
On Static Malware Detection

Tayssir Touili

LIPN, CNRS & Univ. Paris 13

Motivation: Malware Detection

• The number of new malware exceeds 75 million by the end of 2011, and is still
increasing.

• The number of malware that produced incidents in 2010 is more than 1.5 billion.
• The worm MyDoom slowed down global internet access by 10% in 2004.
• Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a

central computer system used to monitor technical problems in the aircraft was
infected with malware

Motivation: Malware Detection

• The number of new malware exceeds 75 million by the end of 2011, and is still
increasing.

• The number of malware that produced incidents in 2010 is more than 1.5 billion.
• The worm MyDoom slowed down global internet access by 10% in 2004.
• Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a

central computer system used to monitor technical problems in the aircraft was
infected with malware

 Malware detection is
important!!

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

 be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make

them undetectable

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

 be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make

them undetectable

• Code emulation: Executes binary code in a virtual
environment

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make them

undetectable

• Code emulation: Executes binary code in a virtual
environment
o Checks program’s behavior only in a limited time interval

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware has one
signature
o Easy to get around
o New variants of viruses with the same behavior cannot be detected

by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make them undetectable

• Code emulation: Executes binary code in a virtual environment
o Checks program’s behavior only in a limited time interval

 Solution:
Check the behavior (not the syntax) of

the program without executing it

 Static Analysis and Model Checking
are good candidates

Goal: Static Analysis and Model-
checking for malware detection

Existing works: use finite automata to model
the programs

Stack?

 Binary code ╞ Malicious behavior ?

 Model? Specification
formalism?

Stack: important for malware detection

• To achieve their goal, malware have to call functions
of the operating system

• Antiviruses determine malware by checking the calls
 to the operating systems.
• Virus writers try to hide these calls.

L0 : call f
L1: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L1: …
 …
 …
f : function f

Stack: important for malware detection

• To achieve their goal, malware have to call functions
of the operating system

• Antiviruses determine malware by checking the calls
 to the operating systems.
• Virus writers try to hide these calls.

L0 : call f
L1: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L1: …
 …
 …
f : function f

 Important to analyse the program’s
stack

 Solution:
Use pushdown systems to model

programs

Pushdown Systems

PDS = finite automaton + Stack

P=(P, Г, Δ),

• P is a finite set of control states

• Г is the stack alphabet

• Δ (P×⊆ Г) × (P×Г*) is a finite set of transitions

• A configuration is a pair <p,ω> P∈ ×Г*

• If <p, α> → <p’,ω> ∈ Δ, then, for every u ∈Г*,

 <p, αu> => <p’,ωu>

From Binary Codes to PDSs

Difficulty:

mov eax, 1
dec eax
push eax
call GetModuleHandleA

0 is pushed
onto the stackIt’s non-trival to get

registers’ values

Computing Registers’ Values
We need an oracle that computes the
values of the registers

mov eax, 1
dec eax
push eax
call GetModuleHandleA

eax’s value
is 0

We use Jakstab [Kinder-Veith 2008]
to implement the oracle

Jakstab (Java Toolkit for static analysis of binaries)
does a kind of constant propagation to determine

 registers’ values

From Binary Codes to PDSs

l1: mov eax, 1
l2: dec eax
l3: push eax
l4: call GetModuleHandleA
l5: ...

g0= entry point of
GetModuleHandeA

l1

l2
l3
l4

l2

l3
l4
g0

Push 0
Push l5

Control states of PDS = control points of program
Stack alphabet = return addresses+ registers’ values

Malicious behaviors?

 Binary code ╞ Malicious behavior ?

 Specification
formalism?

 PDS

Specification of malicious behaviors?
Example: fragment of email worm Avron

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

mov eax, 0
push eax
call GetModuleHandleA

Specification of malicious behaviors?
Example: fragment of email worm Avron

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

mov eax, 0
push eax
call GetModuleHandleA

How to describe this specification?

