
Efficient Reactive Synthesis of MITL Properties

AVeRTS 2015, Bangalore

Benjamin Monmege
Aix-Marseille Université, LIF, CNRS, France

Thomas Brihaye, Morgane Estiévenart (UMONS)
Gilles Geeraerts, Hsi-Ming Ho (ULB), Nathalie Sznajder (UPMC, LIP6)

December 19, 2015

1/34

Controller synthesis problem

2/34

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I interval of R+ with bounds in N ∪ {+∞}

Model of a formula: (in)finite timed word σ = (a1, t1)(a2, t2) · · · with
ai ∈ Σ, (ti) non-decreasing sequence of time stamps

3/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

Synthesis with plant: example of lift
Σ = Σc] Σe

I controller’s actions: closing of the doors,
moving of the lift...

I environment’s actions: pushing of the
buttons, uncertainty on responses of the lift...

Pre-existing system to be modelled: number
of floors, timing constraints, buttons...

PLANT P = Time-det. timed automaton

Specification via MTL: “lift grants the calls
in reasonable time” �(req ⇒ ♦62 grant)

Play: environment and controller propose timed actions

(t, req) (t ′, grant)

Only action(s) with the shortest delay min(t, t ′) may be played

Reactive synthesis problem (RS): find strategy of controller such that
every play verifies the specification

4/34

A toy example

q0

req, grant

Universal plant P:

Specification: �(req ∧ ♦>1 req ⇒ ♦=1 grant)

CONTROLLABLE for RS: controller acknowledges each req in
chronological order, by playing a grant 1 time unit after

I left hand side of the specification = fairness condition to give the
time to the controller to answer...

I controller requires unbounded memory: unboundedly many events to
remember as “to be granted” + infinite precision “= 1”

5/34

A toy example

q0

req, grant

Universal plant P:

Specification: �(req ∧ ♦>1 req ⇒ ♦=1 grant)

CONTROLLABLE for RS: controller acknowledges each req in
chronological order, by playing a grant 1 time unit after

I left hand side of the specification = fairness condition to give the
time to the controller to answer...

I controller requires unbounded memory: unboundedly many events to
remember as “to be granted” + infinite precision “= 1”

5/34

A toy example

q0

req, grant

Universal plant P:

Specification: �(req ∧ ♦>1 req ⇒ ♦=1 grant)

CONTROLLABLE for RS: controller acknowledges each req in
chronological order, by playing a grant 1 time unit after

I left hand side of the specification = fairness condition to give the
time to the controller to answer...

I controller requires unbounded memory: unboundedly many events to
remember as “to be granted” + infinite precision “= 1”

5/34

Implementable Reactive Synthesis (IRS)

Controller = time-deterministic symbolic transition system T
I set of locations (possibly infinite)

I finite set of clocks

I bounded precision: finite set of possible clock constraints

With respect to all possible choices of the environment, T generates a
set of possible plays: smallest set containing the empty play and closed
by a Post operation...

if σ · (c,T) is possible,
and T may fire (t, grant) currently,

then σ · (c,T) · (grant,T + t) is possible if readable in the plant,

and σ · (c,T) · (req,T + t′) is possible if readable in the plant, with t′ 6 t.

Implementable reactive synthesis problem (IRS): find a set of clocks X ,
a precision, and a td STS T of controller such that every possible play
accepted by the plant verifies the specification

6/34

Implementable Reactive Synthesis (IRS)

Controller = time-deterministic symbolic transition system T
I set of locations (possibly infinite)

I finite set of clocks

I bounded precision: finite set of possible clock constraints

With respect to all possible choices of the environment, T generates a
set of possible plays: smallest set containing the empty play and closed
by a Post operation...

if σ · (c,T) is possible,
and T may fire (t, grant) currently,

then σ · (c,T) · (grant,T + t) is possible if readable in the plant,

and σ · (c,T) · (req,T + t′) is possible if readable in the plant, with t′ 6 t.

Implementable reactive synthesis problem (IRS): find a set of clocks X ,
a precision, and a td STS T of controller such that every possible play
accepted by the plant verifies the specification

6/34

Implementable Reactive Synthesis (IRS)

Controller = time-deterministic symbolic transition system T
I set of locations (possibly infinite)

I finite set of clocks

I bounded precision: finite set of possible clock constraints

With respect to all possible choices of the environment, T generates a
set of possible plays: smallest set containing the empty play and closed
by a Post operation...

if σ · (c,T) is possible,
and T may fire (t, grant) currently,

then σ · (c,T) · (grant,T + t) is possible if readable in the plant,

and σ · (c,T) · (req,T + t′) is possible if readable in the plant, with t′ 6 t.

Implementable reactive synthesis problem (IRS): find a set of clocks X ,
a precision, and a td STS T of controller such that every possible play
accepted by the plant verifies the specification

6/34

Implementable Reactive Synthesis (IRS)

Controller = time-deterministic symbolic transition system T
I set of locations (possibly infinite)

I finite set of clocks

I bounded precision: finite set of possible clock constraints

With respect to all possible choices of the environment, T generates a
set of possible plays: smallest set containing the empty play and closed
by a Post operation...

if σ · (c,T) is possible,
and T may fire (t, grant) currently,

then σ · (c,T) · (grant,T + t) is possible if readable in the plant,

and σ · (c,T) · (req,T + t′) is possible if readable in the plant, with t′ 6 t.

Implementable reactive synthesis problem (IRS): find a set of clocks X ,
a precision, and a td STS T of controller such that every possible play
accepted by the plant verifies the specification

6/34

A toy example

q0

req, grant

Universal plant P:

Specification: �(req ∧ ♦>1 req ⇒ ♦=1 grant)

CONTROLLABLE for RS: controller acknowledges each req in
chronological order, by playing a grant 1 time unit after

NOT CONTROLLABLE for IRS: requires infinite set of clocks, or
infinite precision...

