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Equivalence between automata and logic

» Well-known and studied model of computation: NFA over words
» Existing extensions over trees, grids, graphs...
> Robustness of automata intrinsically linked to logical characterization
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Equivalence between automata and logic

» Well-known and studied model of computation: NFA over words
» Existing extensions over trees, grids, graphs...
> Robustness of automata intrinsically linked to logical characterization

» Biichi-Elgot-Trakhtenbrot: NFA vs MSO
> Engelfriet-Hoogeboom: pebble walking automata vs FOposTC

» Droste-Gastin: weighted automata vs restricted weighted MSO

» Aim: extend Engelfriet-Hoogeboom result to the quantitative setting,
relating weighted pebble walking automata with weighted FOposTC
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Graphs as a general model
Words: D = {—}
computations of sequential programs

a—a—+>=h—a—+>a—->a—>a—>h—a—->a—>h—>a—>pHh—)p
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Graphs as a general model

Words: D = {—}
computations of sequential programs

a—a—+>=h—a—+>a—->a—>a—>h—a—->a—>h—>a—>pHh—)p

Nested words: D = {—,~}

computations of recursive programs, XML documents

a—-a—=h—a—->a—->a—a—>h—a—->a—>ph—>a—>h—)p

Ranked trees: D = {|1,],}

expressions, formulae, parse trees

Benjamin Monmege, ULB, Belgium
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Graphs as a general model

Definition: directed graphs
G = (V, (Ed)deD7 )\, L) where
» V is a nonempty and finite set of vertices;

for all edge label d € D, E4 C V' x V is an irreflexive relation, describing the
d-edges of the graph, which is deterministic and codeterministic;

v

v

A: V. — Ais a vertex-labeling function;
» 1 € V is an initial vertex.
For all edge label d, we consider its reverse d ! letting E4-1 = (E4) ™!
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Graphs as a general model

Definition: directed graphs
G = (V, (Ed)d€D7 )\7 L) where
» V is a nonempty and finite set of vertices;

> for all edge label d € D, Ey C V x V is an irreflexive relation, describing the
d-edges of the graph, which is deterministic and codeterministic;

» \: V — Ais a vertex-labeling function;
» 1 € V is an initial vertex.
For all edge label d, we consider its reverse d ! letting E4-1 = (E4) ™!

Grids: D ={—,1}
pictures
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Weighted pebble walking automata
Definition:

» Finite number of states, initial and final states

> Ability to navigate in the graph (using the deterministic edge labels)

» Bounded supply of pebbles able to mark temporarily a position

» Pebbles are treated with a stack policy: first pebble to lift is the last dropped

pebble
> Transitions equipped with weights in a complete semiring (S, +, x,0,1)
“ Examples of compl irings:
b, | 7 xamples of complete semirings:

({0,1},v,A,0,1)

(R U {+00},+, %,0,1)

(Z U {400, —00}, min, 4+, 400, 0)
(Z U {+00, —00}, max, +, —00, 0)
([0, 1], min, max, 1,0)

(22* Ui @7 {6})

—z?,—| 2 |3
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Weighted pebble walking automata

» Configurations over a graph G: (G, g, 7, v) with state g, stack 7 of pebble
positions and current vertex v

» Weight of a run: multiplication of the weights of transitions
» Semantics [A](G): sum of weights of accepting runs over G
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Example of weighted pebble walking automaton

lift

2?2, b, lift

computes the biggest size of frames
(empty black square)

(NU{—o0}, y +, ,0)
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Logical characterization

Classical weighted automata are one-way (sometimes branching) and without
pebbles

Logical characterization for them in terms of a restricted weighted MSO logic:
» over words [Droste and Gastin, 2009]
> over trees [Droste and Vogler, 2006]
> over grids [Fichtner, 2011]
>

over nested words [Mathissen, 2010]...
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Logical characterization

Classical weighted automata are one-way (sometimes branching) and without
pebbles
Logical characterization for them in terms of a restricted weighted MSO logic:
> over words [Droste and Gastin, 2009]
> over trees [Droste and Vogler, 2006]
> over grids [Fichtner, 2011]
> over nested words [Mathissen, 2010]...

