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Weighted Pebble Walking Automata

I Unusual mechanism

I Expressive power not fully clear

AIM: study expressive power in terms of other formalisms, e.g., of logic

Many such results for weighted automata: over words [Droste and Gastin, 2009],
over trees [Droste and Vogler, 2006], over grids [Fichtner, 2011], over nested words
[Mathissen, 2010]...

Boolean setting [Engelfriet and Hoogeboom, 2007]

Pebble Walking Automata = FO + posTC

Extension in the quantitative setting

Theorem:

Weighted Pebble Walking Automata (wPWA) = wFOTC
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Transitive Closure in Graphs

Definition 4. A weighted pebble walking automaton (wPWA)
over the semiring S is a tuple A = (Q, A, D, Peb, I, F, K,�, wt)
where Q is a finite set of states, A is a finite alphabet, D is a finite set
of directions, Peb is a finite set of pebble names, I ✓ Q is the set of
initial states, F ✓ Q is the set of final states, K > 0 is the number
of pebbles that may be dropped on the graph at any time of the
computation, � is a finite subset of Q⇥Guards⇥A⇥Actions⇥Q,
and wt: �! S gives the weights of transitions. The number K is
called the height of A.

The set of actions used in � is given as Actions = D [D�1 [
{stay}[{dropx | x 2 Peb}[{lift}, and the set Guards is defined
by

↵ ::= > | init? | ¬init? | d? | ¬d? | x? | ¬x? | ↵ ^ ↵
with d 2 D [D�1 and x 2 Peb.

Through its navigation in the graph, the wPWA A may drop a
pebble named x with the action dropx and later lift a pebble with
the action lift. Only the last dropped pebble may be lifted (stack
policy). Hence, lift actions need not be labeled with a pebble name.

A guard may check with x? whether a pebble named x is dropped
on the current vertex (by looking for this information in the entire
stack). A valuation over Peb is a mapping � : Peb ! V , which
describes an assignment of pebbles to vertices. Then, satisfaction of
guards is denoted by G, �, v |= ↵. For the atomic guards, we have:
G, �, v |= x? if �(x) = v; G, �, v |= d? if there exists v0 2 V
with (v, v0) 2 Ed; and G, v |= init? if v = ◆.

A configuration of a wPWA A over a graph G = (V, (Ed)d2D,
�, ◆) 2 G(A, D) and a valuation � : Peb ! V is a tuple (q, ⇡, v)
composed of a state q of Q, a stack ⇡ 2 (Peb ⇥ V )6K of length
at most K containing pairs of pebble names and vertices (the top
of the stack is on the right of the word ⇡), and a vertex v 2 V . The
stack ⇡ records the positions of currently dropped pebbles.

Pebble names are reusable, meaning that several pebbles with
the same name may be dropped on the graph at a given moment of
the computation. Hence, a pebble name may occur several times in
⇡, but only its topmost occurrence is visible. However, when this
topmost occurrence will be lifted, the previous one will become
visible again.4 At any moment of the computation, each pebble
name of Peb is mapped to a single vertex, either the one defined
in the initial valuation �, or the vertex holding the last pebble with
this name dropped. Having this in mind, we associate with every
stack ⇡ and valuation �, an updated valuation �[⇡] : Peb! V by
�["] = �, and �[⇡(x, v)] = �[⇡][x 7! v]. Notice in particular that
guard x? tests whether the visible occurrence of pebble x is dropped
on the current vertex.

A run is described as an alternating sequence of configurations
and transitions. Formally, a run of A over a graph G and a valuation
� is a finite sequence

⇢ = (q0, ⇡0, v0)
↵0,�0����! (q1, ⇡1, v1)

↵1,�1����! · · · (qM , ⇡M , vM )

such that, for each 0 6 m < M , we have G, �[⇡m], vm |= ↵m,
the tuple �m = (qm, ↵m, �(vm), �m, qm+1) is a transition from �,
and one of the following holds:

• �m 2 D [D�1, (vm, vm+1) 2 E�m , and ⇡m+1 = ⇡m;
• �m = stay, vm+1 = vm, and ⇡m+1 = ⇡m;
• �m = dropx, vm+1 = vm, and ⇡m+1 = ⇡m(x, vm);
• �m = lift and ⇡m = ⇡m+1(x, vm+1) for some x 2 Peb.

The weight of ⇢ is the product of the weights of its transitions:
wt(⇢) =

Q
06m<M wt(�m).