7/34

A toy example

q0

req, grant

Universal plant P:

Specification: �(req ∧ ♦>1 req ⇒ ♦=1 grant)

CONTROLLABLE for RS: controller acknowledges each req in
chronological order, by playing a grant 1 time unit after

NOT CONTROLLABLE for IRS: requires infinite set of clocks, or
infinite precision...

7/34

Another example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

I every timed word fireable;

I but only certain prefixes are checked against the specification: if at least 1 time
unit since the first req without grant since...

Specification: �(req ⇒ ♦61 grant)

CONTROLLABLE for IRS: controller only keeps track of the first req
in the sequence, and proposes to grant it 1 time unit later with a grant

`0 `1

grant req

req, z := 0

grant, z = 1
T :

8/34

Another example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

I every timed word fireable;

I but only certain prefixes are checked against the specification: if at least 1 time
unit since the first req without grant since...

Specification: �(req ⇒ ♦61 grant)

CONTROLLABLE for IRS: controller only keeps track of the first req
in the sequence, and proposes to grant it 1 time unit later with a grant

`0 `1

grant req

req, z := 0

grant, z = 1
T :

8/34

Another example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

I every timed word fireable;

I but only certain prefixes are checked against the specification: if at least 1 time
unit since the first req without grant since...

Specification: �(req ⇒ ♦61 grant)

CONTROLLABLE for IRS: controller only keeps track of the first req
in the sequence, and proposes to grant it 1 time unit later with a grant

`0 `1

grant req

req, z := 0

grant, z = 1
T :

8/34

Unfortunately...

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

IRS is undecidable for specifications in MTL (over finite words).

Theorem: [D’Souza and Madhusudan, 2002]

IRS is undecidable for specifications given as timed regular languages, or
complement of timed regular languages (over infinite words, and also
finite words).

I Reduction of the universality of non-deterministic timed automata

9/34

Unfortunately...

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

IRS is undecidable for specifications in MTL (over finite words).

Theorem: [D’Souza and Madhusudan, 2002]

IRS is undecidable for specifications given as timed regular languages, or
complement of timed regular languages (over infinite words, and also
finite words).

I Reduction of the universality of non-deterministic timed automata

9/34

Recovering decidability...

Bounding a priori the resources: set of clocks X and precision (m,K) of
the controller
Comparisons with maximal guards in Gmax

m,K (X)

g ::= > | g ∧ g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , and 0 6 α 6 K .

Bounded-resources reactive synthesis problem (BRessRS): find a td
STS T of controller with a given set of clocks X and precision (m,K)
such that every possible play accepted by the plant verifies the specification

10/34

Recovering decidability...

Bounding a priori the resources: set of clocks X and precision (m,K) of
the controller
Comparisons with maximal guards in Gmax

m,K (X)

g ::= > | g ∧ g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , and 0 6 α 6 K .

Bounded-resources reactive synthesis problem (BRessRS): find a td
STS T of controller with a given set of clocks X and precision (m,K)
such that every possible play accepted by the plant verifies the specification

10/34

Example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

Specification: �(req ⇒ ♦61 grant)

CONTROLLABLE for BRessRS: a single clock X = {z}, and precision
(m = 1,K = 1)

`0 `1

grant req

req, z := 0

grant, z = 1
T :

11/34

Previous results

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a
non-primitive recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed
regular languages (over infinite words, and also finite words), with a
2-EXPTIME complexity.

I Build the region automaton, determinise and complement it, and
solve a timed game on the synchronous product with the plant and
all possible behaviours of the controller

12/34

Previous results

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a
non-primitive recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed
regular languages (over infinite words, and also finite words), with a
2-EXPTIME complexity.

I Build the region automaton, determinise and complement it, and
solve a timed game on the synchronous product with the plant and
all possible behaviours of the controller

12/34

First contribution

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a non-primitive
recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed regular languages
(over infinite words, and also finite words), with a 2-EXPTIME complexity.

Restrict the specification language: MITL

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I non-singular interval of R+ with bounds in N ∪ {+∞}

13/34

First contribution

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a non-primitive
recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed regular languages
(over infinite words, and also finite words), with a 2-EXPTIME complexity.

Restrict the specification language: MITL

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I non-singular interval of R+ with bounds in N ∪ {+∞}

13/34

First contribution

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a non-primitive
recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed regular languages
(over infinite words, and also finite words), with a 2-EXPTIME complexity.

Restrict the specification language: MITL

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with I non-singular interval of R+ with bounds in N ∪ {+∞}

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

RS is undecidable for specifications in MITL (over infinite words), even
without plants.

I Reduction of a lossy 3-counter machine

13/34

First contribution

Theorem: [Bouyer, Bozzelli, and Chevalier, 2006]

BRessRS is decidable for specifications in MTL (over finite words), with a non-primitive
recursive complexity.

Theorem: [D’Souza and Madhusudan, 2002]

BRessRS is decidable for specifications given as complement of timed regular languages
(over infinite words, and also finite words), with a 2-EXPTIME complexity.

Our result
Practical algorithm for BRessRS of MITL over finite words, with 3-
EXPTIME theoretical complexity.

I Via [D’Souza and Madhusudan, 2002], BRessRS of MITL is 3-EXPTIME
I build non-deterministic timed automaton equivalent to the negation

of the MITL formula...
I requires the determinisation of the full region automaton!