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

EX p: there is a path where p holds at the next state

p
EX p

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

 ˅
mov(ebx,0)˄EX (push(ebx)˄EX call GetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX call GetModuleHandleA)

 ˅ ….. all the other registers

EX p: there is a path where p holds at the next state

p
EX p

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

 ˅
mov(ebx,0)˄EX (push(ebx)˄EX call GetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX call GetModuleHandleA)

 ˅ ….. all the other registers

EX p: there is a path where p holds at the next state

p
EX p

Huge!

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL:
mov(eax,0)˄EX (push(eax)˄EX callGetModuleHandleA)

 ˅
mov(ebx,0)˄EX (push(ebx)˄EX callGetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX callGetModuleHandleA)

 ˅ ….. all the other registers

∃ ,∀
 CTPL = CTL +
 variables +

In CTPL:
 r ᴲ (mov(r,0)˄EX (push(r) ˄ EX call GetModuleHandleA))

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL:
mov(eax,0)˄EX (push(eax)˄EX callGetModuleHandleA)

 ˅
mov(ebx,0)˄EX (push(ebx)˄EX callGetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX callGetModuleHandleA)

 ˅ ….. all the other registers

∃ ,∀
 CTPL = CTL +
 variables +

In CTPL:
 r ᴲ (mov(r,0)˄EX (push(r) ˄ EX call GetModuleHandleA))

 CTPL cannot describe the stack:
needed for malicious behaviors

description

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 r ᴲ (mov(r,0)˄EX (push(r) ˄ EX call GetModuleHandleA))

mov eax, 0
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 r ᴲ (mov(r,0)˄EX (push(r) ˄ EX call GetModuleHandleA))

mov eax, 0
push ebx
pop ebx
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Our solution: Consider predicates over the stack

In SCTPL:
 EF (call GetModuleHandleA ˄ 0Г*)

EF p: there is a path where p holds in the future

 the head of
stack is 0

SCTPL Logic

::= b |¬| ∧ | EX | E[ U ] | EG 

SCTPL Logic

::= b(y1,…,yn) |¬| ∧ | EX | E[ U ] | EG 

• y ∈ Y, a set of variables over a finite domain D

SCTPL Logic

::= b(y1,…,yn) |¬| ∧ | EX | E[U] | EG |y 

• y ∈ Y, a set of variables over a finite domain D

SCTPL Logic

::= b(y1,…,yn) |¬| ∧ | EX | E[U] | EG |y  | e

• y ∈ Y, a set of variables over a finite domain D
• e is a regular expression over Y∪Г

L0: call f
L1: …
 …
…
f : function f

L0: push L1

L2: jmp f
L1: …
 …
 …
f : function f

L E(!(f call(f)  EX LГ*) U (ret  LГ*))

L is not a return address of a function call

Expressing Obfuscated Calls in SCTPL

Normal function call Obfuscated function call

Obfuscate
the call

LГ* = predicate
expressing that the
top of the stack is L

Expressing Obfuscated Returns in SCTPL

l0: call f
l1: ...
...
f :..
...
 ret // return

l0: call f
l1: ...
...
f : ...
...
 pop eax
 jmp eax

L EF(f call(f)  EX LГ* EG!(ret  LГ*))

L is a return address of a function call

Normal return
Obfuscated return

Obfuscate
the return

aГ*

Expressing Appending Viruses in SCTPL

L0 : call f
a :
…
f: pop eax

An appending virus append itself at the end of the host file
The virus has to compute its absolute address in memory

aГ*

Proposition:
SCTPL is as expressive as CTL with regular valuations
(CTLr), but it is exponentially more succinct than CTLr

Malware Detection using SCTPL
Model-Checking for PDSs

 Binary code ╞ Malicious behavior ?

 SCTPL PDS
 ?
╞

 CTLr PDS

╞

[Song, Touili, CONCUR 2011]

Tool runs out of memory on
several malwares

SCTPL Model-Checking for PDSs

 Binary code ╞ Malicious behavior ?

 SCTPL PDSs

╞

Thm: Given a PDS P and a SCTPL formula ,
whether P satisfies  can be effectively decided in
time O(2), where k is the number of states
of the finite automata representing regular predicates,
d is the number of valuations of variables Y over the
domain D.

