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Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec

Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources
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Modelling via weighted timed games

Peak-hour Offpeak-hour

Solar panels

15 ce/kWh 12 ce/kWh

Reselling: 20 ce/kWh

rate: total power × 15 ce/h total power × 12 ce/h

−0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game
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Weighted games
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Weighted automaton with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
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→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise
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Weighted timed games
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Strategies and objectives
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Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s)(ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/34



Strategies and objectives

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s)(ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/34



Strategies and objectives

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s)(ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/34



Part I : Weighted games



State of the art: weighted games (shortest-path objective)
F6K�: ∃ a strategy in the weighted game for player # reaching � with a
cost 6 K?
I one-player: shortest path in a weighted graph... polynomial algo.
I two players, non-negative weights only: polynomial algo.

"Dijkstra algorithm on 2 players games" (Khachiyan et al., 2008)

I two players, arbitrary weights?

�

−1

−W

0

0

# needs memory!
Value −∞: detection is as hard as solving parity games (NP ∩ co-NP)
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Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞

horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

. . . . . .
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
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Large polynomial fragment: divergent weighted games

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (in the underlying graph):
Every cycle has total weight either 6 −1 or > 1

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

Theorem:
Deciding if a weighted game is divergent is in PTIME.
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Divergent weighted games analysis

divergence property

characterisation :

p > 1

−q 6 −1
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Divergent weighted games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1
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Divergent weighted games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

class decision value computation
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Value computation in a divergent weighted game

I Detect and remove +∞ vertices (outside of the attractor of player
# toward �)

I SCC decomposition
I Value computation SCC by SCC, bottom-up

positive SCC
I The "value iteration" algorithm converges in linear time

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The "value iteration" algorithm converges in linear time with

initialisation at −∞
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Part II : Weighted timed games



State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?
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One-player case: weighted timed automata
I Main tool: refinement of regions via corner point abstraction /
ε-graph (Bouyer et al., 2004a, 2007)

– ν ≈ ν′;
– ν̄i < ε iff ν̄′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci;
– 1 − ε < ν̄i iff 1 − ε < ν̄′

i for all i ∈ {1, . . . , n} with νi ≤ ci.

Fig. 6 indicates the partition induced by the ε-equivalence for the timed automaton of Fig. 2.

x1

x2

Fig. 6. The ε-equivalence ≈ε

The relation ≈ε is extended to the states of TA as done previously with ≈. An equivalence class is called an
ε-region. The ε-region to which a state q belongs is denoted [q]ε and the set of all ε-regions is denoted by Rε.

In order to define the ε-region graph of a timed automatonA, we do not need all the ε-regions of Rε (contrarily to
the construction of RA). Due to Lemma 3, we only need to consider the ε-regions [(l, ν)]ε whose clock values ν are
close enough to n-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatonA and ε ∈]0, 1
2 ], the set of acceptable ε-regions, denoted Sε, is defined by

Sε =
{
[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)

}
.

Remark 14. If rε = [(l, ν)]ε is an ε-region of Sε, then there exists a unique region r ∈ R, equal to [(l, ν)], such that
rε ⊆ r. In the sequel, rε always denotes an ε-region included in the region r.13

Remark 15. Using the representation introduced in Remark 5, we can visualize an ε-region rε as on Fig. 7 (when r
is a bounded region). We observe that the fractional parts ν̄i of the clock values are either less than ε or greater than
1 − ε. We thus introduce the following notation14

Low(rε) = {xi | νi ≤ ci and ν̄i < ε};

High(rε) = {xi | νi ≤ ci and 1 − ε < ν̄i}.

This graphical representation of the ε-regions is very helpful in the proofs below.

0 1

ν̄1 · · · ν̄i ν̄i+1 · · · ν̄n

ε 1 − ε

Fig. 7. Representation of the region 0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε < ν̄i+1 < · · · < ν̄n

13 Similarly if δ ≤ ε, we will also use notation rδ , rε, r with rδ ⊆ rε ⊆ r.
14 Notice that the sets Low(rε) and High(rε) are disjoint since ε ≤ 1

2
.

15
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One-clock Bi-Valued WTGs (1BWTGs)
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One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of locations {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2
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Assumption: rates of locations {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)
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Theorem:
Computation of the value Val(s, v) of states of a 1BWTG and synthesis
of ε-optimal strategies for # in pseudo-polynomial time

I Only non-negative costs =⇒ polynomial time
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Crucial tool: symmetrize the viewpoint

Value for player #:
Val(s, v) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec((s, v), σMin, σMax))

Value for player 2:
Val(s, v) = sup

σMax∈StratMax
inf

σMin∈StratMin
Weight(Exec((s, v), σMin, σMax))

How to compare them? Val(s, v) 6 Val(s, v)

Theorem: Minmax theorem
I 1BPGs (and even all WTGs (Brihaye et al., 2015)) are determined, i.e.,

Val(s, v) = Val(s, v)
I Synthesis of ε-optimal strategies for player 2 in pseudo-polynomial

time (and polynomial in case of non-negative weights)
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1BWTG: maximal fragment for corner-point abstraction
Generalisation by Engel Lefaucheux: two rates {p−, p+} included in
{0,+d ,−c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

I With 3 weights in {−1, 0,+1}: value 1/2...
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I With 2 weights in {−1, 0,+1} but 2 clocks: value 1/2...
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I How to push further the resolution of WTGs?
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One-clock WTG... Almost!
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Related work: 1-clock, non-negative weights

(Hansen et al., 2013): strategy improvement algorithm
(Bouyer et al., 2006b; Rutkowski, 2011): iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock WTGs into simple 1-clock WTGs (SWTGs)
I clock bounded by 1, no guards/invariants, no resets

I for SWTGs: compute value functions Val(`, x).
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Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/34



Related work: 1-clock, non-negative weights

(Hansen et al., 2013): strategy improvement algorithm
(Bouyer et al., 2006b; Rutkowski, 2011): iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock WTGs into simple 1-clock WTGs (SWTGs)
I clock bounded by 1, no guards/invariants, no resets

I for SWTGs: compute value functions Val(`, x).