13/34

From MTL to One-Clock Alternating Timed Automata [Ouaknine and Worrell, 2007]

Alternating automata combine:

I disjunctive transitions = non-determinism = the suffix of timed word
must be accepted from at least one of the successor states

I conjunctive transitions = parallelism = the suffix must be accepted
from all successor states

14/34

From MTL to One-Clock Alternating Timed Automata [Ouaknine and Worrell, 2007]

Alternating automata combine:

I disjunctive transitions = non-determinism = the suffix of timed word
must be accepted from at least one of the successor states

I conjunctive transitions = parallelism = the suffix must be accepted
from all successor states

14/34

From MTL to One-Clock Alternating Timed Automata [Ouaknine and Worrell, 2007]

Alternating automata combine:

I disjunctive transitions = non-determinism = the suffix of timed word
must be accepted from at least one of the successor states

I conjunctive transitions = parallelism = the suffix must be accepted
from all successor states

14/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

Execution on the timed word (req, 0.5)(req, 0.6)(req, 1.2)(grant, 2.3):

� 0

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

Execution on the timed word (req, 0.5)(req, 0.6)(req, 1.2)(grant, 2.3):

� 0

� 0.5

♦ 0

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

Execution on the timed word (req, 0.5)(req, 0.6)(req, 1.2)(grant, 2.3):

� 0

� 0.5

� 0.6

♦ 0

♦ 0 ♦ 0.1

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

Execution on the timed word (req, 0.5)(req, 0.6)(req, 1.2)(grant, 2.3):

� 0

� 0.5

� 0.6

� 1.2

♦ 0

♦ 0 ♦ 0.6

♦ 0 ♦ 0.1 ♦ 0.7

15/34

From MTL to OCATA

ϕ = �(req ⇒ ♦[1,2] grant)

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

Execution on the timed word (req, 0.5)(req, 0.6)(req, 1.2)(grant, 2.3):

� 0

� 0.5

� 0.6

� 1.2 � 2.3

♦ 0
y = 1.1

♦ 0 ♦ 0.6
y = 1.7

♦ 0 ♦ 0.1 ♦ 0.7
y = 1.8

15/34

From MTL to OCATA

I Translation from MTL to OCATA is structural: the OCATA has one
state per subformula

I One clock in the syntax of the automaton but... many clocks in
the semantics!

16/34

Bounded-Ressources Reactive Synthesis for MTL

I Plant: P, Specification: ϕ in MTL, Ressources: (X ,m,K)

I Convert the MTL formula ¬ϕ into an OCATA A
I Cast the control problem into a timed game played on a tree

I The tree unravels the execution of the parallel composition of: the
plant P, the OCATA A, the controller T

I Branching corresponds to the possible actions
I Labels of the nodes in the tree: finite abstraction of the timed

configurations of plant, OCATA and controller

I q: (unique) location of the (deterministic) plant
I each Hi = λ1 · · ·λk : finite words of subsets of letters (one for each

fractional part of the clocks)
I each λi ⊆ 2(XP∪X∪QA)×REGm,K : region associated to all clocks

17/34

Bounded-Ressources Reactive Synthesis for MTL

I Plant: P, Specification: ϕ in MTL, Ressources: (X ,m,K)

I Convert the MTL formula ¬ϕ into an OCATA A
I Cast the control problem into a timed game played on a tree

I The tree unravels the execution of the parallel composition of: the
plant P, the OCATA A, the controller T

I Branching corresponds to the possible actions

I Labels of the nodes in the tree: finite abstraction of the timed
configurations of plant, OCATA and controller

I q: (unique) location of the (deterministic) plant
I each Hi = λ1 · · ·λk : finite words of subsets of letters (one for each

fractional part of the clocks)
I each λi ⊆ 2(XP∪X∪QA)×REGm,K : region associated to all clocks

17/34

Bounded-Ressources Reactive Synthesis for MTL

I Plant: P, Specification: ϕ in MTL, Ressources: (X ,m,K)

I Convert the MTL formula ¬ϕ into an OCATA A
I Cast the control problem into a timed game played on a tree

I The tree unravels the execution of the parallel composition of: the
plant P, the OCATA A, the controller T

I Branching corresponds to the possible actions
I Labels of the nodes in the tree: finite abstraction of the timed

configurations of plant, OCATA and controller
I q: (unique) location of the (deterministic) plant

I each Hi = λ1 · · ·λk : finite words of subsets of letters (one for each
fractional part of the clocks)

I each λi ⊆ 2(XP∪X∪QA)×REGm,K : region associated to all clocks

(q, {H1,H2, . . . ,Hn})

17/34

Bounded-Ressources Reactive Synthesis for MTL

I Plant: P, Specification: ϕ in MTL, Ressources: (X ,m,K)

I Convert the MTL formula ¬ϕ into an OCATA A
I Cast the control problem into a timed game played on a tree

I The tree unravels the execution of the parallel composition of: the
plant P, the OCATA A, the controller T

I Branching corresponds to the possible actions
I Labels of the nodes in the tree: finite abstraction of the timed

configurations of plant, OCATA and controller
I q: (unique) location of the (deterministic) plant
I each Hi = λ1 · · ·λk : finite words of subsets of letters (one for each

fractional part of the clocks)

I each λi ⊆ 2(XP∪X∪QA)×REGm,K : region associated to all clocks

(q, {H1,H2, . . . ,Hn})

17/34

Bounded-Ressources Reactive Synthesis for MTL

I Plant: P, Specification: ϕ in MTL, Ressources: (X ,m,K)

I Convert the MTL formula ¬ϕ into an OCATA A
I Cast the control problem into a timed game played on a tree

I The tree unravels the execution of the parallel composition of: the
plant P, the OCATA A, the controller T

I Branching corresponds to the possible actions
I Labels of the nodes in the tree: finite abstraction of the timed

configurations of plant, OCATA and controller
I q: (unique) location of the (deterministic) plant
I each Hi = λ1 · · ·λk : finite words of subsets of letters (one for each

fractional part of the clocks)
I each λi ⊆ 2(XP∪X∪QA)×REGm,K : region associated to all clocks

(q, {H1,H2, . . . ,Hn})

