists a pattern, called *dispute wheel*, that is a "circular set of conflicting rankings between nodes" such that if **G** is a one-target game that has no dispute wheels, then $\xrightarrow{\text{bPC}}$ fairly terminates.

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Application to interdomain routing

Theorem

- There exists a stronger pattern, called *strong dispute wheel*, such that if \xrightarrow{PC} terminates for **G**, then **G** has no strong dispute wheel.
- Moreover, if two paths having the same next-step are equivalent in the preferences (locality condition), then → fairly terminates for G if and only if G has no strong dispute wheel.
- Finding a strong dispute wheel in **G** can be tested by searching whether **G** contains the following game as a minor:

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Summary

- Looking for equilibria in dynamics of n-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Summary

- Looking for equilibria in dynamics of n-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of ^{bPC} in one-target games
- Consider source with importent informations on
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Static vs. Dynamic	Interdomain routing	Two dynamics	Relations	More realistic

Summary

- Looking for equilibria in dynamics of *n*-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of $\stackrel{\text{\tiny \mathsf{bPC}}}{\longrightarrow}$ in one-target games
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Thank you!