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Two points of view on the prisoner dilemma

Two suspects are arrested by the police. The police, having separated
both prisoners, visit each of them to offer the same deal.

If one testifies (Defects) for the prosecution against the other and the
other remains silent (Cooperate), the betrayer goes free and the silent
accomplice receives the full 10-years sentence.

If both remain silent, both are sentenced to only 3-years in jail.

If each betrays the other, each receives a 5-years sentence.

How should the prisoners act?



The prisoner dilemma - the (matrix) game

The matrix associated with the prisoner dilemma:

C D

C (−3,−3) (−10, 0)
D (0,−10) (−5,−5)

Equivalently (since only the relative order of payoffs matters):

C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)
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The first point of view: strategic games

C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)

(D,D) is the only rational choice!

Rules of the game

The game is played only once by two players

The players choose simultaneously their actions (no communication)

Each player receives his payoff depending of all the chosen actions

The goal of each player is to maximise his own payoff

Hypotheses made in strategic games

The players are intelligent (i.e. they reason perfectly and quickly)

The players are rational (i.e. they want to maximise their payoff)

The players are selfish (i.e. they only care for their own payoff)
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The second point of view: evolutionary games

C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)

The strategy D is evolutionary stable,
facing an invasion of the mutant strategy C.

Rules of the game

We have a large population of individuals

Individuals are repeatedly drawn at random to play the above game

The payoffs are supposed to represent the gain in biological fitness or
reproductive value

Hypotheses made in evolutionary games

Each individual is genetically programmed to play either C or D

The individuals are no more intelligent, nor rational, nor selfish
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Strategic games

Definition

A strategic game G is a triple
(
N, (Ai )i∈N , (Pi )i∈N

)
where:

N is the finite and non empty set of players,

Ai is the non empty set of actions of player i ,

Pi : A1 × · · · × AN → R is the payoff function of player i .

C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)



Nash equilibrium

Nash Equilibrium - Definition

Let (N,Ai ,Pi ) be a strategic game and a = (ai )i∈N be a strategy profile.

We say that a = (ai )i∈N is a Nash equilibrium iff

∀i ∈ N ∀bi ∈ Ai Pi (bi , a−i ) ≤ Pi (ai , a−i )

C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)

(D,D) is the unique Nash equilibrium



Do all the finite matrix games have a Nash equilibrium?

No: matching pennies

L R

L (1,−1) (−1, 1)
R (−1, 1) (1,−1)
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Mixed strategies

Notations

Given E , we denote ∆(E ) the set of probability distribution over E .

Assuming E = {e1, . . . , en}, we have that:

∆(E ) = {(p1, . . . , pn) | pi ≥ 0 and p1 + . . .+ pn = 1}.

Mixed strategy

If Ai are strategies of player i , ∆(Ai ) is his set of mixed strategies.

Expected payoff

Given (N, (Ai )i , (Pi )i ). Let (σ1, . . . , σn) be a mixed strategies profile. The
expected payoff of player i is

Pi (σ1, . . . , σn) =
∑

(a1,...,aN)∈A1×···×AN

(∏

i∈N
σi (ai )

)

︸ ︷︷ ︸
probability of (a1,...,aN)

Pi (a1, . . . , aN)
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Nash equilibria in mixed strategies

L R

L (1,−1) (−1, 1)
R (−1, 1) (1,−1)

The following profile is a Nash equilibrium in mixed strategies:

σ1 =

{
L with proba 1

2

R with proba 1
2

and σ2 =

{
L with proba 1

2

R with proba 1
2

whose expected payoff is 0.

Nash Theorem [1950]

Every finite game admits mixed Nash equilibria.
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Symmetric games

X Y

X (α, α) (γ, δ)
Y (δ, γ) (β, β)

Symmetric games

A symmetric game is a game
(
N, (Ai )i∈N , (Pi )i∈N

)
where:

A1 = A2 = · · · = AN

∀(a1, . . . , aN) ∈ A1 × · · · × AN , ∀π permutations, ∀k , we have that
Pπ(k)(a1, . . . , aN) = Pk(aπ(1), . . . , aπ(k))

Special case of 2-players: ∀(a1, a2) ∈ A1 × A2, P2(a1, a2) = P1(a2, a1)

Symmetric Nash Equilibrium

A Nash equilibrium (σ1, . . . , σN) is said symmetric when σ1 = · · · = σN .
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Example 1: 2× 2 games - The 4 categories