17/34

Bounded-Ressources Reactive Synthesis for MTL

I Action (a, g ,R)
I a: letter of Σc ∪ Σe

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

18/34

Bounded-Ressources Reactive Synthesis for MTL

I Action (a, g ,R)
I a: letter of Σc ∪ Σe

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

18/34

Bounded-Ressources Reactive Synthesis for MTL

I Action (a, g ,R)
I a: letter of Σc ∪ Σe

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

18/34

Bounded-Ressources Reactive Synthesis for MTL

I Action (a, g ,R)
I a: letter of Σc ∪ Σe

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

18/34

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the realisability
problem

I Complexity: non-primitive recursive due to well-quasi orderings

19/34

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the realisability
problem

I Complexity: non-primitive recursive due to well-quasi orderings

19/34

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the realisability
problem

I Complexity: non-primitive recursive due to well-quasi orderings

19/34

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the realisability
problem

I Complexity: non-primitive recursive due to well-quasi orderings

19/34

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the realisability
problem

I Complexity: non-primitive recursive due to well-quasi orderings

19/34

For MITL: interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(req ⇒ ♦[1,2] grant)

req

0.5

req

0.6

req

1.2

grant

2.3

20/34

For MITL: interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(req ⇒ ♦[1,2] grant)

req

0.5

req

0.6

req

1.2

grant

2.3

20/34

For MITL: interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(req ⇒ ♦[1,2] grant)

req

0.5

req

0.6

req

1.2

grant

2.3
[

0.3

]
1.3

20/34

For MITL: interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(req ⇒ ♦[1,2] grant)

req

0.5

req

0.6

req

1.2

grant

2.3
[

0.3

]
1.3

To check that this timed word satisfies ϕ, we do not need to
remember the exact timestamp of each req

20/34

Example run with the interval semantics

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

� 0

� 0.5

♦ 0

req

0.5

req

0.6

req

1.2

grant

2.3

21/34

Example run with the interval semantics

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

� 0

� 0.5

� 0.6

♦ 0 ♦[0, .1]

req

0.5

req

0.6

req

1.2

grant

2.3

21/34

Example run with the interval semantics

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

� 0

� 0.5

� 0.6 � 1.2

♦ 0 ♦[0, .1] ♦[0, 0.7]

req

0.5

req

0.6

req

1.2

grant

2.3

21/34

Example run with the interval semantics

� ♦

grant

req y := 0

req

grant

y ∈ [1, 2]

� 0

� 0.5

� 0.6 � 1.2 � 2.3

♦ 0 ♦[0, .1] ♦[0, 0.7]
1.1 t.u.

req

0.5

req

0.6

req

1.2

grant

2.3

21/34

Control for MITL specification

Tree construction of [Bouyer, Bozzelli, and Chevalier, 2006]

I Finite abstraction making use of interval semantics for OCATA

I Tree is always finite! No need for well-quasi orderings

Theorem:
3-EXPTIME complexity by a tight count on the number of necessary clock
copies [Brihaye, Estiévenart, and Geeraerts, 2013]

I Same complexity as in [D’Souza and Madhusudan, 2002]...

I but on-the-fly algorithm

I Zone-based implementation doable: future work!

I Heuristics

22/34

Control for MITL specification

Tree construction of [Bouyer, Bozzelli, and Chevalier, 2006]

I Finite abstraction making use of interval semantics for OCATA

I Tree is always finite! No need for well-quasi orderings

Theorem:
3-EXPTIME complexity by a tight count on the number of necessary clock
copies [Brihaye, Estiévenart, and Geeraerts, 2013]

I Same complexity as in [D’Souza and Madhusudan, 2002]...

I but on-the-fly algorithm

I Zone-based implementation doable: future work!

I Heuristics

22/34

Control for MITL specification

Tree construction of [Bouyer, Bozzelli, and Chevalier, 2006]

I Finite abstraction making use of interval semantics for OCATA

I Tree is always finite! No need for well-quasi orderings

Theorem:
3-EXPTIME complexity by a tight count on the number of necessary clock
copies [Brihaye, Estiévenart, and Geeraerts, 2013]

I Same complexity as in [D’Souza and Madhusudan, 2002]...

I but on-the-fly algorithm

I Zone-based implementation doable: future work!

I Heuristics

22/34

Control for MITL specification

Tree construction of [Bouyer, Bozzelli, and Chevalier, 2006]

I Finite abstraction making use of interval semantics for OCATA

I Tree is always finite! No need for well-quasi orderings

Theorem:
3-EXPTIME complexity by a tight count on the number of necessary clock
copies [Brihaye, Estiévenart, and Geeraerts, 2013]

I Same complexity as in [D’Souza and Madhusudan, 2002]...

I but on-the-fly algorithm

I Zone-based implementation doable: future work!

I Heuristics

22/34

Control for MITL specification

Tree construction of [Bouyer, Bozzelli, and Chevalier, 2006]

I Finite abstraction making use of interval semantics for OCATA

I Tree is always finite! No need for well-quasi orderings

Theorem:
3-EXPTIME complexity by a tight count on the number of necessary clock
copies [Brihaye, Estiévenart, and Geeraerts, 2013]

I Same complexity as in [D’Souza and Madhusudan, 2002]...

I but on-the-fly algorithm

I Zone-based implementation doable: future work!

I Heuristics

22/34

Heuristics

I Antichains:
I in a label (q, {H1, . . . ,Hn}), do not keep Hi such that Hi 6 Hj

I Reduce the size of the node’s labels, and the computation cost

I Stop branches earlier using well-quasi-order v of [Bouyer, Bozzelli, and

Chevalier, 2006]:
I still valid, even though we do not use it for termination

23/34

Heuristics

I Antichains:
I in a label (q, {H1, . . . ,Hn}), do not keep Hi such that Hi 6 Hj

I Reduce the size of the node’s labels, and the computation cost

I Stop branches earlier using well-quasi-order v of [Bouyer, Bozzelli, and

Chevalier, 2006]:
I still valid, even though we do not use it for termination

23/34

Heuristics

I Antichains:
I in a label (q, {H1, . . . ,Hn}), do not keep Hi such that Hi 6 Hj

I Reduce the size of the node’s labels, and the computation cost

I Stop branches earlier using well-quasi-order v of [Bouyer, Bozzelli, and

Chevalier, 2006]:
I still valid, even though we do not use it for termination

23/34

What else?

