### **On Static Malware Detection**

#### **Tayssir Touili**

#### LIPN, CNRS & Univ. Paris 13

## **Motivation: Malware Detection**

- The number of new malware exceeds 75 million by the end of 2011, and is still increasing.
- The number of malware that produced incidents in 2010 is more than 1.5 billion.
- The worm MyDoom slowed down global internet access by 10% in 2004.
- Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a central computer system used to monitor technical problems in the aircraft was infected with malware

## **Motivation: Malware Detection**

- The number of new malware exceeds 75 million by the end of 2011, and is still increasing.
- The number of malware that produced incidents in 10 is more than 1.5 billion.
   MyDoom slower global inters by 10% in 2004.
   Authorites Malware detection is important!!

• **Signature (pattern) matching:** Every known malware has one signature

- **Signature (pattern) matching:** Every known malware has one signature
  - **O** Easy to get around
  - New variants of viruses with the same behavior cannot be detected by these techniques
  - Nop insertion, code reordering, variable renaming, etc
  - Virus writers frequently update there viruses to make them undetectable

- Signature (pattern) matching: Every known malware has one signature
  - **O** Easy to get around
  - New variants of viruses with the same behavior cannot be detected by these techniques
  - Nop insertion, code reordering, variable renaming, etc
  - Virus writers frequently update there viruses to make them undetectable
- **Code emulation:** Executes binary code in a virtual environment

- Signature (pattern) matching: Every known malware has one signature
  - **O** Easy to get around
  - New variants of viruses with the same behavior cannot be detected by these techniques
  - **O** Nop insertion, code reordering, variable renaming, etc
  - Virus writers frequently update there viruses to make them undetectable
- **Code emulation:** Executes binary code in a virtual environment
  - **O** Checks program's behavior only in a limited time interval



## **Goal: Static Analysis and Model**checking for malware detection Binary code = Malicious behavior ? Model? Specificationformalism? Existing works: use finite automata to model the programs Stack?

### **Stack: important for malware detection**

- To achieve their goal, malware have to call functions of the operating system
- Antiviruses determine malware by checking the calls to the operating systems.
- Virus writers try to hide these calls.







## **Pushdown Systems**

- PDS = finite automaton + Stack
- **Ρ**=(Ρ, Γ, Δ),
- P is a finite set of control states
- **Г** is the stack alphabet
- $\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)$  is a finite set of transitions
- A configuration is a pair  $< p, \omega > \in P \times \Gamma^*$
- If  $< p, \alpha > \rightarrow < p', \omega > \in \Delta$ , then, for every  $u \in \Gamma^*$ ,

<p, αu> => <p',ωu>

## **From Binary Codes to PDSs**

## **Difficulty:**

# It's non-trival to get registers' values

mo

car

**Computing Registers' Values** We need an oracle that computes the values of the registers



We use Jakstab [Kinder-Veith 2008] to implement the oracle

Jakstab (Java Toolkit for static analysis of binaries) does a kind of constant propagation to determine registers' values

## **From Binary Codes to PDSs**



Control states of PDS = control points of program Stack alphabet = return addresses+ registers' values



## **Malicious behaviors?** Binary code = Malicious behavior ? Specification formalism?

- Call the API GetModuleHandleA
- with 0 as parameter.
- This returns the entry address of its own executable.
- Copy itself to other locations.

mov eax, <mark>0</mark> push eax call GetModuleHandleA

Call the API GetModuleHandleA

with 0 as parameter.

This returns the entry address of its

own executable.