X Y

X (α, α) (0, 0)
Y (0, 0) (β, β)

α

β

Cat 1 Cat 2

Cat 3 Cat 4

Cat 1: α < 0 et β > 0. NE={(Y ,Y )}

Cat 2: α, β > 0. NE={(X ,X ), (Y ,Y ), (σ, σ)} with σ =
(

β
α+β ,

α
α+β

)

Cat 3: α, β < 0. NE={(X ,Y ), (Y ,X ), (σ, σ)} with σ =
(

β
α+β ,

α
α+β

)

Cat 4: α > 0 et β < 0. NE={(X ,X )}



Example 2: The generalised Rock-Scissors-Paper Games
Uta stansburiana - The side-blotched lizard

The populations for these lizards cycle on a six year basis.

When he read that lizards of the species Uta stansburia

were essentially engaged in a game with rock-paper-scissors

structure John Maynard Smith exclaimed :

They have read my book!

R S P

R (1, 1) (2 + a, 0) (0, 2 + a)
S (0, 2 + a) (1, 1) (2 + a, 0)
P (2 + a, 0) (0, 2 + a) (1, 1)

(The original RPS game is obtained when a = 0)

A unique Nash equilibrium (σ, σ, σ), where σ =
(

1
3 ,

1
3 ,

1
3

)
.
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Some results on symmetric games

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. |Ai | = 2) admits a (pure) Nash
equilibrium. But it might not be symmetric...

no longer true if not “2-strategy”: RPS...

no longer true if not “symmetric”: Matching pennies

L R

L (1,−1) (−1, 1)
R (−1, 1) (1,−1)

not necessarily symmetric: anti-coordination game

X Y

X (0, 0) (1, 1)
Y (1, 1) (0, 0)
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Evolutionary game theory

We completely change the point of view !

Rules of the game

We have a large population of individuals.

Individuals are repeatedly drawn at random to play a symmetric game.

The payoffs are supposed to represent the gain in biological fitness or
reproductive value.

Hypotheses made in evolutionary games

Each individual is genitically programmed to play a strategy.

The individuals are no more intelligent, nor rational, nor selfish.

Can an existing population resist to the invasion of a mutant ?



Evolutionary Stable Strategy: robustness to mutations

Evolutionary Stable Strategy

We say that σ is an evolutionary stable strategy (ESS) if

(σ, σ) is a Nash equilibrium

∀σ′(6= σ) P(σ′, σ) = P(σ, σ) =⇒ P(σ′, σ′) < P(σ, σ′)

Thus if (σ, σ) is a strict Nash equilibrium, then σ is an ESS.

A B

A (1, 1) (1, 1)
B (1, 1) (2, 2)

C D

C (1, 1) (1, 1)
D (1, 1) (0, 0)

(A,A), (B,B) and (C,C) are Nash equilibria.

A is not an ESS.

B and C are ESS.



Evolutionary Stable Strategy - Alternative definition

Imagine a population composed of a unique species σ

A small proportion ε of the population mutes to a new species σ′

The new population is thus εσ′ + (1− ε)σ

Proposition

A strategy σ is an ESS iff ∀σ′(6= σ) ∃ε0 ∈ (0, 1) ∀ε ∈ (0, ε0)

P(σ, εσ′ + (1− ε)σ) > P(σ′, εσ′ + (1− ε)σ)

Static concept: it suffices to study the one-shot game
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Evolutionary Stable Strategy - 2× 2 games

X Y

X (α, α) (0, 0)
Y (0, 0) (β, β)

α

β

Cat 1 Cat 2

Cat 3 Cat 4

Cat 1 : NE = {(Y ,Y )} ESS = {Y }
Cat 2 : NE = {(X ,X ), (Y ,Y ), (σ, σ)} ESS = {X ,Y }
Cat 3 : NE = {(X ,Y ), (Y ,X ), (σ, σ)} ESS = {σ}
Cat 4 : NE = {(X ,X )} ESS = {X}



The evolution of a population - intuitively

Population composed of several species

Variation of popu. the species = Popu. of the species × Advantage of the species

Advantage of the species = Fitness of the species − Average fitness of all species



The evolution of a population - more formally (1)

We consider a population where individuals are divided into n species.
Individuals of species i are programmed to play the pure strategy ai .

