Dynamics on Games: Simulation-Based Techniques and Applications to Routing

Benjamin Monmege (Aix-Marseille Université, France) Thomas Brihaye Marion Hallet Bruno Quoitin (Mons, Belgium) Gilles Geeraerts (Université libre de Bruxelles, Belgium)

> Séminaire de l'équipe MOVE Octobre 2020

Slides partly borrowed from Thomas Brihaye and Marion Hallet Work published at FSTTCS 2019

Two points of view on the prisoner dilemma

Two suspects are arrested by the police. The police, having separated both prisoners, visit each of them to offer the same deal.

- If one testifies (Defects) for the prosecution against the other and the other remains silent (Cooperate), the betrayer goes free and the silent accomplice receives the full 10-years sentence.
- If both remain silent, both are sentenced to only 3-years in jail.
- If each betrays the other, each receives a 5-years sentence.

How should the prisoners act?

The prisoner dilemma - the (matrix) game

The matrix associated with the prisoner dilemma:

$$\begin{array}{c|c} C & D \\ \hline C & (-3, -3) & (-10, 0) \\ D & (0, -10) & (-5, -5) \end{array}$$

The prisoner dilemma - the (matrix) game

The matrix associated with the prisoner dilemma:

$$\begin{array}{c|c} C & D \\ \hline C & (-3, -3) & (-10, 0) \\ \hline D & (0, -10) & (-5, -5) \end{array}$$

Equivalently (since only the relative order of payoffs matters):

The first point of view: strategic games

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

The first point of view: strategic games

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

Hypotheses made in strategic games

- The players are intelligent (i.e. they reason perfectly and quickly)
- The players are **rational** (i.e. they want to maximise their payoff)
- The players are selfish (i.e. they only care for their own payoff)

The first point of view: strategic games

$$\begin{array}{c|c} C & D \\ \hline C & (3,3) & (1,4) \\ D & (4,1) & (2,2) \end{array}$$
 (D, D) is the only rational choice!

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

Hypotheses made in strategic games

- The players are intelligent (i.e. they reason perfectly and quickly)
- The players are **rational** (i.e. they want to maximise their payoff)
- The players are selfish (i.e. they only care for their own payoff)

Rules of the game

- We have a large population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

Rules of the game

- We have a large population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

Hypotheses made in evolutionary games

- Each individual is genetically programmed to play either C or D
- The individuals are no more intelligent, nor rational, nor selfish

The strategy D is evolutionary stable, facing an invasion of the mutant strategy C.

Rules of the game

- We have a large population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

Hypotheses made in evolutionary games

- Each individual is genetically programmed to play either C or D
- The individuals are no more intelligent, nor rational, nor selfish

Outline

A brief review of strategic games

- Nash equilibrium et al
- Symmetric two-player games

Evolutionary game theory

- Evolutionary Stable Strategy
- The Replicator Dynamics
- Other Selections Dynamics

Games played on graphs

- Two examples of dynamics
- Relations that maintain termination
- More realistic conditions
- Application to interdomain routing

Strategic games

Definition

A strategic game G is a triple $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

- N is the finite and non empty set of players,
- A_i is the non empty set of actions of player i,
- $P_i: A_1 \times \cdots \times A_N \to \mathbb{R}$ is the payoff function of player *i*.

Nash equilibrium

Nash Equilibrium - Definition

Let (N, A_i, P_i) be a strategic game and $a = (a_i)_{i \in N}$ be a strategy profile. We say that $a = (a_i)_{i \in N}$ is a Nash equilibrium iff

 $\forall i \in N \ \forall b_i \in A_i \quad P_i(b_i, a_{-i}) \leq P_i(a_i, a_{-i})$

	С	D
С	(3,3)	(1, 4)
D	(4, 1)	(2,2)

(D,D) is the unique Nash equilibrium

Do all the finite matrix games have a Nash equilibrium?

Do all the finite matrix games have a Nash equilibrium?

No: matching pennies $\begin{array}{c|c} L & R \\ \hline L & (1,-1) & (-1,1) \\ R & (-1,1) & (1,-1) \end{array}$

Mixed strategies

Notations

Given *E*, we denote $\Delta(E)$ the set of *probability distribution over E*. Assuming $E = \{e_1, \ldots, e_n\}$, we have that:

 $\Delta(E) = \{(p_1, \dots, p_n) \mid p_i \ge 0 \text{ and } p_1 + \dots + p_n = 1\}.$

Mixed strategies

Notations

Given E, we denote $\Delta(E)$ the set of probability distribution over E. Assuming $E = \{e_1, \dots, e_n\}$, we have that:

$$\Delta(E) = \{(p_1, \dots, p_n) \mid p_i \ge 0 \text{ and } p_1 + \dots + p_n = 1\}.$$

Mixed strategy

If A_i are strategies of player i, $\Delta(A_i)$ is his set of **mixed strategies**.

Expected payoff

Given $(N, (A_i)_i, (P_i)_i)$. Let $(\sigma_1, \ldots, \sigma_n)$ be a mixed strategies profile. The expected payoff of player *i* is

$$P_i(\sigma_1,\ldots,\sigma_n) = \sum_{\substack{(a_1,\ldots,a_N)\in A_1\times\cdots\times A_N \\ \text{probability of } (a_1,\ldots,a_N)}} \left(\prod_{i\in N} \sigma_i(a_i) \right) P_i(a_1,\ldots,a_N)$$

Nash equilibria in mixed strategies

The following profile is a Nash equilibrium in mixed strategies:

$$\sigma_1 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases} \text{ and } \sigma_2 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases}$$

whose expected payoff is 0.

