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Introduction

BANSs, non formally

» A discrete computational model of interaction systems.

» From a theoretical standpoint:

» Simple setting and representation.
» Able to capture dynamically a lot of behavioural intricacies and
heterogeneities.

» From a more practical/applied standpoint:
» Originate from neural theoretical modelling (McCulloch, Pitts, 1943).
» Developed in the context of genetics (Kauffman, 1969; Thomas, 1973).
» The most used mathematical objects for genetic regulation qualitative
modelling.
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Introduction

The (a-)synchronicity problematic(s)

» The causality of events along time depends on the relation between
automata updates and “time” but...

» How to define this relation?
» How to study the causal perturbations due to changes of this relation?

» Mathematical pertinence:

» Neat problematic at the frontier of dynamical systems, combinatorics,
complexity and computability.

» Biological pertinence:
» Genetic expression and chromatin dynamics.

» A remaining question: does model synchronicity stand for modelled
system simultaneity?
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Main definitions

BANSs and interaction graphs

A Boolean automata network (BAN) of size # is a function
f B" — B"
X = (X0, X1, Xn—1) f(x):(fo(x)vfl(x)v"‘vfn—l(x)) '

where Vi€ {0,...,n—1}, x; € B is the state of automaton i, and B" is the set of
configurations.

The interaction graph of f is the signed digraph G(f) : (V,E < V x V) where:
s V=10,...,n—1};
» (i,j) € E is positive if 3x € B" s.t.
fi(xos-- 3 %i21,0,Xi415- ., Xy 1) = 0 and fi(xo, ..., X1, L, Xi1 1, X0 1) = 1;
» (i,j) € E is negative if 3x e B" s.t.
fi(x05-,%i—1,0,Xi415- -+, Xy1) = Land fi(x0, ..., xi—1, L, Xj41, -, X5 1) = 0.
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BANSs and interaction graphs

A Boolean automata network (BAN) of size # is a function
f B" — B"
X = (X0, X1, Xn—1) f(x):(fo(x)vfl(x)v"‘vfn—l(x)) '

where Vi€ {0,...,n—1}, x; € B is the state of automaton i, and B" is the set of

configurations.

f : BB 1
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Main definitions

Automata updates

fi(x) =x0 A (x1 v x3)

"""""
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Main definitions

Automata updates
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Synchronous
transitions

{1}
{1,2} {3} {0,1,3} § ’%}
{0,1,2,3}

v
[0000] [0001] [0100] [1000] [1001] [1100] [1101]
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Main definitions

Update modes and BAN behaviours

» An update mode is a way of organising the automata updates along time.

» It can be deterministic (periodic or not) or non-deterministic (stochastic
or not).

» There exists an infinite number of update modes.
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Main definitions

Update modes and BAN behaviours

» An update mode is a way of organising the automata updates along time.

» It can be deterministic (periodic or not) or non-deterministic (stochastic
or not).

» There exists an infinite number of update modes.

» The update mode defines the network behaviour.
» The behaviour of a BAN f is described by a transition graph
4.(f) = (B",T< B"x (Z(V)\&) x{0,1}"),

where ¢ represents a given “fair” update mode.
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Main definitions

Some examples

f B3 — B3

fo(x) =x1 v x2
fi(x) = —x0 A x2
fa(x) = —=x2 A (x0 v x1)

f

Parallel evolution
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Main definitions

Some examples

f : B*->B?

fo(x) =x1 v
f1 (x) = =X N X2
fa(x) = —x2 A (x0 v x1)

f

I

Parallel evolution

» An attractor of (f, ) is a terminal SCC of
9.(f).
& » A fixed point (stable configuration) is a
trivial attractor.
010 /m » A limit cycle (stable oscillation) is a
non-trivial attractor.
)
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Main definitions

Some examples

f B3 — B3

fo(x) =x1 v x2
fi(x) = —x0 A x2
fa(x) = —=x2 A (x0 v x1)

f

({0},{1},{2})-sequential evolution
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Main definitions

Some examples

f B3 — B3

fo(x) =x1 v x2
fi(x) = —x0 A x2
fa(x) = —=x2 A (x0 v x1)

f

({0,2}, {1})-block-sequential evolution
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Main definitions
Some examples

f : B*->B?

fo(x) =x1 v
f1 (x) = =X N X2
fa(x) = —x2 A (x0 v x1)

I

f

({0,2}, {1})-block-sequential evolution

Number of ordered

partitions:

010 001 n—1 n
ord __ ord
110 > > k=0

with 25 = 1.