Copy itself to other locations.

mov eax, 0 push eax call GetModuleHandleA

**How to describe this specification?** 



mov eax, <mark>0</mark> push eax call <mark>GetModuleHandleA</mark>

In CTL (Branching-time temporal logic) : mov(eax,0)<sup>EX</sup> (push(eax)<sup>EX</sup> call GetModuleHandleA)

**EX p:** there is a path where **p** holds at the next state



mov eax, <mark>0</mark> push eax call GetModuleHandleA

In CTL (Branching-time temporal logic) : mov(eax,0)<sup>•</sup>EX (push(eax)<sup>•</sup>EX call GetModuleHandleA)

mov(ebx,0)^EX (push(ebx)^EX call GetModuleHandleA)

mov(ecx,0)<sup>EX</sup> (push(ecx)<sup>EX</sup> call GetModuleHandleA) ..... all the other registers

**EX** *p*: there is a path where *p* holds at the next state



mov eax, <mark>0</mark> push eax call GetModuleHandleA

In CTL (Branching-time temporal logic) : mov(eax,0)^EX (push(eax)^EX call GetModuleHandleA)

mov(ebx,0)^EX (push(ebx)^EX call GetModuleHandleA)

mov(ecx,0)<sup>EX</sup> (push(ecx)<sup>EX</sup> call GetModuleHandleA) ..... all the other registers

**EX** *p*: there is a path where *p* holds at the next state



mov eax, <mark>0</mark> push eax call GetModuleHandleA

mov(eax,0)<sup>•</sup>EX (push(eax)<sup>•</sup>EX callGetModuleHandleA)

mov(ebx,0)^EX (push(ebx)^EX callGetModuleHandleA)

#### In CTPL:

" r (mov(r,0)^EX (push(r)^ EX call GetModuleHandleA))



- Call the API GetModuleHandleA
- with 0 as parameter.
- This returns the entry address of its own executable.
- Copy itself to other locations.

mov eax, 0 push eax call GetModuleHandleA

### In CTPL:

" r (mov(r,0)^EX (push(r)^ EX call GetModuleHandleA))

- Call the API GetModuleHandleA
- with 0 as parameter.
- This returns the entry address of its own executable.
- Copy itself to other locations.

mov eax, 0 push ebx pop ebx push eax call GetModuleHandleA



**EF p**: there is a path where **p** holds in the future

#### $\varphi ::= b |\neg \varphi| \varphi \land \varphi | EX \varphi| E[\varphi U \varphi] | EG \varphi$

- $\boldsymbol{\varphi} ::= \boldsymbol{b}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_n) \mid \neg \boldsymbol{\varphi} \mid \boldsymbol{\varphi} \wedge \boldsymbol{\varphi} \mid \boldsymbol{\mathsf{EX}} \boldsymbol{\varphi} \mid \boldsymbol{\mathsf{E}}[\boldsymbol{\varphi} \mid \boldsymbol{\mathsf{U}} \boldsymbol{\varphi}] \mid \boldsymbol{\mathsf{EG}} \boldsymbol{\varphi}$
- $y \in Y$ , a set of variables over a finite domain **D**

- $\varphi ::= b(\mathbf{y}_1, \dots, \mathbf{y}_n) |\neg \varphi| \varphi \wedge \varphi | \mathbf{EX} \varphi| \mathbf{E}[\varphi \mathbf{U} \varphi] | \mathbf{EG} \varphi | \mathbf{\exists y} \varphi$
- $y \in Y$ , a set of variables over a finite domain **D**

 $\varphi ::= b(y_1, \dots, y_n) |\neg \varphi| \varphi \land \varphi | EX \varphi| E[\varphi U\varphi] | EG \varphi | \exists y \varphi | e$ 

- $\mathbf{y} \in \mathbf{Y}$ , a set of variables over a finite domain  $\mathbf{D}$
- e is a regular expression over YUT

#### **Expressing Obfuscated Calls in SCTPL**



### **Expressing Obfuscated Returns in SCTPL**





### **Expressing Appending Viruses in SCTPL**

An appending virus append itself at the end of the host file The virus has to compute its absolute address in memory

$$\mathbf{AG} \left( \forall f \forall a \left( \underbrace{(call(f) \land \mathbf{AX} \texttt{ar}}_{a \texttt{is a return address}} \Longrightarrow \mathbf{AF} \neg r(pop(r) \land \texttt{ar} \right) \right)$$

$$a \texttt{is a return address}_{of a \texttt{procedure call}}$$



## **SCTPL Model-Checking for PDSs**



**Thm:** Given a PDS *P* and a SCTPL formula  $\phi$ , whether *P* satisfies  $\phi$  can be effectively decided in time O(2<sup>5(|P|·| $\phi$ |+k)2<sup>o</sup>)</sup>), where k is the number of states of the finite automata representing regular predicates, d is the number of valuations of variables **Y** over the domain **D**.

