Reachability in MDPs: Refining Convergence of Value Iteration

Serge Haddad (LSV, ENS Cachan, CNRS & Inria) and Benjamin Monmege (ULB)

> Fourth Cassting Meeting October 2014, Aachen

Markov Decision Processes

- What?
 - ✤ Stochastic process with non-deterministic choices
 - ✤ Non-determinism solved by *policies*/strategies

Markov Decision Processes

- What?
 - ★ Stochastic process with non-deterministic choices
 - ◆ Non-determinism solved by *policies*/strategies
- Where?
 - Optimization
 - *Program verification*: reachability as the basis of PCTL model-checking
 - ◆ Game theory: 1+½ players

$$\mathcal{M} = (S, \alpha, \delta)$$

$$\delta : S \times \alpha \to Dist(S)$$

Policy $\sigma : (S \cdot \alpha)^* \cdot S \to Dist(\alpha)$

Optimal reachability probabilities of MDPs

- How?
 - + Linear programming

 - Value iteration: numerical scheme that scales well and works in practice

Optimal reachability probabilities of MDPs

- How?
 - Linear programming
 - Policy iteration

used in the numerical PRISM model checker [Kwiatkowska, Norman, Parker, 2011]

• Value iteration: numerical scheme that scales well and works in practice

0	0	0	0
0	2/3~(b)	0	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
•••	•••	•••	•••

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
• • •	•••	•••	• • •
0.7969	0.7988~(b)	0.3977	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
• • •	•••	• • •	•••
0.7969	0.7988~(b)	0.3977	0
0.7978	0.7992~(b)	0.3984	0

	0 0	$0 \\ 2/3 (b)$	0 0	0 0
	1/3	2/3(b)	0	0
	1/2	2/3~(b)	1/6	0
	7/12	13/18~(b)	1/4	0
	•••	•••	•••	•••
≤ 0	.001 0.7969	0.7988~(b)	0.3977	0
	0.7978	0.7992~(b)	0.3984	0
			$ \begin{array}{c} & 1/2 \\ & d \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$if \ s = \checkmark$ $otherwise$ $i_{a \in \alpha} \sum_{s' \in S} \delta(s, a)(s') \times x_{s'}^{(n)}$

State	0	1	2	3	•••	<i>k</i> -1	k	k+1	•••	2k
Step 1	1	0	0	0	•••	0	0	0	•••	0
Step 2	1	1/2	0	0		0	0	0	•••	0
Step 3	1	1/2	1/4	0	•••	0	0	0	• • •	0
Step 4	1	1/2	1/4	1/8		0	0	0		0
•••										
Step k	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	0	0	•••	0

State	0	1	2	3	•••	<i>k</i> -1	k	k+1	•••	2k
Step 1	1	0	0	0	•••	0	0	0	•••	0
Step 2	1	1/2	0	0	•••	0	0	0	•••	0
Step 3	1	1/2	1/4	0	•••	0	0	0	•••	0
Step 4	1	1/2	1/4	1/8		0	0	0		0
•••	•••	•••					•••	•••		• • •
Step k	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	0	0	•••	0
Step $k+1$	1	1/2	1/4	1/8	•••	$1 \operatorname{/} 2^{k-1}$	$1 / 2^k$	0	•••	0

	State	0	1	2	3		<i>k</i> -1	k	$k\!\!+\!\!1$	•••	2k
	Step 1	1	0	0	0	•••	0	0	0	•••	0
	Step 2	1	1/2	0	0	•••	0	0	0	•••	0
	Step 3	1	1/2	1/4	0	•••	0	0	0	•••	0
	Step 4	1	1/2	1/4	1/8		0	0	0	•••	0
	•••			•••	•••	•••		•••	•••	•••	• • •
$< 1/9^{k}$	Step k	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	0	0	•••	0
<u> </u>	$\mathbf{Step} \ k+1$	1	1/2	1/4	1/8	•••	$1/2^{k-1}$	$1 / 2^k$	0	•••	0

	State	0	1	2	3	•••	<i>k</i> -1	k	k+1	• • •	2k
	Step 1	1	0	0	0	•••	0	0	0	•••	0
	Step 2	1	1/2	0	0	•••	0	0	0	•••	0
	Step 3	1	1/2	1/4	0	•••	0	0	0	•••	0
	Step 4	1	1/2	1/4	1/8		0	0	0		0
	•••										
< 1/9k	Step k	1	1/2	1/4	1/8		$1 / 2^{k-1}$	0	0		0
$\geq 1/2$	step k+1	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	$1 / 2^k$	0		0

Contributions

Contributions

1. Enhanced value iteration algorithm with strong guarantees
1. Enhanced value iteration algorithm with strong guarantees

• performs **two** value iterations in **parallel**

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the **stopping criterion**

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the ${\bf stopping\ criterion}$
- 2. Study of the **speed of convergence**

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the **stopping criterion**
- 2. Study of the **speed of convergence**
 - also applies to classical value iteration

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the **stopping criterion**
- 2. Study of the **speed of convergence**
 - also applies to classical value iteration
- 3. Improved **rounding** procedure for **exact** computation

$$x_{s}^{(n+1)} = \max_{a \in \alpha} \sum_{s' \in S} \delta(s, a)(s') \times x_{s'}^{(n)}$$

 $\left(\Pr_{s}^{\max}(\mathsf{F} \checkmark)\right)_{s \in S}$ is the smallest fixed point of f_{\max} .