111
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Main definitions

Some examples

f : B*->B?

fo(x) =x1 v
f = fl(x) = =X N X2

fa(x) = —=x2 A (x0 v x1)

Asynchronous evolution

2
1
0

[000f«—:
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Main definitions

Some examples

fo: BB (0)

fo(x) =x1 v x2
f = fl(x) = =X N X2
fo(x) = =2z A (x0 v x1) 2 D

Asynchronous evolution + {0,2}-synchronous transitions
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Deterministic periodic updates

Update graphs

Given an interaction graph G = (V,E), a labelled graph is a graph (G, lab),
with lab : E — {#,=}.

A labelled graph (G,lab) is an update graph if there exists: V — {1,...,n} s.t.

if s(i) = s(j)

Y(i,j) € E, lab(i,j) = {D if s(i) <s(j)

({0,1,2,3}) ({0}, {1}, {2}, {3}) ({2,3},{0,1})
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Deterministic periodic updates

Update graphs and dynamics

Let f be a BAN and G(f) = (V,E) its interaction graph, let & be the parallel
update mode, and let s # s’ be two distinct block-sequential modes different
from 7.

Theorem 1 (Aracena et al., 2009)
If G(f,1labs) = G(f,laby ) then %(f) = % (f).

Theorem 2 (Tchuente, 1988; Aracena et al., 2009)
If sis defined as Vj € {0,...,n — 1},Vis.t. (i,j) € E, s(i) = s(j) then %(f) = % (f).

Theorem 3 (Aracena et al., 2009)

Consider s and f s.t. all the loops in G(f) are positive. Then there exists s’ such
that ¢(f) and % (f) do not have any common limit cycle.

v
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Deterministic periodic updates

Update graphs and dynamics

Theorem 1 (Aracena et al., 2009)
If G(f,labs) = G(f,laby) then %4 (f) = % (f). J

O 1= ({1}.{0}. 12}, 13)
L YA 2= ({1},12},{0},{3)
NI = ({1},(2),(0.3})
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Deterministic periodic updates

Update graphs and dynamics

Theorem 1 (Aracena et al., 2009)
If G(f,labs) = G(f,laby) then %4 (f) = % (f). J

s1= ({1},{0},{2},{3})
s2 = ({1},{2},{0},{3})
s3 = ({1},{2},{0,3})
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Deterministic periodic updates
Interaction cycles

2 types of interaction cycles, the positive and the negative ones:

an even an odd
number of number of
negative negative
arcs arcs

Seminal results:

Theorem 4 (Robert, 1986) J

If G(f) is acyclic, then f admits a unique attractor which is a fixed point.

Theorem 5 (Thomas, 1981; Richard, Comet, 2007) J

If there are no positive cycles in G(f), f admits no more than one fixed point.
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Deterministic periodic updates
Impact of update modes on cycles

Block-sequential s(0) =1
mode

s=({0,1},{2})
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Deterministic periodic updates
Impact of update modes on cycles

Block-sequential s(0) =1
mode (0) Xo(t+1) = fo(x2(t))
s=({0,1},{2}) x1(t+1) = fi(—xo(t))
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Deterministic periodic updates
Impact of update modes on cycles

Block-sequential s(0) =1
mode 0) xXo(t+1) = fo(x2(t))
s=({0.1},{2}) x(t+1) = A(—xo(t)

t+1) = (t+1))
s(2) =2 (2) (D s(1)=1 . )—ﬁgl(ﬂx()(t)))
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Deterministic periodic updates
Impact of update modes on cycles

Block-sequential

mode (0)
s=({0,1},{2})

Interaction graph G(f,s) = (V,E(s))
Each arc (i,]) € E(s) represents the dependence of x;( + 1) on x;(t).
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Deterministic periodic updates
Impact of update modes on cycles

inv(s)
—{(i,i+1) |s(i) <s(i+1)}
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Deterministic periodic updates
Impact of update modes on cycles

inv(s) Theorems (Goles, Noual, 2010)
={(i+1)[s(i)<s(i+1)} > The dynamics induced by two update modes s
O and s’ are equal iff inv(s) = inv(s’).

~ Given a cycle of size 1, the total number of
O distinct dynamics induced by block-
sequential update modes is:

ni(’;) —on 1.

k=0
? > inv(s) # inv(s’) = no common limit cycles.