## **Experiments: SCTPL vs CTLr**

| Examples      |            | Our techniques |         | SCTPL→CTLr     |         | Deput  |
|---------------|------------|----------------|---------|----------------|---------|--------|
|               |            | Time(s)        | Mem(Mb) | Time(s)        | Mem(Mb) | Result |
| Windows Virus | Adson.1559 | 0.22           | 2.1     |                | MemOut  | Y      |
|               | Adson.1651 | 0.23           | 2.1     | 3 <b>-</b> 3   | MemOut  | Y      |
|               | Adson.1703 | 0.25           | 2.1     |                | MemOut  | Y      |
|               | Adson.1734 | 0.31           | 2.6     | 12             | MemOut  | Y      |
|               | Alcaul.d   | 0.20           | 0.8     | 47.70          | 51      | Y      |
|               | Alcaul.i   | 4.38           | 0.28    | 159.88         | 169.64  | Y      |
|               | Alcaul.j   | 0.30           | 2.1     | 218.25         | 198.71  | Y      |
| Email Worm    | Klez.a     | 1.62           | 10.8    | -              | MemOut  | Y      |
|               | Klez.b     | 1.55           | 10.8    | -              | MemOut  | Y      |
|               | Klez.c     | 1.27           | 8.9     |                | MemOut  | Y      |
|               | Klez.d     | 1.47           | 10.3    | 1427           | MemOut  | Y      |
|               | Klez.e     | 0.77           | 7.0     | 121            | MemOut  | Y      |
|               | Klez.f     | 0.76           | 7.0     |                | MemOut  | Y      |
|               | Klez.g     | 0.75           | 7.0     | 10 <b>7</b> 23 | MemOut  | Y      |
|               | Klez.i     | 0.74           | 7.0     | 100            | MemOut  | Y      |
|               | Klez.j     | 0.74           | 7.0     | 373            | MemOut  | Y      |
|               | Mydoom.c   | 145.20         | 322.8   | 1.70           | MemOut  | Y      |
|               | Mydoom.e   | 123.22         | 267.5   | <del>.</del>   | MemOut  | Y      |
|               | Mydoom.g   | 117.50         | 256.7   |                | MemOut  | Y      |
|               | Netsky.a   | 573.8          | 10.1    | -              | MemOut  | Y      |
|               | Netsky.a   | 2.73           | 14.5    | -              | MemOut  | Y      |
|               | Netsky.b   | 573.8          | 10.1    | -              | MemOut  | Y      |
|               | Netsky.b   | 2.73           | 14.5    |                | MemOut  | Y      |
|               | Netsky.c   | 573.8          | 10.1    | -              | MemOut  | Y      |
|               | Netsky.c   | 2.73           | 14.5    |                | MemOut  | Y      |
|               | Netsky.d   | 573.8          | 10.1    | 823            | MemOut  | Y      |
|               | Netsky.d   | 2.73           | 14.5    | 220            | MemOut  | Y      |
#### Malware Detection using SCTPL Satisfiability for PDSs



#### How to Make Malware Detection More Efficient

**Idea:** reduce the size of program model

- Approach: abstraction
- •removes irrelevant instructions from the program
- •preserves its malicious behaviors



#### Sublogic SCTPL\X

- $\phi ::= b(x_1, \dots, x_m) | e | \exists x \phi | \neg \phi | \phi_1^{} \phi_2 | EG \phi$  $E[\phi_1 U \phi_2] | call(func)^{} AX e$
- Next time operator **AX** is used only to specify the return addresses of the callers.
- Formulas of the form "call(func) ^ AX e" are needed to express some malicious behavior, e.g., obfuscated call BL ( E !(Bf call(f) ^ AX L**F\***) U (ret ^ L**F\***))

#### Sublogic SCTPL\X

$$\phi ::= b(x_1, \dots, x_m) | e | \exists x \phi | \neg \phi$$
$$|\phi_1^{\wedge}\phi_2 | EG \phi | E[\phi_1 U \phi_2]$$
$$| call(func)^{\wedge} AX e$$

Next time operator **AX** is used only to specify the return addresses of the callers.