5(|P|·||+k)2d)

Experiments: SCTPL vs CTLr

 Binary code ╞ Malicious behavior ?

 SCTPL PDSs

╞

Malware Detection using SCTPL
Satisfiability for PDSs

How to Make Malware Detection
More Efficient

Idea: reduce the size of program model

Approach: abstraction

•removes irrelevant instructions from the program

•preserves its malicious behaviors

Collapsing Abstraction
Remove instructions:
•not used in SCTPL formula
•don’t change the stack
•don’t change the control
flow

n1: mov eax, 1
n2: dec eax
n3: push eax
n4: call GetModuleHandleA

n1: mov eax, 1
n2: dec eax eax=1
n3: push eax eax=0
n4: call GetModuleHandleA

EF(call(GetModuleHandleA)  0Г*)

Keep instructions:
•used in SCTPL formula
•push, pop
•call, ret, jmp, jz, jnz, etc

Keep original registers’ values

Oracle

n3: push eax eax=0
n4: call GetModuleHandleA

Abstraction

This abstraction does
not preserve

all SCTPL formulas

Sublogic SCTPL\X

 ::= b(x1,…,xm) | e | x  | ¬ |12 |EG  |
E[1U2] | call(func)  AX e

Next time operator AX is used only to specify
the return addresses of the callers.

Formulas of the form “call(func)  AX e” are needed to
express some malicious behavior, e.g., obfuscated call

L (E !(f call(f)  AX LГ*) U (ret  LГ*))

Sublogic SCTPL\X

 ::= b(x1,…,xm) | e | x  | ¬

 |12 |EG |E[1U2]

 | call(func)  AX e

Next time operator AX is used only to specify
the return addresses of the callers.

Theorem: A PDS P modeling a binary program satisfies
a SCTPL\X formula  iff the PDS P’ modeling the

abstracted program satisfies 

SCTPL\X is sufficient to specify
malware

•SCTPL formulas using AX or EX other than in the form
of call(func)  AX e are not robust
•Indeed, suppose a control point n satisfies AX or EX,
virus writers can insert any instructions at n without
changing the behavior
•This makes specifications using subformulas of the
form AX or EX easy to break by virus writers
•Thus, it is recommended to use AF or EF for malware
specification instead of AX or EX

Summary of the Approach

 Binary code ╞ Malicious behavior ?

PDS SCTPL\X╞

Since the collapsing abstraction
preserves SCTPL\X formulas

Collapsing
 Abstraction

We use Jakstab and IDA Pro to implement the oracle
that computes the values of the registers at each
control point

Implementation

 We implemented our techniques in a tool for malware
detection

The PoMMaDe tool for
Malware Detection

Disassembler
IDAPro+
Jakstab

[Kinder,Veith,2008]

Binary
program

Assembly
program

 Malicious behaviors
specified in

SCTPL

PDS Model
Builder

SCTPL
satisfiability

PDS

No, benign

Yes, may be a malware

Experiments of POMMADE

1.Our tool was able to detect more than 800
malwares

2.We checked 400 real benign programs from
Windows XP system. Benign programs are
proved benign with only three false positives.

3.Our tool was able to detect all the 200 new
malwares generated by two malware creators

4.Analyze the Flame malware that was not
detected for more than 5 years by any anti-virus

Our tool vs. known anti-viruses

NGVCK and VCL32 malware generators
1.generate 200 new malwares
2. the best malware generators
3.generate complex malwares