O > Iterating a cycle of size n with an update mode
s with |inv(s)| = k corresponds to iterating a
cycle of same sign and of size 1 — k in parallel.

v
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Deterministic periodic updates
Impact of update modes on cycles

Theorem 6 (Goles, Noual, 2010)

inv(s) # inv(s’) = no common limit cycles. J

Proof e

First, let us note that Vi,je V, f[j,i] : fJOf]*l o:of 1f1<]
f]-of]-_lo-nofoofn_lo---oﬂ ifi>j

/

Suppose that (i,i+ 1) € inv(s)\inv(s’) and that Ix = x°(t) = x° (f) s.t.
x*(t+1) = x5 (t+1). Then:
X (H42) = fip1 (G (t42) = fli + 1,7 + 1] (x5 (t+1)),

/

and X (F+2) =fir1 (0 (F41) =fipa (5 (E+1)) = fli + 1,1 + 1] (x5 (1)),
where i* = max({k <i|s(k) =s(k+1)}).

By the injectivity of f[i + 1,i* + 1], if x3(t +2) = 2% (t +2) then x; (£ + 1) = x;+ (t). Now, if
x belongs to an attractor that is induced identically by both s and s', then x°(t) = x*'(t)
Vt. As result, in this case, Vt, x5, (t+1) = xfi (t) = x;. (t). In other terms, the state of
node i* is fixed in the attractor. Hence the states of all nodes are fixed in the attractor
which therefore is a fixed point. O
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Deterministic periodic updates

Update graphs other related results

2: Is a labelled graph an update graph?

Labelled graph Reduced labelled graph ~ Reversed labelled graph
(G,lab) (G,lab)® (G,lab)¥

Sylvain Sené Synchronism vs asynchronism in BANs

16/27



Deterministic periodic updates

Update graphs other related results

2: Is a labelled graph an update graph?

Labelled graph Reduced labelled graph ~ Reversed labelled graph
(G,lab) (G,lab)& (G,lab)¥
O
@ D
® @

Theorem 7 (Aracena et al., 2011)

A labelled digraph (G, lab) is an update graph iff (G,lab)¥ does not contain
any forbidden cycle.

Idea
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Deterministic periodic updates

Update graphs other related results

2: How to find the most compact update mode on (G,lab)?

(G',lab) (G',lab)B (G',lab)®
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Deterministic periodic updates

Update graphs other related results

2: How to find the most compact update mode on (G,lab)?
(G',lab) (G',lab)® (G',lab)

® @
5= ({0,4},{1,3},{2})
Algorithm Init. Take G’ := (G,lab) and t:=1.
(1) Compute the paths P = {P | #(H¢€ P) is max.} on G'. If P = ¢, goto (4).

(2) The targets T of the last negative arc of each P of Pm, and their successors S(T) are
scheduled at time step t.  t:=1t41.

(3) Remove T, S(T) and all their incoming arcs from G’, and go back to (1).

(4) All the remaining nodes are scheduled all at once, at time step .

Sylvain Sené Synchronism vs asynchronism in BANs 16/27
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Non-deterministic updates
Basic definitions and notations

. =i
Vx = (xg,...,X5_1) €B"Vie V, X" = (x0,...,Xi_1, "X}, Xis1, -, Xp_1)
!

— W i
VxeB"YW=Ww{i}cV, " =x) =@E")

The sign of an influence of i on j in x is

sign,(i.) =BT g p 05

x;—X;
wheres:beB—b——be {-1,1}.

Given x,y e B", D(x,y) ={ie V| x; # y;} and d(x,y) = |D(x,y)|. |

E(x) = {(i,j) e V x V| sign, (i,j) # 0} represents the set of effective influences
of G(f) in x, which formally means that

VijeV,IxeB", fi(x) #fi(x') < (i,j)eE
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Non-deterministic updates
Monotonicity, unstabilities and frustrations

A local function f; is locally monotonic in j if either:
v, fi(x0 -+, %j—1,0,%j 415+ Xu1) < filX0, -+ X1, L Xjg15 5 X0m1)
or: Vx,ﬁ-(xo, . ,xj,l,O,x]-H, ey Xp1) Zfl-(xo, R ,x]-,l,l,x]grl, ey Xp_1)

fo(x) =x1 A x3
f= hlx) = =xo is monotonic.
fz(x) =X1 VX2
3(x) = —Xp2 VX3
go(x) =x1 A X3
g= 8103 = ~x0 is not.
2((x) =x1®x2
$3(x) = —x2 v x3
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Non-deterministic updates
Monotonicity, unstabilities and frustrations

A local function f; is locally monotonic in j if either:
v, fi(x0 -+, %j—1,0,%j 415+ Xu1) < filX0, -+ X1, L Xjg15 5 X0m1)
or: Vx,ﬁ-(xo, . ,xj,l,O,x]-H, ey Xp1) Zfl-(xo, R ,x]-,l,l,x]grl, ey Xp_1)

An automaton i € V is unstable (resp. stable) in x € B" if it belongs to the set
U) = {ie V|f(x) #x} (resp. U(x) = V\U(x)).