Number of steps

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time)

[de Alfaro, 1997]

Usual techniques applied for MDPs do not apply...

[de Alfaro, 1997]

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time) and trivialize them! Now, unicity of the fixed point

[de Alfaro, 1997]

An even smaller MDP for minimal probabilities

An even smaller MDP for minimal probabilities

have null minimal probability!

An even smaller MDP for minimal probabilities

Min-reduced MDP

Non-trivial (and non accepting) MEC have null minimal probability!

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ 1 $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ 2 foreach $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'}$ 5 $y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'}$ 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 9 until $\delta \leqslant \varepsilon$ **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ **1** $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ **2** foreach $s \in S \setminus \{\checkmark, \bigstar\}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'}$ 5 $y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'}$ 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 until $\delta \leqslant \varepsilon$ 9 **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Sequences x and y converge towards the minimal probability to reach \checkmark . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\Pr_s^{\max}(\mathsf{F} \checkmark)$.

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ **1** $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ **2** foreach $s \in S \setminus \{\checkmark, \bigstar\}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'}$ 5 $y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'}$ 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 until $\delta \leqslant \varepsilon$ 9 **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Sequences x and y converge towards the minimal probability to reach \checkmark . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\Pr_s^{\max}(\mathsf{F} \checkmark)$.

Possible speed-up: only check size of interval for a given state...

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } \\ x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \end{array}$

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \\ \end{array}$

2 BMECs and only trivial MECs attractor decomposition: length ${\cal I}$

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \\ \end{array}$

2 BMECs and only trivial MECs attractor decomposition: length ${\cal I}$

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \\ \end{array}$

2 BMECs and only trivial MECs attractor decomposition: length I

2 BMECs and only trivial MECs attractor decomposition: length ${\cal I}$

2 BMECs and only trivial MECs attractor decomposition: length I

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

Leaking property:
$$\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\vee} \lor \mathbf{k})) \leq (1 - \eta^{I})^{n}$$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \end{array}$

Leaking property: $\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\bigvee} \mathbf{\bigotimes})) \leq (1 - \eta^{I})^{n}$

$$y_s^{(nI)} - x_s^{(nI)} = \Pr_s^{\sigma}(\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_s^{\sigma'}(\mathsf{F}^{\leq nI} \checkmark) \leq \Pr_s^{\sigma'}(\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_s^{\sigma'}(\mathsf{F}^{\leq nI} \checkmark)$$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \end{array}$

Leaking property: $\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\bigvee} \mathbf{\bigotimes})) \leq (1 - \eta^{I})^{n}$

$$y_{s}^{(nI)} - x_{s}^{(nI)} = \Pr_{s}^{\sigma} (\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_{s}^{\sigma'} (\mathsf{F}^{\leq nI} \checkmark) \leq \Pr_{s}^{\sigma'} (\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_{s}^{\sigma'} (\mathsf{F}^{\leq nI} \checkmark)$$
$$= \Pr_{s}^{\sigma'} (\mathsf{G}^{\leq nI} \neg (\checkmark \lor \checkmark)) \leq (1 - \eta^{I})^{n}$$

since $G^{\leq n}(\neg \bigstar) \equiv G^{\leq n} \neg (\checkmark \lor \bigstar) \oplus F^{\leq n} \checkmark$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

Leaking property:
$$\forall n \in \mathbb{N} \quad \Pr_s^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\bigvee} \mathbf{\bigvee})) \leq (1 - \eta^I)^n$$

The interval iteration algorithm converges in at most
$$I\left[\frac{\log \varepsilon}{\log(1-\eta^I)}\right]$$
 steps.

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- ${\it N}$ the number of states
- ${\cal M}$ the number of transitions with non-zero probabilities

MDPs with rational probabilities:

d the largest denominator of transition probabilities

N the number of states

 ${\it M}$ the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $4N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $4N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

Improvement since $1 / \eta \le d$ $N \le M$

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- ${\it N}$ the number of states
- \underline{M} the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $4N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

Sketch of proof:

- use $\varepsilon = 1/2\alpha$ as threshold (with α gcd of optimal probabilities)
- upper bound on α based on matrix properties of Markov chains: $\alpha = O(N^N d^{3N^2})$

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances
- **[Katoen, Zapreev, 2006]** On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances
- **[Katoen, Zapreev, 2006]** On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- **[Kattenbelt, Kwiatkowska, Norman, Parker, 2010**] CEGAR-based approach for stochastic games

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances
- **[Katoen, Zapreev, 2006]** On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- **[Kattenbelt, Kwiatkowska, Norman, Parker, 2010**] CEGAR-based approach for stochastic games
- To be published at ATVA 2014 [Brázdil, Chatterjee, Chmelík, Forejt, Křetínský, Kwiatkowska, Parker, Ujma, 2014] same techniques in a machine learning framework with almost sure convergence and computation of non-trivial end components on-the-fly