Theorem: A PDS *P* modeling a binary program satisfies a SCTPL\X formula  $\phi$  iff the PDS *P*' modeling the abstracted program satisfies  $\phi$ 

## SCTPL\X is sufficient to specify malware

- •SCTPL formulas using AX or EX other than in the form of call(func) ^ AX e are not robust
- •Indeed, suppose a control point n satisfies  $AX\phi$  or  $EX\phi$ , virus writers can insert any instructions at n without changing the behavior
- •This makes specifications using subformulas of the form AX  $\phi$  or EX  $\phi$  easy to break by virus writers
- •Thus, it is recommended to use AF or EF for malware specification instead of AX or EX

#### **Summary of the Approach**

Binary code = Malicious behavior ? Collapsing 😑 Abstraction Since the collapsing abstraction preserves SCTPL\X formulas

#### Implementation

We implemented our techniques in a tool for malware detection

We use Jakstab and IDA Pro to implement the oracle that computes the values of the registers at each control point

#### The PoMMaDe tool for Malware Detection



#### **Experiments of PoMMADE**

- 1.Our tool was able to detect more than 800 malwares
- 2.We checked 400 real benign programs from Windows XP system. Benign programs are proved benign with only three false positives.
- 3.Our tool was able to detect all the 200 new malwares generated by two malware creators
- 4.Analyze the Flame malware that was not detected for more than 5 years by any anti-virus

#### **Our tool vs. known anti-viruses**

NGVCK and VCL32 malware generators 1. generate 200 new malwares 2. the best malware generators 3. generate complex malwares

| Generator | No. Of Variants | POMMADE | Avira | Kaspersky | Avast | Qihoo 360   | McAfee | AVG  | BitDefender | Eset Nod32 | F-Secure | Norton | Panda | Trend Micro |
|-----------|-----------------|---------|-------|-----------|-------|-------------|--------|------|-------------|------------|----------|--------|-------|-------------|
| NGVCK     | 100             | 100%    | 0%    | 23%       | 18%   | <b>68</b> % | 100%   | 11%  | 97%         | 81%        | 0%       | 46%    | 0%    | 0%          |
| VCL32     | 100             | 100%    | 0%    | 2%        | 100%  | %66         | 0%     | 100% | 100%        | 76%        | 0%       | 30%    | 0%    | 0%          |

#### **Analyze The Flame Malware**

**Flame** is being used for targeted cyber espionage in Middle Eastern countries. It can

**1.sniff the network traffic** 

**2.take screenshots** 

**3.record audio conversations** 

**4.intercept the keyboard** 

**5.and so on** 

It was not detected by any anti-virus for 5 years

#### **Our tool can detect this malware Flame**

#### The PoMMaDe tool for binary code analysis



**Another application: Binary code analysis** 

- Most program analysers operate on source code
- Binary code analysis is needed if source code is not available
- Compilers may introduce errors



Yes, may be a malware

#### **Malicious Behavior Extraction**

- Extracting malicious behaviors requires a huge amount of engineering effort.
  - a tedious and manual study of the code.
  - a huge time for that study.

The main challenge is **how** to make this step automatically.

# Our goal is ... To extract *automatically* the malicious behaviors!

#### Model Malicious Behaviors



#### Trojan Downloader

n<sub>29</sub>

Transfer data from Internet into a file stored in the system folder, then execute this file.

