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Weighted Pebble Walking Automata

» Unusual mechanism

» Expressive power not fully clear

ATIM: study expressive power in terms of other formalisms, e.g., of logic
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Weighted Pebble Walking Automata

» Unusual mechanism

» Expressive power not fully clear

AIM: study expressive power in terms of other formalisms, e.g., of logic

Many such results for weighted automata: over words [Droste and Gastin, 2009],

over trees [Droste and Vogler, 2006], over grids [Fichtner, 2011], over nested words
[Mathissen, 2010]...

Boolean setting [Engelfriet and Hoogeboom, 2007]
Pebble Walking Automata = FO + posTC

Extension in the quantitative setting
Theorem:

Weighted Pebble Walking Automata (WPWA) = wFOTC

2/11



Transitive Closure in Graphs

Binary predicate R;(x,y) = 3z[R_ (z, 2) A Ry(2,y)]
Transitive Closure TC, R, (z,y)
test if square (not doable in FO)
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Transitive Closure in Graphs

Binary predicate R;(x,y) = 3z[R_ (z, 2) A Ry(2,y)]
Transitive Closure TC, R, (z,y)
test if square (not doable in FO)
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Weighted Transitive Closure: semiring (N U {—o0}, ,+, ,0)
TC, R/ (z,y)?71: ]
verifies that it is a square and computes the length of its diagonal

Semantics of Weighted Transitive Closure: complete semiring (S, +, x,0, 1)

[[[Tcm,yq)] (xl7 yl)ﬂ(Gv U) = H [[@]](G, U[(E — Uk, Y vk+1D
VO,V ey U (M>0) 0KESM—1
o(z')=vo,0 (¥ )=vm \

sum along 7

sequences of stop-vertices

multiplication along
the sequence
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Bounding the Transitive Closure

> A necessary restriction to obtain a fragment of logic expressively
equivalent to wPWA

» But not so restrictive in most of the cases!

TC, ,®(z,y) = TCy y[dist(z,y) < N ? ®(z,y) : 0]
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Bounding the Transitive Closure

> A necessary restriction to obtain a fragment of logic expressively
equivalent to wPWA

» But not so restrictive in most of the cases!

TC, ,®(z,y) = TCy y[dist(z,y) < N ? ®(z,y) : 0]

Previous example: TC, [R;(z,y) ?1: —oc] = TCiyy[R; (x,y) 71: o]

Definition: Logic wFOTC

Du=5]p?0:0 |20 |02 |PH,0|Q,P|TCY P
with s € S, ¢ € FO, x,y € Var and N € N\ {0}.
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Translation of wFOTC in wPWA

Inductive construction for searchable graphs

» For the wFO fragment, see Paul’s talk
» Case of a formula [TC,®(z,y)] (2',y’) with A a wPWA for &:
——

fresh free variables
construction of a wPWA A’ with two more layers of pebbles that does

the following
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2.

ot

=~
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search free variable z’, and drop pebble x
guess a sequence of moves of length < IV, follow it, and drop pebble y
(then flush the sequence to save memory)

goes back to the initial vertex and simulate A

search pebble y
guess a sequence 7 of moves of length < NV, follow it, check that it holds =

lift pebbles y and z (hence returning to the vertex of x)

follow 7 to reach back the vertex that held y, and drop pebble
if 3/ is held by the current vertex, enter a final state

in every case, go back to step 2
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search free variable z’, and drop pebble x
guess a sequence 7 of moves of length < N, follow it, and drop pebble y
(then flush the sequence to save memory)

> test that 7 is minimal amongst all sequences going from x to y

goes back to the initial vertex and simulate A

search pebble y
guess a sequence 7 of moves of length < NV, follow it, check that it holds =

> test that 7 is minimal amongst all sequences going from y to x

lift pebbles y and = (hence returning to the vertex of x)

follow 7 to reach back the vertex that held y, and drop pebble
if 3/ is held by the current vertex, enter a final state

in every case, go back to step 2



Translation of wPWA in wFOTC

Theorem:

Let G be a zonable class of graphs. Then, for every wPWA A, we can construct
a formula ® of wFOTC such that for every graph G € G, and valuation o of
free variables, [A](G, o) = [®](G, o).