Bounded-ress. reactive synthesis

I Decidable in 3-EXPTIME for
complement of timed automata

I Undecidable for nd timed
automata

I Decidable in non-primitive
recursive complexity for MTL

I On-the-fly algorithm for MITL

Implementable reactive synthesis

I Undecidable for complement
of timed automata

I Undecidable for nd timed
automata

I Undecidable for MTL

I For MITL??

Trying to push further the undecidability boundaries?

24/34

What else?

Bounded-ress. reactive synthesis

I Decidable in 3-EXPTIME for
complement of timed automata

I Undecidable for nd timed
automata

I Decidable in non-primitive
recursive complexity for MTL

I On-the-fly algorithm for MITL

Implementable reactive synthesis

I Undecidable for complement
of timed automata

I Undecidable for nd timed
automata

I Undecidable for MTL

I For MITL??

Trying to push further the undecidability boundaries?

24/34

Undecidability of IRS for MTL [Bouyer, Bozzelli, and Chevalier, 2006]

Reduction of the halting problem of a deterministic channel machine
with

I single halting state shalt with no outgoing transition

I no cycle with only write actions m!

I if the unique (maximal) path from initial state is infinite, then the
size of the channel is unbounded

Encoding of an execution: (a1, t1)(a2, t2) · · · over ΣC = {m?,m!, ...}:
1. there exist s1, s2, · · · such that s1 initial, si

ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1

I encodable in the plant

3. every m! action matched by an m? action 1 t.u. later

I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

4. every m? action matched by an m! action 1 t.u. before

25/34

Undecidability of IRS for MTL [Bouyer, Bozzelli, and Chevalier, 2006]

Reduction of the halting problem of a deterministic channel machine
with

I single halting state shalt with no outgoing transition

I no cycle with only write actions m!

I if the unique (maximal) path from initial state is infinite, then the
size of the channel is unbounded

Encoding of an execution: (a1, t1)(a2, t2) · · · over ΣC = {m?,m!, ...}:
1. there exist s1, s2, · · · such that s1 initial, si

ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1

I encodable in the plant

3. every m! action matched by an m? action 1 t.u. later

I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

4. every m? action matched by an m! action 1 t.u. before

25/34

Undecidability of IRS for MTL [Bouyer, Bozzelli, and Chevalier, 2006]

Reduction of the halting problem of a deterministic channel machine
with

I single halting state shalt with no outgoing transition

I no cycle with only write actions m!

I if the unique (maximal) path from initial state is infinite, then the
size of the channel is unbounded

Encoding of an execution: (a1, t1)(a2, t2) · · · over ΣC = {m?,m!, ...}:
1. there exist s1, s2, · · · such that s1 initial, si

ai−→ si+1 ∀i
I encodable in the plant

2. no two actions on the same time: ti < ti+1

I encodable in the plant

3. every m! action matched by an m? action 1 t.u. later

I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

4. every m? action matched by an m! action 1 t.u. before

25/34

Undecidability of IRS for MTL [Bouyer, Bozzelli, and Chevalier, 2006]

Reduction of the halting problem of a deterministic channel machine
with

I single halting state shalt with no outgoing transition

I no cycle with only write actions m!

I if the unique (maximal) path from initial state is infinite, then the
size of the channel is unbounded

Encoding of an execution: (a1, t1)(a2, t2) · · · over ΣC = {m?,m!, ...}:
1. there exist s1, s2, · · · such that s1 initial, si

ai−→ si+1 ∀i
I encodable in the plant

2. no two actions on the same time: ti < ti+1

I encodable in the plant

3. every m! action matched by an m? action 1 t.u. later
I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

4. every m? action matched by an m! action 1 t.u. before

25/34

Role of the environment

4. every m? action matched by an m! action 1 t.u. before

ΣE = {Check ,Nil}

Plant P: ensures a turn-based behaviour, Environment plays after 0 t.u.,
Check action is played only once...

Then, formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check) checks 4.

Theorem:
There exists a controller T if and only if the channel machine halts.

⇐: construct a controller that plays a halting execution

I either with 1 clock, but m = K = maximal capacity of the channel

I or with m = K = 1, but as many clocks as the maximal capacity

⇒: if machine does not halt, a controller would need to cheat or to play
an infinite computation that requires infinite number of clocks (because
of the unboundedness of the channel)

26/34

Role of the environment

4. every m? action matched by an m! action 1 t.u. before

ΣE = {Check ,Nil}

Plant P: ensures a turn-based behaviour, Environment plays after 0 t.u.,
Check action is played only once...

Then, formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check) checks 4.

Theorem:
There exists a controller T if and only if the channel machine halts.

⇐: construct a controller that plays a halting execution

I either with 1 clock, but m = K = maximal capacity of the channel

I or with m = K = 1, but as many clocks as the maximal capacity

⇒: if machine does not halt, a controller would need to cheat or to play
an infinite computation that requires infinite number of clocks (because
of the unboundedness of the channel)

26/34

Role of the environment

4. every m? action matched by an m! action 1 t.u. before

ΣE = {Check ,Nil}

Plant P: ensures a turn-based behaviour, Environment plays after 0 t.u.,
Check action is played only once...

Then, formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check) checks 4.

Theorem:
There exists a controller T if and only if the channel machine halts.

⇐: construct a controller that plays a halting execution

I either with 1 clock, but m = K = maximal capacity of the channel

I or with m = K = 1, but as many clocks as the maximal capacity

⇒: if machine does not halt, a controller would need to cheat or to play
an infinite computation that requires infinite number of clocks (because
of the unboundedness of the channel)

26/34

Role of the environment

4. every m? action matched by an m! action 1 t.u. before

ΣE = {Check ,Nil}

Plant P: ensures a turn-based behaviour, Environment plays after 0 t.u.,
Check action is played only once...

Then, formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check) checks 4.