Restricted weighted MSO does not even contain full weighted FO a priori

Theorem: Our contribution

Weighted pebble walking automata over graphs (WPWA) = wFOTC
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Weighted first-order logic

Classical first-order logic

pu=T|(x=y)|init(x) | Pa(x) | Ra(x,y) | Ri(x,y) [~ oV |3xep
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Classical first-order logic

pu=T|(x=y)|init(x) | Pa(x) | Ra(x,y) | Ri(x,y) [~ oV |3xep

Weighted first-order logic over graphs with weights in a semiring (S, +, x,0,1)

Pi=s5[p?0:0 (0P |dD [P, PR, P
Semantics over a graph G and a valuation o of free variables
. _ |[¢’1]I(G70-) if G,o ': ®

Lo ? ®1: @20(C,0) = {[CDQ](G,U) otherwise
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Weighted first-order logic

Classical first-order logic

pu=T|(x=y)|init(x) | Pa(x) | Ra(x,y) | Ri(x,y) [~ oV |3xep

Weighted first-order logic over graphs with weights in a semiring (S, +, x,0,1)

Pi=s5[p?0:0 (0P |dD [P, PR, P
Semantics over a graph G and a valuation o of free variables
. _ |[¢’1]I(G70-) if G,o ': ®

Lo ? ®1: @20(C,0) = {[CDQ](G,U) otherwise

|[¢1 D ¢2]](G70) = |[¢1]](G,0’)+|[¢2]|(G,0’) I[@x q)]](GvU) = Z'[qJ]](G,O'[X —Vv])
veVv

[®1 ® 2](G,0) = [*1](G, o) <[$2]G, o) [®, ®1(G,0) = H [®](G,o[x — v])
veVv
Examples in (NU {—oc0}, max, 4, —o0,0)
P, =Q, Pp(x)?1:0 Py =@, Pu(x)?1:0 o, @ b,
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Transitive closure in graphs

Binary predicate Ry(x,y) = 3z[R_(x,z) A Ry(z,y)]
Transitive Closure TC, ,R;(x,y)
test if square (not doable in FO)

[T e
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Weighted transitive closure: semiring (N U {—o0}, y+s ,0)
TC, IRy (x,y) 71+ ]

verifies that it is a square and computes the length of its diagonal
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Transitive closure in graphs

Binary predicate Ry(x,y) = 3z[R_(x,z) A Ry(z,y)]
Transitive Closure TC, ,R;(x,y)
test if square (not doable in FO)

[T e

Weighted transitive closure: semiring (N U {—o0}, y+s ,0)
TCyxy[Rr(x,y)?1: ]
verifies that it is a square and computes the length of its diagonal

Semantics given in a complete semiring (S, -+, x,0,1)

[[TCxy®I(x", y (G, 0) = [T [e1(6,olx = vioy = viaa])

VO, Viyeees Vi (M>0) 0<kSm—1
o(x")=vo,0(y")=Vm

T ™~ multiplication along

sum along the sequence

sequences of stop-vertices

Benjamin Monmege, ULB, Belgium 8/17



Bounding the Transitive Closure

» A necessary restriction to obtain a fragment of logic expressively equivalent
to wPWA

» But not so restrictive in most of the cases!

TCY,®(x,y) = TCy,[dist(x,y) < N? d(x,y): 0]
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Bounding the Transitive Closure

» A necessary restriction to obtain a fragment of logic expressively equivalent
to wPWA

» But not so restrictive in most of the cases!

TC)/XYCD(x,y) = TCy,, [dist(x,y) < N?d(x,y): 0]

Previous example: TC, ,[Ry(x,y) ?1: o] = TCi,y[R/« (x,y)?71:—oq]

Definition: Logic wFOTC

Pi=5|p?0:0 |00 [P | P, R, P|TCL
with s € S, ¢ € FO, x,y € Var and N € N\ {0}.

Comparison with restricted wMSO:

> unrestricted use of @, and ®, presence of TC, ,, absence of @y
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Contribution

over searchable graphs: wFOTC — weighted pebble walking automata

over zonable graphs: weighted pebble walking automata — wFOTC
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Contribution

Theorem:

over searchable graphs: wFOTC — weighted pebble walking automata

over zonable graphs: weighted pebble walking automata — wFOTC

= (un)decidability and complexity results over automata transfer to wFOTC
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Translation of wFOTC in wPWA

Definition: Hypothesis: searchable graphs

> linear order < on vertices with ¢ (initial vertex) as minimal element

> existence of a guide: walking automaton Ag computing <

All previously classes of graphs are searchable
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Translation of wFOTC in wPWA
Definition: Hypothesis: searchable graphs

> linear order < on vertices with ¢ (initial vertex) as minimal element

> existence of a guide: walking automaton Ag computing <
All previously classes of graphs are searchable
Inductive translation:

OXGR disjoint union of automata

reset to ¢

oW Ag Ay
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Translation of wFOTC in wPWA
Definition: Hypothesis: searchable graphs