> \*This code is extracted from Trojan-Downloader.Win32.Delf.abk

| n                | nuch | OEEh                |
|------------------|------|---------------------|
| 11 <sub>15</sub> | pusn | UFEII               |
| n <sub>16</sub>  | push | offset dword_4097A4 |
| n <sub>17</sub>  | call | GetSystemDirectoryA |
| n <sub>18</sub>  | push | 0                   |
| n <sub>19</sub>  | push | 0                   |
| n <sub>20</sub>  | lea  | eax, [ebp-1Ch]      |
| n <sub>21</sub>  | mov  | ebx, eax            |
| n <sub>22</sub>  | push | ebx                 |
| n <sub>23</sub>  | push | eax                 |
| n <sub>24</sub>  | push | 0                   |
| n <sub>25</sub>  | call | URLDownloadToFileA  |
| n <sub>26</sub>  | push | 5                   |
| n <sub>27</sub>  | call | sub_4038B4          |
| n <sub>28</sub>  | push | ebx                 |
| n <sub>20</sub>  | call | WinExec             |

#### Trojan Pownloader



#### Modeling a program





# How to extract malicious behaviors?



Our goal:

Isolate the few relevant subgraphs (in malwares) from the nonrelevant ones (in benwares).

#### IR Problem vs. Our Problem

#### **IR Problem**

#### **Our Problem**

Retrieve relevant documents and reject nonrelevant ones in a collection of documents. Isolate the few relevant subgraphs (in malwares) from the nonrelevant ones (in benwares). Information Retrieval Community

• Extensively studied the problem over the past 35 years.

• Several efficient techniques. Web search, email search, etc.

#### Our goal is ...

Adapt and apply this knowledge and experience of the IR community to our malicious behavior extraction problem.

#### Information Retrieval

- Information retrieval research has focused on the retrieval of text documents and images.
  - based on extracting from each document a <u>set of</u> <u>terms</u> that allow to distinguish this document from the other documents in the collection.
  - measure the <u>relevance of a term</u> in a document by <u>a term weight scheme</u>.

### Term weight scheme in IR

- The term weight represents the relevance of a term in a document.
  - The higher the term weight is, the more relevant the term is in the document.
- A large number of weighting functions have been investigated.
  - The TFIDF scheme is the most popular term weighting in the IR community.

#### Basic TFIDF scheme

• The TFIDF term weight is measured from the occurrences of terms in a document and their appearances in other documents.

### How to apply to our graphs ?



### Malicious API graph extraction ?



#### **Construct malicious API graphs**

- A malicious API graph consists of nodes and edges with the highest weight.
- Take nodes with highest weight and link them using edges with heighest weight

#### How to detect malwares?



#### Experiments

- Apply on a dataset of 1980 benign programs and 3980 malwares collected from Vx Heaven.
  - Training set consists of 1000 benwares and 2420 malwares → extract malicious graphs.
  - Test set consists of 980 benwares and 1560 malwares → for evaluating malicious graphs.

#### Performance Measurement

- High recall means that most of the relevant items were computed.  $Recall = \frac{True Positives}{Number of graphs}$ (Detection rate)
  (Detectio

**True Postives + False Positives** 

# Comparison with well-known antiviruses

- Detect <u>new unknown malwares</u>
  - 180 new malwares generated by NGVCK, RCWG and VCL32 which are the best known virus generators.

- 32 new malwares from Internet\*.

\* https://malwr.com/
# Comparison with well-known antiviruses

| Antivirus   | New malwares  | New generated | Antivirus  | New malwares  | New generated |
|-------------|---------------|---------------|------------|---------------|---------------|
|             | from Internet | malwares      |            | from Internet | malwares      |
| Our tool    | 100%          | 100%          | > Panda    | 25%           | 19%           |
| Avira       | 50%           | 16%           | Kaspersky  | 35%           | 81%           |
| Avast       | 45%           | 87%           | Qihoo-360  | 80%           | 96%           |
| McAfee      | 40%           | 96%           | AVG        | 40%           | 82%           |
| BitDefender | 40%           | 87%           | ESET-NOD32 | 65%           | 87%           |
| F-Secure    | 40%           | 87%           | Symantec   | 40%           | 14%           |

A comparison of our method against wellknown antiviruses.