Theorem:
There exists a controller T if and only if the channel machine halts.

⇐: construct a controller that plays a halting execution

I either with 1 clock, but m = K = maximal capacity of the channel

I or with m = K = 1, but as many clocks as the maximal capacity

⇒: if machine does not halt, a controller would need to cheat or to play
an infinite computation that requires infinite number of clocks (because
of the unboundedness of the channel)

26/34

Role of the environment

4. every m? action matched by an m! action 1 t.u. before

ΣE = {Check ,Nil}

Plant P: ensures a turn-based behaviour, Environment plays after 0 t.u.,
Check action is played only once...

Then, formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check) checks 4.

Theorem:
There exists a controller T if and only if the channel machine halts.

⇐: construct a controller that plays a halting execution

I either with 1 clock, but m = K = maximal capacity of the channel

I or with m = K = 1, but as many clocks as the maximal capacity

⇒: if machine does not halt, a controller would need to cheat or to play
an infinite computation that requires infinite number of clocks (because
of the unboundedness of the channel)

26/34

Adaptation of proof for MITL

1. there exist s1, s2, · · · such that s1 initial, si
ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1
I encodable in the plant

3. every m! action, is matched by an m? action 1 t.u. later
I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

I MITL formula using Check again...
ϕ = ♦

(
m! ∧ ♦<1(Nil ∧ Nil U(ΣC UCheck)) ∧ ♦>1 Check

)
⇒

♦
(
m? ∧ (m? UCheck)

)

I assumption OK: because no loop containing only m! action...

4. every m? action matched by an m! action 1 t.u. before
I MTL formula ϕ′ = ♦(m? ∧ ♦=0 Check)⇒ ♦(m! ∧ ♦=1 Check)

I MITL formula
ϕ′ = ♦

(
m? ∧ (m? UCheck)

)
⇒ ♦(m! ∧ ♦61 Check ∧ ♦>1 Check)

Theorem:
Implementable Reactive Synthesis for MITL specifications over finite words
is undecidable.

27/34

Adaptation of proof for MITL

1. there exist s1, s2, · · · such that s1 initial, si
ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1
I encodable in the plant

3. every m! action, is matched by an m? action 1 t.u. later
I MTL formula ϕ = �(m! ∧ ♦>1 ΣC ⇒ ♦=1 m?)

I MITL formula using Check again...
ϕ = ♦

(
m! ∧ ♦<1(Nil ∧ Nil U(ΣC UCheck)) ∧ ♦>1 Check

)
⇒

♦
(
m? ∧ (m? UCheck)

)

I assumption OK: because no loop containing only m! action...

4. every m? action matched by an m! action 1 t.u. before
I MITL formula
ϕ′ = ♦

(
m? ∧ (m? UCheck)

)
⇒ ♦(m! ∧ ♦61 Check ∧ ♦>1 Check)

Theorem:
Implementable Reactive Synthesis for MITL specifications over finite words
is undecidable.

27/34

Adaptation of proof for MITL

1. there exist s1, s2, · · · such that s1 initial, si
ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1
I encodable in the plant

3. every m! action, followed by a ΣC action after at least 1 t.u., is
matched by an m? action 1 t.u. later
I MITL formula using Check again...
ϕ = ♦

(
m! ∧ ♦<1(Nil ∧ Nil U(ΣC UCheck)) ∧ ♦>1 Check

)
⇒

♦
(
m? ∧ (m? UCheck)

)

I assumption OK: because no loop containing only m! action...

4. every m? action matched by an m! action 1 t.u. before
I MITL formula
ϕ′ = ♦

(
m? ∧ (m? UCheck)

)
⇒ ♦(m! ∧ ♦61 Check ∧ ♦>1 Check)

Theorem:
Implementable Reactive Synthesis for MITL specifications over finite words
is undecidable.

27/34

Adaptation of proof for MITL

1. there exist s1, s2, · · · such that s1 initial, si
ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1
I encodable in the plant

3. every m! action, followed by a ΣC action after at least 1 t.u., is
matched by an m? action 1 t.u. later
I MITL formula using Check again...
ϕ = ♦

(
m! ∧ ♦<1(Nil ∧ Nil U(ΣC UCheck)) ∧ ♦>1 Check

)
⇒

♦
(
m? ∧ (m? UCheck)

)
I assumption OK: because no loop containing only m! action...

4. every m? action matched by an m! action 1 t.u. before
I MITL formula
ϕ′ = ♦

(
m? ∧ (m? UCheck)

)
⇒ ♦(m! ∧ ♦61 Check ∧ ♦>1 Check)

Theorem:
Implementable Reactive Synthesis for MITL specifications over finite words
is undecidable.

27/34

Adaptation of proof for MITL

1. there exist s1, s2, · · · such that s1 initial, si
ai−→ si+1 ∀i

I encodable in the plant

2. no two actions on the same time: ti < ti+1
I encodable in the plant

3. every m! action, followed by a ΣC action after at least 1 t.u., is
matched by an m? action 1 t.u. later
I MITL formula using Check again...
ϕ = ♦

(
m! ∧ ♦<1(Nil ∧ Nil U(ΣC UCheck)) ∧ ♦>1 Check

)
⇒

♦
(
m? ∧ (m? UCheck)

)
I assumption OK: because no loop containing only m! action...

4. every m? action matched by an m! action 1 t.u. before
I MITL formula
ϕ′ = ♦

(
m? ∧ (m? UCheck)

)
⇒ ♦(m! ∧ ♦61 Check ∧ ♦>1 Check)

Theorem:
Implementable Reactive Synthesis for MITL specifications over finite words
is undecidable.

27/34

Results for MITL

RS IRS BRessRS

Finite
??

Undecidable on-the-fly 3-EXPTIME

Infinite
Undecidable 3-EXPTIME

[Doyen, Geeraerts, Undecidable [D’Souza and Madhusudan, 2002]

Raskin, and Reichert, 2009]

28/34

Results for MITL

RS IRS BRessRS

Finite
...Ackerman-hard...