[ x [[A® [AK [UM ]

folx) = = $ 5 OO T 0 [ 0

= 0,1 0 0 1
TR o SRR
wan |l o | 1 {0}
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Non-deterministic updates
Monotonicity, unstabilities and frustrations

A local function f; is locally monotonic in j if either:
VX, fi(x0s s X-1,0,X 41,0+, Xn—1) <fil X055 X5-1, 1, X415+ o, Xp—1)
] ] ] ]
or: Vx,ﬁ-(xo, . ,xj,l,O,x]-H, ey Xp1) Zfl-(xo, R ,x]-,l,l,x]grl, ey Xp_1)

An automaton i € V is unstable (resp. stable) in x € B" if it belongs to the set
U) = {ie V|f(x) #x} (resp. U(x) = V\U(x)).

An influence (i,j) € E is frustrated in x iff it belongs to
FRUS(x) = {(i,]) € E | s(x;) - s(x;) = —sign(i.j)}.

FRUS(000) = {(0,2)}

FRUS(001) = {(1,2),(2,0)}
FRUS(010) = {(0,1),(0,2),(1,2)}
FRUS(011) = {(0,1),(2,0)}

fo(x) =x2
f=1AE) =xv—x
f(x) = —=x0 A x1
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Non-deterministic updates
Relations between unstabilities and frustrations

Remark (Noual, S., 2017)
If j e U(x) then Jie V~(j), (i,j) € FRUS(x). J
()
fo(x) = —x0 ©) FRUS(000) = { (0,0) . (2,1)}
B B FRUS(001) = { (0,0) ,(1,2)}
f=h) =x0v—x FRUS(110) = { (0,0) .(1,2)}
fo(x)=x @ (D FRUS(111) = { (0,0) ,(2,1)}

FRUS(000) = { (0,2) }
FRUS(001) = {(1,2),(2,0)}
FRUS(010) = {(0,1),(0,2),(1,2)}
FRUS(011) = {(0,1),(2,0)}

X
f=9A()=x

fo(x) =—x0rx1

0oV X1
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Non-deterministic updates
Relations between unstabilities and frustrations

Lemma 1 (Noual, S., 2017)
Adding frustrated influences incoming an unstable automaton cannot
stabilise it. Formally, noting Vig s () =V-()n{ie V| (i,j) e FRUS(x)}, we

have: 0 _ : _ . .
Vx,yeB", je U(x) A (VFRUS(x)(]) < VFRUS(y)(])) = jeU(y).

Proof e
i i f FR
Input provided by i to j: bi(x) =b(sign(i,j) -s(x;)) = {x] if (i) ¢ US(x). By local
monotonicity, —x; otherwise
i = Nat = A(Vew=\ - v V x)
k<m ksm ey ievl eVl
(i/) eFRUS(x) (i) ¢ FRUS(x)

where V{( is the set of in-neighbours of j involved in the kth clause.

Let x be unstable, admitting thus at least one frustrated incoming influence. Let y be
such that it admits at least one more frustrated incoming influence than x. Since f; can
be written as a conjunction of disjunctive clauses, the values of these clauses for y are
necessarily the same as for x. O
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Non-deterministic updates
Critical cycles

Let f be a BAN, G = (V,E) its interaction graph, and x a configuration in B". A
cycle C = (V¢,Ec) of G is x-critical if Ec < FRUS(x).
A cycle C is critical if it is x-critical for some x.

Proposition 1 (Noual, S., 2017)

A critical cycle is a NOPE-cycle, i.e. negative of odd length or positive of even
length. B

Proof
Let x € B". By definition of frustrated influences, if C = (V¢,E() is x-critical, has length
Candsignsthen: [ —sign(i,j)=(-1)xs= ][] s(x;) s(x)=1 O

(i.)eEc (i-j)eEc

[ [[h® [AK [ FRUSKx) |

fo(x) =Xg N X1 (0,0) 0 0 {(0,1),(1,0)}
_ 0,1 0 1 %)
f {fl (x) = —xp A X1 0.0 gl,og 1 0 o]
LYy || o 0 || {(0,1).(1,0)}
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Non-deterministic updates
Transitions and trajectories

\ Name | Notation | Definition \
Asynchronous X —>y d(x,y) <1
Synchronous xX—>y d(x,y) >1
Elementary X —>y x—>yef{x —yluf{x — y}

x —> y not decomposable into smaller

Non-sequentialisable r—=>y elementary transitions

For all x,y € B" s.t. x # y, x is willing (resp. unwilling) towards y if
D(x,y) < U(x) (resp. D(x,y) nU(x) = &).