G
en

erato
r

N
o

. O
f V

arian
ts

P
O

M
M

A
D

E

A
vira

K
asp

ersky

A
vast

Q
ih

o
o

 360

M
cA

fee

A
V

G

B
itD

efen
d

er

E
set N

o
d

32

F
-S

ecu
re

N
o

rto
n

P
an

d
a

Tren
d

 M
icro

N
G

V
C

K

1
00

1
0

0%

0
%

2
3%

1
8%

6
8%

1
00

%

1
1%

9
7%

8
1%

0% 4
6%

0
%

0
%

V
C

L
32

1
00

1
0

0%

0
%

2
%

1
00

%

9
9%

0
%

1
00

%

1
00

%

7
6%

0% 3
0%

0
%

0
%

Analyze The Flame Malware
 Flame is being used for targeted cyber

espionage in Middle Eastern countries.
 It can
1.sniff the network traffic
2.take screenshots
3.record audio conversations
4.intercept the keyboard
5.and so on
It was not detected by any anti-virus for 5 years

Our tool can detect this malware Flame

The PoMMaDe tool for
binary code analysis

Disassembler
IDAPro+
Jakstab

[Kinder,Veith,2008]

Binary
program

Assembly
program

 Malicious behaviors
specified in

SCTPL

PDS Model
Builder

SCTPL
satisfiability

PDS

No, benign

Yes, may be a malware

• Most program analysers operate on source code

• Binary code analysis is needed if source code is
not available

• Compilers may introduce errors

Another application:
Binary code analysis

The PoMMaDe tool for
Malware Detection

Disassembler
IDAPro+
Jakstab

[Kinder,Veith,2008]

Binary
program

Assembly
program

 Malicious behaviors
specified in

SCTPL

PDS Model
Builder

SCTPL
satisfiability

PDS

No, benign

Yes, may be a malware

 How to generate these
malicious behaviors?

Malicious Behavior Extraction

• Extracting malicious behaviors requires a
huge amount of engineering effort.
– a tedious and manual study of the code.

– a huge time for that study.

The main challenge is how
to make this step

automatically.

Our goal is …

To extract automatically
the malicious behaviors!

Model Malicious Behaviors

How ?

What is a good model for
a malicious behavior??

Transfer data from
Internet into a file

stored in the
system folder, then

execute this file.

Trojan Downloader

n15 push 0FEh
n16 push offset dword_4097A4
n17 call GetSystemDirectoryA
n18 push 0
n19 push 0
n20 lea eax, [ebp-1Ch]
n21 mov ebx, eax
n22 push ebx
n23 push eax
n24 push 0
n25 call URLDownloadToFileA
n26 push 5
n27 call sub_4038B4
n28 push ebx
n29 call WinExec

*This code is extracted from Trojan-
Downloader.Win32.Delf.abk

n15 push 0FEh
n16 push offset dword_4097A4
n17 call GetSystemDirectoryA
n18 push 0
n19 push 0
n20 lea eax, [ebp-1Ch]
n21 mov ebx, eax
n22 push ebx
n23 push eax
n24 push 0
n25 call URLDownloadToFileA
n26 push 5
n27 call sub_4038B4
n28 push ebx
n29 call WinExec

Trojan Downloader

Get the path of the system
folder.

Transfer data from an URL
address into a file.

Executing this file in the
system folder.

GetSystemDirectoryA

URLDownloadToFileA

WinExec

Malicious API graph

How to extract such graph automatically!!!

…
n1 push offset Text
n2 push 0
n3 call MessageBoxA
…
n4 push 0FFFFFFF5h
n5 call GetStdHandle
n6 push eax
n7 call WriteFile
…
n8 push offset dword_4097A4
n9 call GetSystemDirectoryA
…
n10 push 0
n11 call URLDownloadToFileA
…
n12 push ebx
n13 call WinExec

Modeling a program

*An assembly code of
Trojan-Downloader.Win32.Delf.abk

n3, MessageBoxA

n5, GetStdHandle

n7, WriteFile

n9, GetSystemDirectoryA

n11, URLDownloadToFileA

n13, WinExec

The API call graph

An API call graph
represents the order of

execution of the
different API functions

in a program.

An API call graph
represents the order of

execution of the
different API functions

in a program.