Undecidable on-the-fly 3-EXPTIME

Infinite
Undecidable 3-EXPTIME

[Doyen, Geeraerts, Undecidable [D’Souza and Madhusudan, 2002]

Raskin, and Reichert, 2009]

28/34

An interesting sub-problem

Bounded-precision reactive synthesis problem (BPrecRS): find a finite
set of clocks X , and a td STS T of controller with X as clocks, and a
given precision (m,K) such that every possible play accepted by the plant
verifies the specification

I Natural in practice...

I Bound on the precision: reflects hardware restrictions on the sensors
and information transmission

I No real reasons for restricting the number of clocks that can easily
grow without harm

I But also undecidable via the previous proof!!

29/34

An interesting sub-problem

Bounded-precision reactive synthesis problem (BPrecRS): find a finite
set of clocks X , and a td STS T of controller with X as clocks, and a
given precision (m,K) such that every possible play accepted by the plant
verifies the specification

I Natural in practice...

I Bound on the precision: reflects hardware restrictions on the sensors
and information transmission

I No real reasons for restricting the number of clocks that can easily
grow without harm

I But also undecidable via the previous proof!!

29/34

An interesting sub-problem

Bounded-precision reactive synthesis problem (BPrecRS): find a finite
set of clocks X , and a td STS T of controller with X as clocks, and a
given precision (m,K) such that every possible play accepted by the plant
verifies the specification

I Natural in practice...

I Bound on the precision: reflects hardware restrictions on the sensors
and information transmission

I No real reasons for restricting the number of clocks that can easily
grow without harm

I But also undecidable via the previous proof!!

29/34

An interesting sub-problem

Bounded-precision reactive synthesis problem (BPrecRS): find a finite
set of clocks X , and a td STS T of controller with X as clocks, and a
given precision (m,K) such that every possible play accepted by the plant
verifies the specification

I Natural in practice...

I Bound on the precision: reflects hardware restrictions on the sensors
and information transmission

I No real reasons for restricting the number of clocks that can easily
grow without harm

I But also undecidable via the previous proof!!

29/34

An interesting sub-problem

Bounded-precision reactive synthesis problem (BPrecRS): find a finite
set of clocks X , and a td STS T of controller with X as clocks, and a
given precision (m,K) such that every possible play accepted by the plant
verifies the specification

I Natural in practice...

I Bound on the precision: reflects hardware restrictions on the sensors
and information transmission

I No real reasons for restricting the number of clocks that can easily
grow without harm

I But also undecidable via the previous proof!!

29/34

Running example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

Specification: �(req ⇒ ♦61 grant) equivalent to complement of

s♦ s� s⊥

{req, grant}, y := 0 req, y 6 1 {req, grant}

req, y := 0 {req, grant}, y > 1
A :

Question: find a controller T with precision (m = 1,K = 1) such that
“(P‖T) ∩ A = ∅”
Warning: set of clocks X for the controller not fixed a priori

30/34

Running example

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P :

Specification: �(req ⇒ ♦61 grant) equivalent to complement of

s♦ s� s⊥

{req, grant}, y := 0 req, y 6 1 {req, grant}

req, y := 0 {req, grant}, y > 1
A :

Question: find a controller T with precision (m = 1,K = 1) such that
“(P‖T) ∩ A = ∅”
Warning: set of clocks X for the controller not fixed a priori

30/34

Algorithm in a nutshell

I Construct the unfolding of all possible parallel executions of P, A,
and all the possible controllers: infinite tree

I Infinitely branching (density of time): make it finitely branching by
I only allowing the controller to reset at most one fresh clock at each

step
I merging equivalent choices with respect to regions (based on the

precision (m,K) and the current set of clocks)

I Semi-algorithm:
I build the tree...
I ... while testing on-the-fly if it is winning;
I map a winning strategy to a controller T .

I Cut some useless branches with an order ṽ (that is not a wqo)

31/34

Algorithm in a nutshell

I Construct the unfolding of all possible parallel executions of P, A,
and all the possible controllers: infinite tree

I Infinitely branching (density of time): make it finitely branching by
I only allowing the controller to reset at most one fresh clock at each

step
I merging equivalent choices with respect to regions (based on the

precision (m,K) and the current set of clocks)

I Semi-algorithm:
I build the tree...
I ... while testing on-the-fly if it is winning;
I map a winning strategy to a controller T .

I Cut some useless branches with an order ṽ (that is not a wqo)

31/34

Algorithm in a nutshell

I Construct the unfolding of all possible parallel executions of P, A,
and all the possible controllers: infinite tree

I Infinitely branching (density of time): make it finitely branching by
I only allowing the controller to reset at most one fresh clock at each

step
I merging equivalent choices with respect to regions (based on the

precision (m,K) and the current set of clocks)

I Semi-algorithm:
I build the tree...
I ... while testing on-the-fly if it is winning;
I map a winning strategy to a controller T .

I Cut some useless branches with an order ṽ (that is not a wqo)

31/34

Algorithm in a nutshell

I Construct the unfolding of all possible parallel executions of P, A,
and all the possible controllers: infinite tree

I Infinitely branching (density of time): make it finitely branching by
I only allowing the controller to reset at most one fresh clock at each

step
I merging equivalent choices with respect to regions (based on the

precision (m,K) and the current set of clocks)

I Semi-algorithm:
I build the tree...
I ... while testing on-the-fly if it is winning;
I map a winning strategy to a controller T .

I Cut some useless branches with an order ṽ (that is not a wqo)

31/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C1 =
(
q1,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C1 =
(
q1,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C1 =
(
q1,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})

})
C7 =

(
q2,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})...