4 Notice that our notion of reusability is slightly different from the notion of
invisibility introduced in [14].

The third case, dealing with drop transitions, stays on the current
vertex, and pushes on the stack the pair composed of the name x
of the pebble and the vertex where it is dropped. Notice that this
transition is enabled only if the size of the current stack is less than
K. The fourth case, dealing with lift transitions, pops the top of the
stack (which must be nonempty), and moves to the vertex vm+1

where the last pebble was dropped.5

We are interested in runs that start at some vertex v, in state
q with empty stack, and end in some vertex v0, in state q0 with
empty stack: we let [[Aq,q0 ]](G, �, v, v0) be the sum of the weights
of all runs over (G, �) from configuration (q, ", v) to configuration
(q0, ", v0). Since we consider continuous semirings, this possibly
infinite sum is well-defined.

Finally, the semantics of A over a pair (G, �), denoted by
[[A]](G, �), maps every graph G and valuation � to an element
of the continuous semiring S:

[[A]](G, �) =
X

q2I,q02F,v2V

[[Aq,q0 ]](G, �, ◆, v) .

In the following, the sum
P

v2V [[Aq,q0 ]](G, �, ◆, v) is denoted by
[[Aq,q0 ]](G, �).

Example 4 (Pebble walking automaton on pictures). A frame in a
picture is a white square surrounded by rows and columns of black
pixels. We aim at computing the biggest size of frames, where the
size is defined as the white area inside the frame. The following
picture has a single frame, which is of size 4.

Since we need to count and maximize, we opt for the continuous
semiring (N[{�1}, max, +,�1, 0). We give in Fig. 2 a wPWA
A computing this size. For readability, we do not write >-guards,
we omit the letter to mean that the transition is allowed for both
b (black) and w (white), and we omit the weight if it is 0. We use
two pebbles x and y in order to mark the lower-left and upper-right
corners of a frame in the picture. At first, A non-deterministically
chooses a position to drop x. It then follows a path in the picture that
alternates!- and "-edges, until non-deterministically dropping y.
This ensures that the rectangle defined by x and y is actually
a square.

Then, A scans each vertex of the square defined by (x, y),
checking that the inside is white and the border is black. It also
computes 1 for each inner vertex. This is done by starting from
y, going to the left, until non-deterministically stopping to check
that the current vertex is above x. We then lift y (going back to
it, as defined in the semantics), and drop y again on the pixel just
below. We continue this process until we check the last line of the
zone. We finally accept after lifting both pebbles. Each accepting
run computes the size of the chosen zone, by summing (since the
product of the semiring is integer addition) 1 for every position
inside this rectangle. The non-determinism is resolved by taking the
maximum of the weights of all the accepting runs, which proves that
A computes the size of the biggest framed square. Notice that there
are several accepting runs that check the same frame – since, e.g., in

5 We are using weak pebbles since a lift transition leads the automaton to the
vertex where the lifted pebble was. An alternative semantics, called strong,
allows the automaton to lift a pebble while staying on the current vertex, see
e.g., [2]. In the Boolean setting, strong pebbles are shown to have the same
expressive power as weak pebbles [2]. We do not know whether this is the
case in our weighted setting.

Binary predicate R1(x, y) = ∃z[R→(x, z) ∧R↑(z, y)]
Transitive Closure TCx,yR1(x, y)

test if square (not doable in FO)

Weighted Transitive Closure: semiring (N ∪ {−∞},max,+,−∞, 0)

TCx,y[R1(x, y) ? 1 :−∞]

verifies that it is a square and computes the length of its diagonal

Semantics of Weighted Transitive Closure: complete semiring (S,+,×, 0, 1)

[[[TCx,yΦ](x′, y′)]](G, σ) =
∑

v0,v1,...,vm (m>0)
σ(x′)=v0,σ(y

′)=vm

∏
06k6m−1

[[Φ]](G, σ[x 7→ vk, y 7→ vk+1])

��*sum along
sequences of stop-vertices

HHY multiplication along
the sequence
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Weighted Transitive Closure: semiring (N ∪ {−∞},max,+,−∞, 0)

TCx,y[R1(x, y) ? 1 :−∞]

verifies that it is a square and computes the length of its diagonal

Semantics of Weighted Transitive Closure: complete semiring (S,+,×, 0, 1)

[[[TCx,yΦ](x′, y′)]](G, σ) =
∑

v0,v1,...,vm (m>0)
σ(x′)=v0,σ(y

′)=vm

∏
06k6m−1

[[Φ]](G, σ[x 7→ vk, y 7→ vk+1])

��*sum along
sequences of stop-vertices

HHY multiplication along
the sequence
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Bounding the Transitive Closure

I A necessary restriction to obtain a fragment of logic expressively
equivalent to wPWA

I But not so restrictive in most of the cases!