for a zonable class of graphs G

Translation depends on the class G
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Translation of wPWA in wFOTC

Theorem:

Let G be a zonable class of graphs. Then, for every wPWA A, we can construct
a formula ® of wFOTC such that for every graph G € G, and valuation o of
free variables, [A](G, o) = [®](G, o).

for a zonable class of graphs G

Translation depends on the class G

Proof in two steps:
» For the considered class of graphs, prove the zonability;
» Generic translation of automata into formulae for zonable class of graphs

Example of zonable classes of graphs: words, trees, grids/pictures, nested
words, Mazurkiewicz traces...
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Zonable classes of graphs
A zoning of a graph G with parameter N:
> an equivalence relation ~, decomposing a graph into zones of diameter
bounded by a constant M;
> set W of wires = (directed) edges relating different zones;
> an injective encoding function enc: W x {0,...,N =1} -V
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Zonable classes of graphs
A zoning of a graph G with parameter N:
> an equivalence relation ~, decomposing a graph into zones of diameter
bounded by a constant M;
> set W of wires = (directed) edges relating different zones;
> an injective encoding function enc: W x {0,...,N =1} -V

and ~ and enc must be expressible by some formulae zone(z, 2’) and
enc,(z,2',x) (for n € {0,...,N —1}) in wFOTC
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Examples: words and grids

0 2N—1 2(k—1)N 2kN—1 2kN 2(k+1)N 2KN Jw|

—_————
N—1<|w|-2KN<3N—1
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Examples: words and grids

0 2N-1 2(k—1)N 2kN—1 2kN 2(k+1)N 2KN |w|

—_————
N—1<|w|-2KN<3N—1
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Translation in a zonable class of graphs

» External (bounded) transitive closure jumping from zone to zone: state at
the wires encoded using enc;

> Internal (bounded) transitive closures to compute the weights of the
infinite set of runs restricted to a zone: computation by
McNaughton-Yamada algorithm, state directly encoded in the formulae.
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Translation in a zonable class of graphs
Weight of the runs from z; in state g; to zy in state gy:

@ [ @ @ encql(zlvzllax/)®(I)Qi,th(zivzl>] [ TCH \Ij]( )

Y1,Y2
'y 21,2, 1€Q

® €B @ [encqz (Z27Zéay,) X trg,,q) (ZQ’Zé) ® (I)q§7Qf (Zé,Zf)}
22,25 q2,95€Q

with U(y;,ys) the formula
@ @ |:ean1 (Zlv Zia yl) ® trfh,qi (Zl’ Zi) @ encg, (ZZ, Zév y2) & (I)qi#b (Ziv Z2):|

zl)zl) q17q1)
29,25 @2E€EQ




Translation in a zonable class of graphs
Weight of the runs from z; in state g; to zy in state gy:

BB D ency, (21,21, 8) @Dy, 4, (21, 21)] @ [TCY VI(2',y))
'y’ z1,2] 1EQ
® D D [encq2 (22,25,9") ® trgs,qf (22,25) ® (I)q{,-qf(Z/Qv Zf)]

22,25 42,45€Q

with U(y1,y2) the formula

@ @ |:ean1 (Zl’ Zia yl) ® trth,q{ (Z17 Zi) @ encg, (22, Zév y2) ® (I)q/l ,q2 (Z{ ) 22):|
Zl,zl, ‘thly
29,25 q2€Q

@, o (z,2") formula computing the weight of the runs from z in ¢ to 2’ in ¢/,
staying in the zone containing both z and x’

> built by McNaughton-Yamada algorithm, with cascade of bounded
transitive closures (since zones have bounded diameter)
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Conclusion and Perspectives

Expressive equivalence between weighted pebble walking automata and
weighted first-order logic with bounded transitive closure, over arbitrary
continuous semirings

Additional reasonable requirements on the classes of graphs (searchable

and zonable), met by usual examples of graphs (words, nested words,
trees, grids, Mazurkiewicz traces...)

Interesting special case: graph-to-word transducers
(non-commutative semiring of languages over an alphabet X)

Translation from automata to logic with less transitive closures? as in
[Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping
semantics

Case of strong pebbles to deal with unbounded transitive closure?
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