A trajectory from x to y is a path x —> ... —> y in the transition graph.

Letx =x(0) —> x(1) —> ... —> x(m—1) —> y = x(m) be a trajectory from x

toy. IfVt <m, D(x(t+1), ) D(x(t),y), this trajectory is direct. It performs
no reversed changes, i.e. Vi <m, x(t); =y; = Vt <t' <m, x(t'); = y;.
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Non-deterministic updates

Results relating trajectories and critical cycles

Proposition 2 (Noual, S., 2017)

Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then D(x,y) induces

a NOPE-cycle that is x-critical.

[ TA I U ]

—0 o {fo(x) =XgV X1 E:

(1,0)

1
0
1
1

1

1
0
1

D(x,y)
%]
%]
%]

(1)

H B fl (x) = —Xo VX1 (0,0)
&) &

(0,1)
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Non-deterministic updates

Results relating trajectories and critical cycles

Proposition 2 (Noual, S., 2017)

Let x a willing configuration towards y.
1. If there are no asynchronous trajectories from x to y, then D(x,y) induces

a NOPE-cycle that is x-critical.

2. If D(x,y) does not induce an x-critical cycle, then there is a direct

asynchronous trajectory from x to y.

[ [A® T U |

1(x) =xo v —11 Eg:%

f: {f()(x) =XoV X1 l X

1

0
1
1

1

0
1
1

{0,1}
{1}
{1}
%]

(1,0)
)

0
;
Fwle
0

5B
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Non-deterministic updates
Results relating trajectories and critical cycles

Proposition 2 (Noual, S., 2017)
Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then D(x,y) induces
a NOPE-cycle that is x-critical.

2. If D(x,y) does not induce an x-critical cycle, then there is a direct
asynchronous trajectory from x to y.

Implication

When m local changes are possible in x, then, unless there is a NOPE-cycle of
size m, these m changes can be made asynchronously without risking a
deadlock, i.e. a situation in which some transitions would have transformed x
into a configuration x(¢) from which y is not reachable anymore.
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Non-deterministic updates
Results relating trajectories and critical cycles

Proposition 2 (Noual, S., 2017)
Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then D(x,y) induces
a NOPE-cycle that is x-critical.

2. If D(x,y) does not induce an x-critical cycle, then there is a direct
asynchronous trajectory from x to y.

Corollary 1 (Noual, S., 2017)

If x — y exists, then D(x,y) induces a NOPE-cycle which is x-critical.

Implication

In a BAN with no NOPE-cycles of size smaller or equal than m € N, any
synchronous change affecting no more than m automata states can be totally
sequentialised.
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Non-deterministic updates
Structural sensitivity: impact of synchronism

Class N

“null” sensitivity

Class F

“weak” sensitivity

R ™

TR

Halislin @&

m/ﬂfm:m

Class G

“medium” sensitivity

Class D

“strong” sensitivity

PN
I =
(= =)

(-1
== = A

24/27



Non-deterministic updates
Structural sensitivity: main result

Theorem 8 (Noual, S., 2017)
1) Synchronism-sensitivity requires the existence of a NOPE-cycle.

2) Significant sensitivity requires the existence of a NOPE-cycle of length
strictly smaller than the BAN size as well as of a negative cycle.
3) In the absence of a Hamiltonian NOPE-cycle and positive loops on all

automata, little sensitivity also requires a NOPE-cycle of length strictly
smaller than the BAN size.

A monotonic BAN belonging to sensitivity class D:

fo(x) =x2 v (xo A —x1)
fo filx) = x3 v (—x0 A xp)

fa(x) = —x0 A7

3(x) =x0 A —x1
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Non-deterministic updates
Class D and local (non-)monotonicity

2: How are these two BANSs related?

fo(x) =x2 v (xo A —x1)
fe fi(x) =x3 v (—x0 A x1)
f2(x) = =x0 A x1
3(x) =x0 A —x1 j}’)
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