TCNx,yΦ(x, y) = TCx,y[dist(x, y) 6 N ? Φ(x, y) : 0]

Previous example: TCx,y[R1(x, y) ? 1 :−∞] = TC2
x,y[R1(x, y) ? 1 :−∞]

Definition: Logic wFOTC

Φ ::= s | ϕ ? Φ : Φ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ | TCNx,yΦ

with s ∈ S, ϕ ∈ FO, x, y ∈ Var and N ∈ N \ {0}.
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Translation of wFOTC in wPWA

Inductive construction for searchable graphs

I For the wFO fragment, see Paul’s talk

I Case of a formula [TCNx,yΦ(x, y)] (x′, y′)︸ ︷︷ ︸
fresh free variables

with A a wPWA for Φ:

construction of a wPWA A′ with two more layers of pebbles that does
the following

1. search free variable x′, and drop pebble x
2. guess a sequence of moves of length 6 N , follow it, and drop pebble y

(then flush the sequence to save memory)

I test that π is minimal amongst all sequences going from x to y

3. goes back to the initial vertex and simulate A
4. search pebble y
5. guess a sequence π of moves of length 6 N , follow it, check that it holds x

I test that π is minimal amongst all sequences going from y to x

6. lift pebbles y and x (hence returning to the vertex of x)
7. follow πR to reach back the vertex that held y, and drop pebble x
8. if y′ is held by the current vertex, enter a final state
9. in every case, go back to step 2
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Translation of wPWA in wFOTC

Theorem:
Let G be a zonable class of graphs. Then, for every wPWA A, we can construct
a formula Φ of wFOTC such that for every graph G ∈ G, and valuation σ of
free variables, [[A]](G, σ) = [[Φ]](G, σ).

Automaton A Formula Φ

for a zonable class of graphs G

Translation depends on the class G

Proof in two steps:

I For the considered class of graphs, prove the zonability;

I Generic translation of automata into formulae for zonable class of graphs

Example of zonable classes of graphs: words, trees, grids/pictures, nested
words, Mazurkiewicz traces...
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Zonable classes of graphs
A zoning of a graph G with parameter N :

I an equivalence relation ∼, decomposing a graph into zones of diameter
bounded by a constant M ;

I set W of wires = (directed) edges relating different zones;
I an injective encoding function enc : W × {0, . . . , N − 1} → V96 CHAPTER 6. LOGICAL SPECIFICATIONS

Figure 6.6: Zone partitioning of a graph: zones are related by wires depicted with dashed
lines. The encoding of wire (v, vÕ), for every integer n œ [0 .. N ≠ 1] is depicted by a red area
linked to the vertex vÕ, or containing vertex vÕ.

6.5.1 Zonable Classes of Graphs
Zonability is a combinatorial notion we introduce to cut a graph into small zones, however
wide enough to encode each edge relating two distinct zones into one of these two zones. This
zone decomposition will be used later to encode runs of a weighted automaton navigating in
the graphs, abstracting the internal behaviors of a single zone, and simply considering the
jump through edges relating two distinct zones. Henceforth, we also need the zonability to
be uniformally computable by a fixed formula for the class.

Definition 6.13. Let A be an alphabet and D be a set of directions. A class G of pointed
graphs G(A,D) is said to be zonable if for every natural number3 N œ N, there exists a
bound M œ N such that for every pointed graph G = (V, (Ed)dœD, ⁄, v(i), v(f)) œ G, there
exists

• an equivalence relation ≥ over V such that equivalence classes of ≥, which are called
zones, have a diameter bounded by M , i.e., for every pair of vertices v, vÕ of the zone
there exists a path composed of vertices of the zones from v to vÕ of length bounded
by M . In the following, edges (v, vÕ) œ E such that v ”≥ vÕ are called wires, and the
set of wires of a graph are denoted by W;

• an injective mapping f : W◊ [0 .. N ≠1] æ V such that for every wire (v, vÕ) and every
integer n œ [0 .. N ≠ 1], the vertex f((v, vÕ), n) is in the same zone as v or vÕ.