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/34



SWTGs with arbitrary weights

Joint work with Thomas Brihaye, Gilles Geeraerts, Axel Haddad and Engel Lefaucheux (Brihaye

et al., 2015)
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Recursive elimination of states

I Player # prefers to stay as long as possible in locations with
minimal rate: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal rate: make the location urgent

Theorem:
For every SWTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock WTGs?
I removing guards and invariants: previously used techniques work!
I removing resets: previously, bound the number of resets...
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Solving SWTGs with arbitrary weights
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Bounding the number of resets needed is not possible
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W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights
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Finally several clocks...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 27/34



More than one clock?

non-negative weights and strictly non-Zeno-cost cycles:
2-exponential algorithm (Bouyer et al., 2004c; Alur et al., 2004b)

Value iteration algorithm: compute F i(+∞)...

F(x)(s,ν) =


sup

(s,ν)
d,t−−→(s′,ν′)

(
d ×Weight(s) + Weight(t) + x(s′,ν′)

)
if s ∈ SMax

inf
(s,ν)

d,t−−→(s′,ν′)

(
d ×Weight(s) + Weight(t) + x(s′,ν′)

)
if s ∈ SMin

Stabilises after a number of iterations at most exponential in the size of
the game (because of the number of regions)
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Extension to negative weights

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (of the underlying timed automaton):
Every execution following a cycle of the region automaton has a
total weight either 6 −1 or > 1

Theorem:
The value problem on divergent weighted timed games is in 2-EXP, and
is EXP-hard.

Theorem:
Deciding if a weighted timed game is divergent is PSPACE-complete.
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Weighted timed games analysis

> 1

6 −1

divergence property

characterisation :

6 −1

> 1
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Weighted timed games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 30/34



Weighted timed games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

class decision value computation

6 −1

> 1
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Value computation in divergent weighted timed games

I Remove +∞ states
I SCC decomposition
I Value computation SCC after SCC, bottom-up

positive SCC
I weighted timed games with non-negative weights and strictly

non-Zeno-cost cycles (Bouyer et al., 2004c; Alur et al., 2004b)
I The iterative algorithm converges in a number of steps linear with

the region automaton’s size

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The iterative algorithm converges on the other states in a number of

steps linear with the region automaton’s size, with −∞ initialisation
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What about cycles of weight = 0?

I Adding cycles of weight = 0 to divergent WTG =⇒ Undecidable!

I Already with only non-negative weights (Bouyer et al., 2015): but
possible to approximate the value (with elementary complexity)...
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Extension in the negative case?
Ongoing work with Damien Busatto-Gaston and Pierre-Alain Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (> 1 or = 0), or (6 −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
Approximation is decidable (with elementary complexity) for almost-
divergent WTGs: (semi-)symbolic algorithm that does not rely on an
a-priori discretisation of the regions with a fixed granularity 1/N (as in
(Bouyer et al., 2015))

I circumvent the need for an SCC decomposition?
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Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!
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Sketch of proof for 1BWTG

1. Reduce the space of strategies in the 1BWTG
I restrict to uniform strategies w.r.t. timed behaviours

2. Build a finite weighted game G
I based on a refinement of the region abstraction

3. Study G

4. Lift results of G to the original 1BWTG



1. Reduce the space of strategies
Intuition: no need for both players to play far from borders of regions

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Regions:
{0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)

Player # wants to leave as soon as possible a state with rate p+, and
wants to stay as long as possible in a state with rate p−: so, he will
always play η-close to a border...

Lemma:
Both players can play arbitrarily close to borders w.l.o.g.: for every η

Valη(s, v) 6 Val(s, v) 6 Val(s, v) 6 Valη(s, v)



2. Finite weighted game abstraction
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2. Finite weighted game abstraction

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3



3. Study G: values, optimal strategies of a min-cost reachability game

(Brihaye et al., 2016)
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Optimal value: ValG(s1, {0}) = +2 (for both players)



4. Lift results to the original 1BWTG

Reconstruct strategies in the 1BWTG from optimal strategies of G

Lemma:
For all ε > 0, there exists η > 0 such that:
ValG(s, {0})− ε 6 Valη(s, 0) 6 Val(s, 0) 6 Val(s, 0) 6 Valη(s, 0) 6 ValG(s, {0}) + ε

I So Val(s, 0) = Val(s, 0), i.e., determination
I ε-optimal strategies for both players

I Finite memory for player # (finite memory in finite weighted games)
I Infinite memory for player 2 (even though memoryless in finite

weighted games), because it needs to ensure convergence of its
differences between the 1BWTG and G

I Overall complexity: pseudo-polynomial (polynomial if non-negative
costs) in the size of G, which is polynomial in the 1BWTG (because
1 clock)
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