…
n1 push offset Text
n2 push 0
n3 call MessageBoxA
…
n4 push 0FFFFFFF5h
n5 call GetStdHandle
n6 push eax
n7 call WriteFile
…
n8 push offset dword_4097A4
n9 call GetSystemDirectoryA
…
n10 push 0
n11 call URLDownloadToFileA
…
n12 push ebx
n13 call WinExec

Modeling a program

*An assembly code of
Trojan-Downloader.Win32.Delf.abk

n3, MessageBoxA

n5, GetStdHandle

n7, WriteFile

n9, GetSystemDirectoryA

n11, URLDownloadToFileA

n13, WinExec

The API call graph

The malicious
behavior !!!

Our goal is to extract such malicious
behavior from this graph.

How to extract malicious
behaviors?

Set of malwares

Set of benwares

API call graphs

API call graphs

Malicious
API graphs

Our goal:
Isolate the few relevant subgraphs (in malwares) from the

nonrelevant ones (in benwares).

Our goal:
Isolate the few relevant subgraphs (in malwares) from the

nonrelevant ones (in benwares).

This is an Information Retrieval (IR)
problem.

IR Problem vs. Our Problem

Retrieve relevant documents
and reject nonrelevant ones
in a collection of documents.

Retrieve relevant documents
and reject nonrelevant ones
in a collection of documents.

Isolate the few relevant
subgraphs (in malwares) from

the nonrelevant ones (in
benwares).

Isolate the few relevant
subgraphs (in malwares) from

the nonrelevant ones (in
benwares).

IR Problem Our Problem

Information Retrieval
Community

• Extensively studied the problem over
the past 35 years.

• Several efficient techniques. Web search, email
search, etc.

Adapt and apply this knowledge and
experience of the IR community to
our malicious behavior extraction

problem.

Adapt and apply this knowledge and
experience of the IR community to
our malicious behavior extraction

problem.

Our goal is …

Information Retrieval

• Information retrieval research has focused on
the retrieval of text documents and images.
– based on extracting from each document a set of

terms that allow to distinguish this document from
the other documents in the collection.

– measure the relevance of a term in a document
by a term weight scheme.

Term weight scheme in IR

• The term weight represents the relevance of a
term in a document.
– The higher the term weight is, the more relevant the

term is in the document.

• A large number of weighting functions have
been investigated.
– The TFIDF scheme is the most popular term

weighting in the IR community.

Basic TFIDF scheme

• The TFIDF term weight is measured from
the occurrences of terms in a document
and their appearances in other
documents.

How to apply to our graphs ?

Documents

Terms are words

Graphs

A B

C

Terms are nodes or
edges

Term weights of words Term weights of nodes
or edges

The relevant graph consists of
relevant nodes and edges.

Malicious API graph extraction ?

Set of malwares

Set of benwares

API call graphs

API call graphs

Malicious
API graphs?

Associate a weight
to each node/edge
of these graphs

Construct malicious API graphs

• A malicious API graph consists of nodes
and edges with the highest weight.

• Take nodes with highest weight and link
them using edges with heighest weight

Does the program
contain any
malicious
behavior ?

How to detect malwares?

Training set
(malwares +
benwares)

Malicious
API graphs

A new
program

API call
graph

Check
common

paths
Malware

Benware

How our graphs
can be used for

malware detection?
Yes

No

Experiments

• Apply on a dataset of 1980 benign programs
and 3980 malwares collected from Vx Heaven.
– Training set consists of 1000 benwares and 2420

malwares  extract malicious graphs.
– Test set consists of 980 benwares and 1560

malwares  for evaluating malicious graphs.

Performance Measurement

• High recall means that most of the
relevant items were computed.

• High precision means that the technique
computes more relevant items than
irrelevant.

(Detection rate)

99.04%

98.16%

Comparison with well-known
antiviruses

• Detect new unknown malwares

– 180 new malwares generated by NGVCK,
RCWG and VCL32 which are the best known
virus generators.

– 32 new malwares from Internet*.

* https://malwr.com/

https://malwr.com/

Comparison with well-known
antiviruses

A comparison of our method against well-
known antiviruses.

The problem is …

• Extracting malicious behaviors requires a
huge amount of engineering effort.
– a tedious and manual study of the code.

– a huge time for that study.

The main challenge is
to avoid this manual

work.