Moreover, for L a weighted logic, the class G is said to be L-zonable if these objects can
be e�ectively and uniformally definable by unambiguous formulae of L: for every natural
number N œ N, we must have an unambiguous formula same-zone(z1, z2) of L with free
variables z1 and z2, and for every n œ [0 .. N ≠ 1], an unambiguous formula f(z1, z2, n) = x
of L with free variables x, z1 and z2, verifying that for every pointed graph G œ G:

• v ≥ vÕ if, and only if, [[same-zone(z1, z2)]](G, [z1 ‘æ v, z2 ‘æ vÕ]) = 1;
• f((v1, v2), n) = v if, and only if, [[f(z1, z2, n) = x]](G, [z1 ‘æ v1, z2 ‘æ v2, x ‘æ v]) = 1.

⌅

Figure 6.6 depicts a zone partition of the vertices of a graph. In the sequel, wires will be
depicted with the same dashed convention, and the red area linked to a vertex v part of a
wire (v, vÕ) depicts the set of vertices f((v, vÕ), n) (with n œ [0 .. N ≠ 1] used to encode this
wire.

Notice that a zone, being of diameter bounded by M , must be of size bounded by |D|M ,
since the graphs we study are of bounded degree. Notice in particular that if a graph has
a number of vertices bounded by M – which is verifyable by a formula of FO for example

3Natural number N will encode the number of states of the automaton to translate into the logic.

and ∼ and enc must be expressible by some formulae zone(z, z′) and
encn(z, z′, x) (for n ∈ {0, . . . , N − 1}) in wFOTC
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Examples: words and grids6.5. FROM AUTOMATA TO LOGICS 97

0 2N−1

. . .

2(k−1)N 2kN−1 2kN 2(k+1)N

. . .

2KN |w|
︸ ︷︷ ︸

N−1≤|w|−2KN<3N−1

Figure 6.7: Zone partitioning of a word and description of the encoding function f

– then we can consider that there is a single zone containing all the vertices, and hence no
wires. Therefore, in the examples we give below, we only consider graphs having at least
M + 1 vertices.

It has to be noticed that wires relate two distinct zones of the graph. Hence, they can
be characterized by the formula

wire(z, zÕ) =
m

x

m
nœ[0 .. N≠1](f(z, zÕ, n) = x)

which is an unambiguous formula as f is an injection.
Before stating the translation theorems, we give a non-exhaustive list of zonable classes

of graphs.

Words

Zones of words will be subwords of length 2N (see Figure 6.7), except the last zone that
may contain at most positions 3N ≠ 1 positions: hence each zone has a diameter bounded
by M = 3N ≠ 1. They can be described using modulo computations: henceforth, we define
formula same-zone(z1, z2) by

m
x(init, x) ©æ 0[2N ] ¢

Ë m
0Æk1,k2<2N

Rk1
æ(x, z1) ¢ Rk2

æ(x, z2)

ü m
0Æk<3N

Rk
æ(x, final) ¢ m

2NÆk1,k2<k

Rk1
æ(x, z1) ¢ Rk2

æ(x, z2)
È
.

Moreover, wires will simply be edges of the form (2kN ≠ 1, 2kN) or (2kN, 2kN ≠ 1) (except
possibly the last ones). For every integer n œ [0 .. N ≠ 1], we set f((2kN ≠ 1, 2kN), n) =
2kN ≠ 1 ≠ n, and f((2kN, 2kN ≠ 1), n) = 2kN + n. This defines an injection as wires are
separated by a distance of 2N . These functions may be defined by the following f(z1, z2, n) =
x formula:

#
Ræ(z1, z2) ¢ Rn

æ(x, z1) ¢ ((init, z2) ©æ 0[2N ])
$

ü
#
RΩ(z1, z2) ¢ Rn

æ(z1, x) ¢ ((init, z1) ©æ 0[2N ])
$

Hence, Word(A) is a wFO+wTCb(AP)-zonable class of graphs.

Pictures

Similar ideas to cut pictures into zones have been used for other purposes in [Mat98]. Zones
of pictures will be square subpictures of width 4N (see Figure 6.8), except the zones on the
right and the bottom of the pictures that may be a little larger as in the case of words. The
largest zone possible is the one on the right bottom corner which can have width and height
bounded above by 6N≠1. Hence, each zone has a diameter bounded by M = 2◊(6N≠1)≠1.
Similarly to the previous case, this can be tested using modulo computations. Forgetting,
for the sake of simplicity, about the zones on the right and on the bottom, we obtain as

98 CHAPTER 6. LOGICAL SPECIFICATIONS

Figure 6.8: Zone partitioning of a picture

formula same-zone(z1, z2):
m

x,y(init, x) ©æ 0[4N ] ¢ (x, y) ©¿ 0[4N ]
¢ m

z

m
0Æk1,k2<4N

Rk1
æ(y, z) ¢ Rk2

¿ (z, z1)