We denote by pi (t) the number of individuals of species i at time t.

The total population at time t is given by

p(t) = p1(t) + · · ·+ pn(t)

The population state at time t is given by

σ(t) = (σ1(t), . . . , σn(t)) where σi (t) =
pi (t)

p(t)



The evolution of a population - more formally (2)

The evolution of the state of the population is given by:

The replicator dynamics (RD)

d

dt
σi (t) = (P(ai , σ(t))− P(σ(t), σ(t))) · σi (t)

Theorem

Given any initial condition σ(0) ∈ ∆(A), the above system of differential
equations always admits a unique solution.



The replicator dynamics - 2× 2 games

X Y
X (α, α) (0, 0)
Y (0, 0) (β, β)

Cat 1 Cat 2

Cat 3 Cat 4


d
dt
σ1(t) = (ασ1(t)− βσ2(t)) · σ1(t)σ2(t)

d
dt
σ2(t) = (βσ2(t)− ασ1(t)) · σ1(t)σ2(t)

∆(A) = {(σ1, σ2) ∈ [0, 1]2 | σ1 + σ2 = 1} ' [0, 1], where σ1 is the proportion of X

The solutions (σ1(t), 1− σ1(t)) of the (RD) behave as follows:

σ1

0 1
β

α+β

Cat 1

Cat 2

Cat 3

Cat 4

Y X



Various concept of stability

Let f : Rn → Rn be smooth enough and consider:

d

dt
x(t) = f (x(t)).

Let ϕ : Rn × R→ Rn be a maximal solution of the above equation.

Let x0 ∈ Rn, we say that

x0 is a stationary point iff ∀t ∈ R ϕ(x0, t) = x0

x0 is Lyapunov stable iff

∀U(x0) ⊆ Rn ∃V (x0) ⊆ Rn ∀x ∈ V (x0) ∀t ∈ R ϕ(x , t) ∈ U(x0)

x0 is asymptotically stable iff x0 is a Lyapunov stable point and

∃W (x0) ∀x ∈W (x0) lim
t→+∞

ϕ(x , t) = x0



2× 2 games - Stability

X Y

X (α, α) (0, 0)
Y (0, 0) (β, β)

α

β

Cat 1 Cat 2

Cat 3 Cat 4

StationaryAsymptotically stable

0 1
β

α+β

Cat 1

Cat 2

Cat 3

Cat 4

Y X



Rock-Scissors-Paper

(
1
3 ,

1
3 ,

1
3

)
is Lyapunov stable but not asymptotically stable.
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�
1
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3 , 1
3

�
is Lyapunov stable but not asymptotically stable.

R P S

R (1, 1) (2, 0) (0, 2)
P (0, 2) (1, 1) (2, 0)
S (2, 0) (0, 2) (1, 1)

The picture is taken from Evolutionnary game theory by J.W. Weibull.

R S P

R (1, 1) (2, 0) (0, 2)
S (0, 2) (1, 1) (2, 0)
P (2, 0) (0, 2) (1, 1)
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2× 2 games - RD Vs ESS

X Y

X (α, α) (0, 0)
Y (0, 0) (β, β)

α

β

Cat 1 Cat 2

Cat 3 Cat 4

StationaryAsymptotically stable

0 1
β

α+β

Cat 1 ESS = {Y }

Cat 2 ESS = {X ,Y }

Cat 3 ESS = {σ}

Cat 4 ESS = {X}
Y X



The generalised Rock-Scissors-Paper Games
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Results

There are several results relating various notions of “static” stability:

Nash equilibrium,

Evolutionary Stable Strategy,

Neutrally Stable Strategy...

with various notions of “dynamic” stability:

stationary points,

Lyapunov stable points,

asymptotically stable point ...

Theorems

If σ ∈ ∆ is Lyapunov stable, then σ is a NE.

If σ ∈ ∆ is an ESS, then σ is asymptotically stable.



An alternative dynamics

Replicator dynamics

Variation of popu. the species = Popu. of the species × Advantage of the species

Advantage of the species = Fitness of the species − Average fitness of all species

Alternative hypothesis: offspring react smartly to the mixture of past
strategies played by the opponents, by playing a best-reply strategy to
this mixture

Best-reply dynamics

Variation of Strategy Mixture = Best-Reply Strategy − Current Strategy Mixture
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Static vs dynamic approach

Static approach Dynamic approach

Equilibria Stable Points
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If we discover a new game

Find immediately a good strategy is concretely impossible

If we play several times, we will improve our strategy

With enough different plays, will we eventually stabilize?