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C1 =
(
q1,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C1 =
(
q1,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}),
(s�, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C5=
(
q1,
{

(s♦, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈x1, (0, 1)〉 , 〈x, (0, 1)〉 , 〈y , (0, 1)〉})

})
C8=

(
q1,
{

(s♦, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , (0, 1)〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈x1, (0, 1)〉 , 〈x, (0, 1)〉 , 〈y , (0, 1)〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C5=
(
q1,
{

(s♦, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈x1, (0, 1)〉 , 〈x, (0, 1)〉 , 〈y , (0, 1)〉})

})
C8=

(
q1,
{

(s♦, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , {0}〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈y , (0, 1)〉}{〈x1, (0, 1)〉 , 〈x, (0, 1)〉}),
(s�, {〈x1, (0, 1)〉 , 〈x, (0, 1)〉 , 〈y , (0, 1)〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C6 =
(
q1,
{

(s♦, {〈y , {0}〉 , 〈x1, {1}〉 , 〈x, {1}〉}),
(s�, {〈y , {0}〉 , 〈x1, {1}〉 , 〈x, {1}〉}),
(s�, {〈x1, {1}〉 , 〈x, {1}〉 , 〈y , {1}〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C3 =
(
q1,
{

(s♦, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉}),

(s�, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

C3 =
(
q1,
{

(s♦, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉}),

(s�, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉})

})
C9 =

(
q0,
{

(s♦, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Running example: finite tree

u0

C0

u3

C3

u9

C9

b, 0<x,x1,x2<1, x2:=0

a, 0<
x,x

1 <
1, x

2 :=0

u2

C0

b, x=x1=1, x1:=0

u1

C1

C0

b,
x=

x
1 =

1,
x

1 :=
0

u7

C7

a, x,x
1 >

1, x
1 :=0

u6

C6

C0

b, x=x
1 =1, x

1 :=0

C6

a, x=x1 =1

a, x=x1 =1

u5

C5

C0

b, 0<x,x1<1, x1 :=0

u8

C8

C0

b, 0<x,x1 <1, x1 :=0

C8

a, 0<x,x1<
1

a, 0<x,x1<
1

a, 0<
x,x1

<1

u4

C1

a,
x=x

1
=0

a,
?,
x 1

:=
0

C0 =
(
q0,
{

(s♦, {〈x1, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉})
})

ṽ

C9 =
(
q0,
{

(s♦, {〈x2, {0}〉 , 〈x, {0}〉 , 〈y , {0}〉}
{〈x1, (0, 1)〉})

})

q0 q1 q2

grant, x := 0 req, x 6 1 req, x > 1, x := 0

req, x := 0

grant, x := 0

req, x > 1, x := 0

req, x 6 1

grant, x := 0

P

s♦ s� s⊥

{req, grant}, y := 0 req, y6 1 {req, grant}

req, y := 0 {req, grant}, y> 1A

32/34

Conclusion
Reactive synthesis with plant for MITL specifications

RS IRS BPrecRS BRessRS

Finite
...Ackerman-hard...

Undecidable Undecidable on-the-fly 3-EXPTIME
+ semi-algo

Infinite
Undecidable 3-EXPTIME
[Doyen, Geeraerts, Undecidable Undecidable [D’Souza and Madhusudan, 2002]

Raskin, and Reichert, 2009]

Future works:

I Test on benchmarks algorithm for BRessRS (over MITL), and
semi-algorithm for BPrecRS (over timed automata)

I Explore other timed logics: Event-Clock Logic / Event-Clock
Automata?

I Semi-algorithm for BPrecRS over infinite automata?

I Decidable fragments for BPrecRS

Thank you for your attention

33/34

Conclusion
Reactive synthesis with plant for MITL specifications

RS IRS BPrecRS BRessRS

Finite
...Ackerman-hard...

Undecidable Undecidable on-the-fly 3-EXPTIME
+ semi-algo

Infinite
Undecidable 3-EXPTIME
[Doyen, Geeraerts, Undecidable Undecidable [D’Souza and Madhusudan, 2002]

Raskin, and Reichert, 2009]

Future works:

I Test on benchmarks algorithm for BRessRS (over MITL), and
semi-algorithm for BPrecRS (over timed automata)

I Explore other timed logics: Event-Clock Logic / Event-Clock
Automata?

I Semi-algorithm for BPrecRS over infinite automata?

I Decidable fragments for BPrecRS

Thank you for your attention

33/34

Conclusion
Reactive synthesis with plant for MITL specifications

RS IRS BPrecRS BRessRS

Finite
...Ackerman-hard...

Undecidable Undecidable on-the-fly 3-EXPTIME
+ semi-algo

Infinite
Undecidable 3-EXPTIME
[Doyen, Geeraerts, Undecidable Undecidable [D’Souza and Madhusudan, 2002]

Raskin, and Reichert, 2009]

Future works:

I Test on benchmarks algorithm for BRessRS (over MITL), and
semi-algorithm for BPrecRS (over timed automata)

I Explore other timed logics: Event-Clock Logic / Event-Clock
Automata?

I Semi-algorithm for BPrecRS over infinite automata?

I Decidable fragments for BPrecRS

Thank you for your attention

33/34

References

Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier. Controller synthesis for MTL
specifications. In Proceedings of the 17th International Conference on Concurrency
Theory (CONCUR’06), volume 4137 of Lecture Notes in Computer Science, pages
450–464. Springer, 2006.

Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating
timed automata. In Proceedings of the 11th international conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’13), volume 8053 of Lecture
Notes in Computer Science, pages 47–61. Springer, 2013.

Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, and Julien Reichert.
Realizability of real-time logics. In Proceedings of the 7th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS’09), volume 5813
of Lecture Notes in Computer Science, pages 133–148. Springer, 2009.

Deepak D’Souza and P. Madhusudan. Timed control synthesis for external
specifications. In Proceedings of the 19th Annual conference on Theoretical
Aspects of Computer Science (STACS’02), volume 2285 of Lecture Notes in
Computer Science, pages 571–582. Springer, 2002.

Joël Ouaknine and James Worrell. On the decidability and complexity of metric
temporal logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

34/34