¢ m
z

m
0Æk1,k2<4N

Rk1
æ(y, z) ¢ Rk2

¿ (z, z2)

Notice that in this formula, y denotes the position at the upper left corner of the zone
containing z1 and z2. Each zone (except the larger ones) has at most 4 ◊ 4N wires, and
we will encode a wire in the zone from which it exits (as for the case of words): hence each
zone must have at least 4 ◊ 4N ◊ N = (4N)2 positions available which is exactly the case.
Deciding of a decodable order between the wires, it is easy to design a formula f(z1, z2, n) = x
for every n œ [0 .. N ≠ 1]: for example, we may consider a partitioning of each zone into 4
disjoint rectangles of height N each reserved for the wires of one border of the zone. This
shows that Pict(A) is a wFO+wTCb(AP)-zonable class of graphs.

Trees

In ranked trees, we consider zones to be subtrees of height at least 2N with roots at height
0 modulo 2N : in particular, every subtree having a root at height 0 modulo 2N which has
height less than 2N is not a zone and hence belongs to the zone which is above it. However,
it is easy to check that each zone has a height bounded by 2◊2N ≠1, and hence a diameter
bounded by M = 2◊(4N≠1)≠1. Notice that the height of a node modulo 2N is computable
by a formula of wFO+wTCb(AP), as it su�ces to check the length modulo 2N of the unique
path leading from the root to the node, which can be done by formula height(x) © k[2N ]
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Translation in a zonable class of graphs

I External (bounded) transitive closure jumping from zone to zone: state at
the wires encoded using enc;

I Internal (bounded) transitive closures to compute the weights of the
infinite set of runs restricted to a zone: computation by
McNaughton-Yamada algorithm, state directly encoded in the formulae.6.6. HYBRID NAVIGATIONAL LOGICS 105

z2

z′
2

z1

z′
1

x′
y′

v(i)

v(f)

Figure 6.11: Instantiation of formula �qi,qf

6.5.3 Logical Characterization of Weighted Automata with Pebbles
We now generalize the previous result to also deal with pebbles.

Theorem 6.15. Let G be an wFO+wTCb(FO)-zonable class of graphs in G(A,D). Then,
from every layered pebble weighted automaton A, we can construct an equivalent formula
�A of wFO+wTCb(FO), with Free(�A) = Free(A), equivalent to A over G, i.e., such that
for every graph G œ G and valuation ‡ of the free variables of A, we have [[A]](G, ‡) =
[[�A]](G, ‡).

Proof. Very little has to be done with respect to the proof in the case without pebbles.
Indeed, the proof goes by an induction on the number of layers of automaton A. The case
of 0 layer is done in Theorem 6.14.

Then, considering a (K+1)-layered automaton A, we apply the same construction as be-
fore over the states of layerK+1, and simply enriching the formula single-transitionq,qÕ(z1, z2)
to also deal with the pebbles. This formula must now compute the sum of the weights of
the transitions from z1 in state q to z2 in state qÕ if z1 ”= z2, and if z1 = z2 must compute
the sum of the weights of the runs from z1 in state q to z1 in state qÕ with intermediary
states in lower layers. By induction, for every states qÕ

1 and qÕ
2 of layer K, we have a formula

�x
qÕ
1,q

Õ
2
(z1) that computes the sum of the weights of the runs only visiting states of layers at

most K from the initial vertex in qÕ
1 to the final vertex in qÕ

2, initially with pebble x dropped
on vertex z1. Hence, we now define single-transitionq,qÕ(z1, z2) by
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where free occurrences of x in the test
formulae are replaced by z1. In particular, if a variable remains free in the automaton A, it
will not be replaced in such a way in the construction, so that it will be a free variable of
the formula produced.
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Figure 6.11: Instantiation of formula �qi,qf
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Φq,q′(x, x
′) formula computing the weight of the runs from x in q to x′ in q′,

staying in the zone containing both x and x′

I built by McNaughton-Yamada algorithm, with cascade of bounded
transitive closures (since zones have bounded diameter)
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Conclusion and Perspectives

I Expressive equivalence between weighted pebble walking automata and
weighted first-order logic with bounded transitive closure, over arbitrary
continuous semirings

I Additional reasonable requirements on the classes of graphs (searchable
and zonable), met by usual examples of graphs (words, nested words,
trees, grids, Mazurkiewicz traces...)

I Interesting special case: graph-to-word transducers
(non-commutative semiring of languages over an alphabet Σ)

I Translation from automata to logic with less transitive closures? as in
[Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping
semantics

I Case of strong pebbles to deal with unbounded transitive closure?
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