> linear order < on vertices with ¢ (initial vertex) as minimal element

> existence of a guide: walking automaton Ag computing <

All previously classes of graphs are searchable

—init?next

D, ¢
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Translation of wFOTC in wPWA
Definition: Hypothesis: searchable graphs

> linear order < on vertices with ¢ (initial vertex) as minimal element

> existence of a guide: walking automaton Ag computing <

All previously classes of graphs are searchable

p?0: Vv

Boolean fragment: linear size automata (pebble and navigation)
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Translation of wFOTC in wPWA

Definition: Hypothesis: searchable graphs

> linear order < on vertices with ¢ (initial vertex) as minimal element

> existence of a guide: walking automaton Ag computing <

All previously classes of graphs are searchable

p?0: Vv
Boolean fragment: linear size automata (pebble and navigation)
disjunction £ = p V 1 existential quantification £ = dx ¢
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Translation of wFOTC in wPWA

Case of a formula [TCQ/,yd)(X,y)] (x',y") with A a wPWA for ®: construction of
——

fresh free variables

a wPWA A’ with two more layers of pebbles that does the following
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Translation of wFOTC in wPWA

Case of a formula [TCQ{y(D(X,y)] (x',y") with A a wPWA for ®: construction of
——

fresh free variables

a wPWA A’ with two more layers of pebbles that does the following

1. search free variable x’, and drop pebble x

2. guess a sequence of moves of length < N, follow it, and drop pebble y
(then flush the sequence to save memory)

3. reset to ¢ and simulate A

4. search pebble y

5. guess sequence 7 of moves of length < NV, follow it, check that it holds x
6. lift pebbles y and x (hence returning to the vertex of x)

7. follow 7R to reach back the vertex that held y, and drop pebble x

8. if y’ is held by the current vertex, enter a final state

9. in every case, go back to step 2
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Translation of wFOTC in wPWA

Case of a formula [TCiVy(D(X,y)] (x',y") with A a wPWA for ®: construction of
’ ——

fresh free variables

a wPWA A’ with two more layers of pebbles that does the following

1. search free variable x’, and drop pebble x

2. guess a sequence 7 of moves of length < N, follow it, and drop pebble y
(then flush the sequence to save memory)

> test that 7 is minimal amongst all sequences going from x to y
3. reset to ¢ and simulate A

4. search pebble y

5. guess sequence 7 of moves of length < NV, follow it, check that it holds x
> test that 7 is minimal amongst all sequences going q from y to x

6. lift pebbles y and x (hence returning to the vertex of x)

7. follow 7R to reach back the vertex that held y, and drop pebble x

8. if y' is held by the current vertex, enter a final state

9. in every case, go back to step 2
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Translation of wPWA in wFOTC

Let G be a zonable class of graphs. Then, for every wPWA A, we can construct
a formula ® of wFOTC such that for every graph G € G, and valuation o of free
variables, [A](G, o) = [®](G, o).

for a zonable class of graphs G

Translation depends on the class G
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Translation of wPWA in wFOTC

Let G be a zonable class of graphs. Then, for every wPWA A, we can construct
a formula ® of wFOTC such that for every graph G € G, and valuation o of free
variables, [A](G, o) = [®](G, o).

for a zonable class of graphs G

Translation depends on the class G

Proof in two steps:

» For the considered class of graphs, prove the zonability;
» Generic translation of automata into formulae for zonable class of graphs
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Zonable classes of graphs
A zoning of a graph G with parameter N:
> an equivalence relation ~, decomposing a graph into zones of diameter
bounded by a constant M;
> set W of wires = (directed) edges relating different zones;
> an injective encoding function enc: W x {0,...,N -1} - V
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Zonable classes of graphs
A zoning of a graph G with parameter N:
> an equivalence relation ~, decomposing a graph into zones of diameter
bounded by a constant M;
> set W of wires = (directed) edges relating different zones;
> an injective encoding function enc: W x {0,...,N -1} - V

and ~ and enc must be expressible by some formulae zone(z, z’) and
enc,(z,z',x) (for n € {0,...,N —1}) in wFOTC

Benjamin Monmege, ULB, Belgium 14/17



Examples

0 2N—1 2(k—1)N 2kN—1 2kN 2(k+1)N 2KN Jw]

| —
N-1<|w|-2KN<3N—-1
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Examples

0 2N—1 2(k—1)N 2kN—1 2kN 2(k+1)N 2KN Jw]

N———
N-1<|w|-2KN<3N -1

oo oo o0

o |1e o0 o0

ol e oo oo
o o o ofie e o e ol-e o o o o
o o o olfe o o el o[-0 o o o o

.| |e o e oo

o |te oo |0
o o o efie e o e ol-e o o o o
e o o o o o o o e o o o o
e o o o o o o o e o o o o
e o o o)fe o o o) .

o |1e o0 .

o |1e o0 .

ol e oo .

oi|-e o |-® .

o)|-e )0 .
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Examples

0 2N—1 2(k—1)N 2kN—1 2kN 2(k+1)N 2KN Jw]

N———
N-1<|w|-2KN<3N -1

e o o ofle o o ofe obe o o o s

A il R S but also trees, nested words,
Mazurkiewicz traces, rings...