What about machine learning?

Apply machine learning to detect malwares
without extracting the malicious behaviors.

Our goal is…

To implement machine
learning for malware

detection.

Model Malicious Behaviors

n15 push 0FEh
n16 push offset dword_4097A4
n17 call GetSystemDirectoryA
n18 push 0
n19 push 0
n20 lea eax, [ebp-1Ch]
n21 mov ebx, eax
n22 push ebx
n23 push eax
n24 push 0
n25 call URLDownloadToFileA
n26 push 5
n27 call sub_4038B4
n28 push ebx
n29 call WinExec

Trojan Downloader

GetSystemDirectoryA

URLDownloadToFileA

WinExec

Malicious API graph

n15 push 0FEh
n16 push offset dword_4097A4
n17 call GetSystemDirectoryA
n18 push 0
n19 push 0
n20 lea eax, [ebp-1Ch]
n21 mov ebx, eax
n22 push ebx
n23 push eax
n24 push 0
n25 call URLDownloadToFileA
n26 push 5
n27 call sub_4038B4
n28 push ebx
n29 call WinExec

Trojan Downloader

GetSystemDirectoryA

URLDownloadToFileA

WinExec

Malicious API graph

How can we model a
program to learn such a

graph?

How can we model a
program to learn such a

graph?

…
n1 push offset Text
n2 push 0
n3 call MessageBoxA
…
n4 push 0FFFFFFF5h
n5 call GetStdHandle
n6 push eax
n7 call WriteFile
…
n8 push offset dword_4097A4
n9 call GetSystemDirectoryA
…
n10 push 0
n11 call URLDownloadToFileA
…
n12 push ebx
n13 call WinExec

Modeling a program

*An assembly code of
Trojan-Downloader.Win32.Delf.abk

n3, MessageBoxA

n5, GetStdHandle

n7, WriteFile

n9, GetSystemDirectoryA

n11, URLDownloadToFileA

n13, WinExec

The API call graph

An API call graph
represents the order of

execution of the
different API functions

in a program.

An API call graph
represents the order of

execution of the
different API functions

in a program.

Modeling a program

n3, MessageBoxA

n5, GetStdHandle

n7, WriteFile

n9, GetSystemDirectoryA

n11, URLDownloadToFileA

n13, WinExec

The API call graph

How to learn this
behavior?

Our approach

Malicious
programs

Benign
programs

 API Graphs

 API Graphs

A new
program

 API
Graph

Malicious!

Benign!

learning
process

learning
model

Classifying
process

Our approach

Malicious
programs

Benign
programs

API Graphs

 API Graphs

A new
program

 API
Graph

Malicious!

Benign!

Training
process

Training
model

Classifying
process

The best learning technique for
graphs??

The problem…

• The existing machine learning techniques
can mainly be applied to vectorial data.

• But our data are API call graphs.
– Not vectorial data!!!

We need to use a learning technique
for graphs.

• The best learning technique that can be
applied for graphs
– Kernel based Support Vector Machines.

Kernel based SVM

Summary of our approach

Malicious
programs

Benign
programs

 API Graphs

 API Graphs

A new
program

 API
Graph G

Malicious!

Benign!

Training
process

h(G)

h(G)>=0

True

False

Training

Detecting

Experiments

• We evaluate this technique on the dataset
of 2323 benign programs and 6291
malicious programs.
– Training set of 2000 malwares and 2000

benwares.

– Test set of 4291 malwares and 323 benwares.

The results on the dataset

TP: True Positives

TN: True Negatives

FP: False Positives

FN: False Negatives

TPR: True Positive Rates

FPR: False Positive Rates

ACC = (TP+TN)/(TP+FN+TN+FP): Accuracy

TPR = TP/(TP+FN)

FPR = FP/(TN+FP)

Anti-virus software comparison

• We generate 180 malwares from virus
generators (RCWG, VCL32 and NGVCK).

Behavior Signatures

• SCTPL or malicious API graphs to represent
malicious behaviors

• These correspond to behavior signatures

Questions?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91