# The problem is ...

- Extracting malicious behaviors requires a huge amount of engineering effort.
  - a tedious and manual study of the code.
  - a huge time for that study.



### What about machine learning?

Apply machine learning to detect malwares without extracting the malicious behaviors.



#### **Model Malicious Behaviors**

# Trojan Downloader



Malicious API graph

| n <sub>15</sub> | push | 0FEh                |
|-----------------|------|---------------------|
| n <sub>10</sub> | push | offset dword 4097A4 |
| n <sub>17</sub> | call | GetSystemDirectoryA |
| n <sub>18</sub> | push | 0                   |
| n <sub>19</sub> | push | 0                   |
| n <sub>20</sub> | lea  | eax, [ebp-1Ch]      |
| n <sub>21</sub> | mov  | ebx, eax            |
| n <sub>22</sub> | push | ebx                 |
| n <sub>23</sub> | push | eax                 |
| n <sub>24</sub> | push | 0                   |
| n <sub>25</sub> | call | URLDownloadToFileA  |
| n <sub>26</sub> | push | 5                   |
| n <sub>27</sub> | call | sub_4038B4          |
| n <sub>28</sub> | push | ebx                 |
| n <sub>29</sub> | call | WinExec             |

# Trojan Downloader



Malicious API graph

| n <sub>15</sub> | push 0HEh                |
|-----------------|--------------------------|
| n <sub>16</sub> | push offset dword_4097A4 |
| n <sub>17</sub> | call GetSystemDirectoryA |
| n <sub>18</sub> | push 0                   |
| 5               | nuch O                   |

#### How can we model a program to learn such a graph?

| 24              | pusii | U                  |
|-----------------|-------|--------------------|
| n <sub>25</sub> | call  | URLDownloadToFileA |
| n <sub>26</sub> | push  | 5                  |
| n <sub>27</sub> | call  | sub_4038B4         |
| n <sub>28</sub> | push  | ebx                |
| n <sub>29</sub> | call  | WinExec            |

# Modeling a program





# Modeling a program



#### Our approach



### Our approach



# The problem...

• The existing machine learning techniques can mainly be applied to vectorial data.

• But our data are API call graphs.



### Kernel based SVM

• The best learning technique that can be applied for graphs

– Kernel based Support Vector Machines.

# Summary of our approach



#### Experiments

- We evaluate this technique on the dataset of 2323 benign programs and 6291 malicious programs.
  - Training set of 2000 malwares and 2000 benwares.
  - Test set of 4291 malwares and 323 benwares.

#### The results on the dataset

| TP                                          | TN         | FP | FN                        | TPR    | FPR   | ACC    |
|---------------------------------------------|------------|----|---------------------------|--------|-------|--------|
| 4245                                        | 319        | 4  | 46                        | 98.93% | 1.24% | 98.91% |
| TP: True Positives TPR: True Positive Rates |            |    |                           |        |       |        |
| TN: Tru                                     | e Negativ  | es | TPR = TP/(TP+FN)          |        |       |        |
| FP: Fal                                     | se Positiv | es | FPR: False Positive Rates |        |       |        |
| FN: False Negatives FPR = FP/(TN+FP)        |            |    |                           |        |       |        |
| ACC = (TP+TN)/(TP+FN+TN+FP): Accuracy       |            |    |                           |        |       |        |

### Anti-virus software comparison

• We generate 180 malwares from virus generators (RCWG, VCL32 and NGVCK).

| Antivirus   | Detection Rates | Antivirus  | Detection Rates |
|-------------|-----------------|------------|-----------------|
| Our tool    | 100%            | Panda      | 19%             |
| Avira       | 16%             | Kaspersky  | 81%             |
| Avast       | 87%             | Qihoo-360  | 96%             |
| McAfee      | 96%             | AVG        | 82%             |
| BitDefender | 87%             | ESET-NOD32 | 87%             |
| F-Secure    | 87%             | Symantec   | 14%             |

#### **Behavior Signatures**

- SCTPL or malicious API graphs to represent malicious behaviors
- These correspond to **behavior signatures**