. . . . . . . . . . . . .
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Translation in a zonable class of graphs

» External (bounded) transitive closure jumping from zone to zone: state at
the wires encoded using enc;

> Internal (bounded) transitive closures to compute the weights of the infinite
set of runs restricted to a zone: computation by McNaughton-Yamada
algorithm, state directly encoded in the formulae.
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Translation in a zonable class of graphs
Weight of the runs from z; in state g; to zs in state gr:

@ [ @ @ eanl(Zl, Z]_, )® (qulh(zl'vzl):l [TCy1 yz\U](X/,y/)

X'y z1,2{ EQ

® @ @ [encq2(22,z§,y') ®trQ27q£(z27zé) ® q)CIQ,CIf(Zéazf)}

22,25 2,4,€Q
with W(y1, y») the formula
69 @ |:ean1 (Zl, Z]l_, yl) ® trqhq{ (21, Z{) Y eanz(Zz, zéa .y2) Y ¢'q’ q2 (21/_7 Z2):|

’ ’
21,715 G191,
22,22' Qe
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Translation in a zonable class of graphs
Weight of the runs from z; in state g; to z¢ in state gr:

D[ D D ency(z,2.x) ® q.q,(21.21)] ® [TC, V(X' y)

X'y z1,2{ LEQ

® @ @ [eanQ(Zz,Zé,yl) ®trQ27q§(Z2’Z£) ® q)qé;qf(zéﬂzf)}
22,2} 42,95€Q

with W(y1, y») the formula

@/ @/ |:encq1 (217 Z{)}/l) ® trq17‘J{ (217 z]l_) & eanz(ZQ, ZéayZ) & ¢C[{-,q2 (Z{7 22):|
21,715 91,915
2 BEG

®g 4 (x, x") formula computing the weight of the runs from x in g to x" in ¢/,
staying in the zone containing both x and x’

> built by McNaughton-Yamada algorithm, with cascade of bounded transitive
closures (since zones have bounded diameter)

Benjamin Monmege, ULB, Belgium 16/17



Conclusion and Perspectives

» Expressive equivalence between weighted pebble walking automata and
weighted first-order logic with bounded transitive closure, over arbitrary
complete semirings

> Additional reasonable requirements on the classes of graphs (searchable and
zonable), met by usual examples of graphs (words, nested words, trees, grids,
Mazurkiewicz traces, rings...)

> Interesting special case: a logic for graph-to-word transducers
(non-commutative semiring of languages over an alphabet X))
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Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics

» Case of strong pebbles to deal with unbounded transitive closure?

» Extension to infinite structures?
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Conclusion and Perspectives

» Expressive equivalence between weighted pebble walking automata and
weighted first-order logic with bounded transitive closure, over arbitrary
complete semirings

> Additional reasonable requirements on the classes of graphs (searchable and
zonable), met by usual examples of graphs (words, nested words, trees, grids,
Mazurkiewicz traces, rings...)

> Interesting special case: a logic for graph-to-word transducers
(non-commutative semiring of languages over an alphabet X))

» Translation from automata to logic with less transitive closures? as in [Bollig,
Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics

» Case of strong pebbles to deal with unbounded transitive closure?

» Extension to infinite structures?

Thank you!

Benjamin Monmege, ULB, Belgium 17/17



References

Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble
weighted automata and transitive closure logics. In Proceedings of ICALP’10,
volume 6199 of LNCS, pages 587-598. Springer, 2010.

Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
EATCS Monographs in TCS, chapter 5, pages 175-211. Springer, 2009.

Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics.
Theoretical Computer Science, 366(3):228-247, 2006.

Ina Fichtner. Weighted picture automata and weighted logics. Theory of
Computing Systems, 48(1):48-78, 2011.

Christian Mathissen. Weighted logics for nested words and algebraic formal power
series. Logical Methods in Computer Science, 6(1), 2010.

Benjamin Monmege. Specification and Verification of Quantitative Properties:
Expressions, Logics, and Automata. Phd thesis, ENS de Cachan, 2013.