If so, will this strategy be a good strategy?

Our Goal

Apply this idea of improvement/mutation on games played on graphs

Prove stabilisation via reduction/minor of games

Show some links with interdomain routing
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Interdomain routing problem

Two service providers: v1 and v2 want to route packets to v⊥.

v1

v2v⊥

s1

s2

c1

c2

v1 prefers the route v1v2v⊥ to the route v1v⊥ (preferred to (v1v2)ω)

v2 prefers the route v2v1v⊥ to the route v2v⊥ (preferred to (v2v1)ω)
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Interdomain routing problem as a game played on a graph

Two service providers: v1 and v2 want to route packets to v⊥.

v1 v2

v⊥

c1

c2s1 s2

v1 prefers the route v1v2v⊥ to the route v1v⊥ (preferred to (v1v2)ω)

v2 prefers the route v2v1v⊥ to the route v2v⊥ (preferred to (v2v1)ω)

v1v⊥ ≺1 v1v2v⊥ and v2v⊥ ≺2 v2v1v⊥



Games played on a graph – The strategic game approach

v1 v2

v⊥

c1

c2s1 s2

c2 s2

c1 (0, 0) (2, 1)
s1 (1, 2) (1, 1)

2 Nash equilibria: (c1, s2) and (s1, c2)

Static vision of the game: players are perfectly informed and supposed to be intelligent,

rational and selfish
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Games played on a graph – The evolutionnary approach

v1 v2

v⊥

c1

c2s1 s2

v1 v2

v⊥

c1

c2s1 s2

Asynchronous nature of the network could block the packets in an
undesirable cycle...



Interdomain routing problem - open problem

v1 v2

v⊥

c1

c2s1 s2

The game G

(c1, c2) (s1, c2)

(c1, s2) (s1, s2)

The graph of the dynamics: G〈 〉

Identify necessary and sufficient conditions on G such that G〈 〉 has no cycle

Ideally, the conditions should be algorithmically simple, locally testable...

Numerous interesting partial solutions proposed in the literature

Daggitt, Gurney, Griffin. Asynchronous convergence of policy-rich distributed Bellman-Ford routing protocols. 2018



Games played on a graph – The evolutionnary approach
Different dynamics

v1 v2

v⊥

c1

c2s1 s2

(c1, c2) (s1, c2)

(c1, s2) (s1, s2)

D1 with no cycle

(c1, c2) (s1, c2)

(c1, s2) (s1, s2)

D2 with a cycle
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Positional 1-step dynamics
P1

profile1
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if:

a single player changes at a single node

this player improves his own outcome
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Positional Concurrent Dynamics
PC

profile1
PC

profile2

if

one or several players change at a single node

all players that change intend to improve their outcome

but synchronous changes may result in worst outcomes...

v1 v2

v⊥

c1

c2s1 s2

(c1, c2) (s1, c2)

(c1, s2) (s1, s2)

G〈 PC 〉:

both players intend to reach their best outcome (v1v⊥ ≺1 v1v2v⊥ and v2v⊥ ≺2 v2v1v⊥),
even if they do not manage to do it (as the reached outcome is (v1v2)ω and (v2v1)ω)
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Questions

What condition G should satisfy to ensure that

G〈 〉 has no cycles, i.e. dynamics terminates on G?

What relations 1 and 2 should satisfy to ensure that

G〈 1〉 has no cycles if and only if G〈 2〉 has no cycles?

What should G1 and G2 have in common to ensure that

G1〈 〉 has no cycles if and only if G2〈 〉 has no cycles?
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Simulation relation on dynamics graphs

G simulates G ′ (G ′ v G ) if all that G ′ can do, G can do it too.

profile′1 profile′2
∀ ∀

w w

profile1

∀

Folklore

If G1〈 1〉 simulates G2〈 2〉 and the dynamics 1 terminates on G1,
then the dynamics 2 terminates on G2.
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Relation between games

G′ is a minor of G if it is obtained by a succession of operations:

• deletion of an edge (and all the corresponding outcomes);

• deletion of an isolated node;

• deletion of a node v with a single edge v → v ′ and no predecessor
u → v such that u → v ′.

v1 v2

v3 v4

v⊥ v5

v1 v2

v3 v4

v⊥ v5

v1 v2

v3

v⊥ v5

v1 v2

v3

v⊥ v5
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Relation between simulation and minor

Theorem

If G′ is a minor of G, then G〈 P1 〉 simulates G′〈 P1 〉. In particular, if
P1

terminates for G, it terminates for G′ too.

Theorem

If G′ is a minor of G, then G〈 PC 〉 simulates G′〈 PC 〉. In particular, if
PC

terminates for G, it terminates for G′ too.

Remark: G〈 P1 〉 v G〈 PC 〉
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More realistic conditions

Adding fairness

Termination might be too strong to ask in interdomain routing...

Every router that wants to change its decision will have the
opportunity to do it in the future...

Study of fair termination

More realistic dynamics

Consider best reply variants
bP1

and
bPC

of the two dynamics, where each
player that modifies its strategy changes in the best possible way
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What results?

Previous theorem

If G′ is a minor of G, then G〈 PC 〉 simulates G′〈 PC 〉. In particular, if
PC

terminates for G, it terminates for G′ too.

Becomes false for best reply dynamics
bP1

and
bPC

: the best reply
dynamics could terminate in G but not in the minor G′

Does not apply to fair termination: the dynamics could fairly
terminate for G (and not terminate) but not for G′

The reciprocal does not hold...
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What results?

Previous theorem

If G′ is a minor of G, then G〈 PC 〉 simulates G′〈 PC 〉. In particular, if
PC

terminates for G, it terminates for G′ too.

Becomes false for best reply dynamics
bP1

and
bPC

: the best reply
dynamics could terminate in G but not in the minor G′

Does not apply to fair termination: the dynamics could fairly
terminate for G (and not terminate) but not for G′

The reciprocal does not hold...

Theorem

If G′ is a dominant minor of G, then
bPC

/
bP1

fairly terminates for G if
and only if it fairly terminates for G′.

Use of simulations that are partially invertible...



Interdomain routing
Particular case of game with one target for all players (reachability
game) and players owning a single node (router)

Theorem [Sami, Shapira, Zohar, 2009]

If G is a one-target game for which
bPC

fairly terminates, then it has
exactly one equilibrium.

Theorem [Griffin, Shepherd, Wilfong, 2002]

There exists a pattern, called dispute wheel such that if G is a one-target

game that has no dispute wheels, then
bPC

fairly terminates.

u1

u2

u3

uk

. . .

v⊥

π1 π2

π3

πk

h1

h2

hk

∀1 ≤ i ≤ k πi ≺ui hiπi+1
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Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if
PC

terminates for G, then G has no strong dispute wheel.

Theorem

If G satisfies a locality condition on the preferences, then
PC

fairly
terminates for G if and only if G has no strong dispute wheel.

Theorem

Finding a strong dispute wheel in G can be tested by searching whether G
contains the following game as a minor:
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c2s1 s2



Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if
PC

terminates for G, then G has no strong dispute wheel.

Theorem

If G satisfies a locality condition on the preferences, then
PC

fairly
terminates for G if and only if G has no strong dispute wheel.

bPC
does not fairly

terminate for G

PC
does not fairly

terminate for G

PC
does not

terminate for G

G has a dispute wheel G has a strong dispute wheel

Griffin et al

if neighbour game

Theorem

Finding a strong dispute wheel in G can be tested by searching whether G
contains the following game as a minor:

v1 v2

v⊥

c1

c2s1 s2



Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if
PC

terminates for G, then G has no strong dispute wheel.

Theorem

If G satisfies a locality condition on the preferences, then
PC

fairly
terminates for G if and only if G has no strong dispute wheel.

Theorem

Finding a strong dispute wheel in G can be tested by searching whether G
contains the following game as a minor:

v1 v2

v⊥

c1

c2s1 s2



Summary

Looking for equilibria in dynamics of n-player games

Different possible dynamics

Conditions for (fair) termination

Use of game minors and graph simulations

In the article, non-positional strategies are also considered

Perspectives

Still open to find a forbidden pattern/minor for fair termination of
bPC

in one-target games

Consider games with imperfect information: model of malicious router

A better model of asynchronicity?

Model fairness using probabilities?

Thank you! Questions?
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