Nash equilibria in mixed strategies

The following profile is a Nash equilibrium in mixed strategies:

$$\sigma_1 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases} \text{ and } \sigma_2 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases}$$

whose expected payoff is 0.

Nash Theorem [1950] Every finite game admits mixed Nash equilibria.

Symmetric games

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

Symmetric games

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

• Special case of 2-players: $\forall (a_1, a_2) \in A_1 \times A_2$, $P_2(a_1, a_2) = P_1(a_2, a_1)$

Symmetric games

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

•
$$A_1 = A_2 = \cdots = A_N$$

• $\forall (a_1, \dots, a_N) \in A_1 \times \cdots \times A_N, \forall \pi \text{ permutations, } \forall k, \text{ we have that } P_{\pi(k)}(a_1, \dots, a_N) = P_k(a_{\pi(1)}, \dots, a_{\pi(k)})$

• Special case of 2-players: $\forall (a_1,a_2) \in A_1 \times A_2$, $P_2(a_1,a_2) = P_1(a_2,a_1)$

Symmetric Nash Equilibrium

A Nash equilibrium $(\sigma_1, \ldots, \sigma_N)$ is said symmetric when $\sigma_1 = \cdots = \sigma_N$.

Example 1: 2×2 games - The 4 categories

• Cat 1: $\alpha < 0$ et $\beta > 0$. NE={(Y, Y)}

• Cat 2: $\alpha, \beta > 0$. NE={ $(X, X), (Y, Y), (\sigma, \sigma)$ } with $\sigma = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$

• Cat 3: $\alpha, \beta < 0$. NE={ $(X, Y), (Y, X), (\sigma, \sigma)$ } with $\sigma = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$

• Cat 4: $\alpha > 0$ et $\beta < 0$. NE={(X, X)}

Example 2: The generalised Rock-Scissors-Paper Games

(The original RPS game is obtained when a = 0)

Example 2: The generalised Rock-Scissors-Paper Games

$$\begin{array}{c|cccc} R & S & P \\ \hline R & (1,1) & (2+a,0) & (0,2+a) \\ S & (0,2+a) & (1,1) & (2+a,0) \\ P & (2+a,0) & (0,2+a) & (1,1) \end{array}$$

(The original RPS game is obtained when a = 0)

A unique Nash equilibrium (σ, σ, σ) , where $\sigma = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i| = 2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i| = 2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

• no longer true if not "2-strategy": RPS...

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i| = 2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

- no longer true if not "2-strategy": RPS...
- no longer true if not "symmetric": Matching pennies

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i| = 2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

- no longer true if not "2-strategy": RPS...
- no longer true if not "symmetric": Matching pennies

not necessarily symmetric: anti-coordination game

Outline

A brief review of strategic games Nash equilibrium et al Symmetric two-player games

Evolutionary game theory

- Evolutionary Stable Strategy
- The Replicator Dynamics
- Other Selections Dynamics

3 Games played on graphs

- Two examples of dynamics
- Relations that maintain termination
- More realistic conditions
- Application to interdomain routing

Evolutionary game theory

We completely change the point of view !

Rules of the game

- We have a large population of individuals.
- Individuals are repeatedly drawn at random to play a symmetric game.
- The payoffs are supposed to represent the gain in biological fitness or reproductive value.

Hypotheses made in evolutionary games

- Each individual is genitically programmed to play a strategy.
- The individuals are no more intelligent, nor rational, nor selfish.

Can an existing population resist to the invasion of a mutant ?

Evolutionary Stable Strategy: robustness to mutations

Evolutionary Stable Strategy

We say that σ is an evolutionary stable strategy (ESS) if

• (σ, σ) is a Nash equilibrium

•
$$\forall \sigma' (\neq \sigma) \quad P(\sigma', \sigma) = P(\sigma, \sigma) \Longrightarrow P(\sigma', \sigma') < P(\sigma, \sigma')$$

Thus if (σ, σ) is a **strict** Nash equilibrium, then σ is an ESS.

- (A,A), (B,B) and (C,C) are Nash equilibria.
- A is not an **ESS**.

• B and C are ESS.

Evolutionary Stable Strategy - Alternative definition

- $\bullet\,$ Imagine a population composed of a unique species $\sigma\,$
- A small proportion ϵ of the population mutes to a new species σ'
- The new population is thus $\epsilon \sigma' + (1 \epsilon) \sigma$

Proposition

A strategy σ is an **ESS** iff $\forall \sigma' (\neq \sigma) \exists \epsilon_0 \in (0,1) \forall \epsilon \in (0,\epsilon_0)$

 $P(\sigma, \epsilon \sigma' + (1 - \epsilon)\sigma) > P(\sigma', \epsilon \sigma' + (1 - \epsilon)\sigma)$

Evolutionary Stable Strategy - Alternative definition

- $\bullet\,$ Imagine a population composed of a unique species $\sigma\,$
- A small proportion ϵ of the population mutes to a new species σ'
- The new population is thus $\epsilon \sigma' + (1 \epsilon) \sigma$

Proposition

A strategy σ is an **ESS** iff $\forall \sigma' (\neq \sigma) \exists \epsilon_0 \in (0, 1) \forall \epsilon \in (0, \epsilon_0)$

$$P(\sigma, \epsilon \sigma' + (1 - \epsilon)\sigma) > P(\sigma', \epsilon \sigma' + (1 - \epsilon)\sigma)$$

Static concept: it suffices to study the one-shot game

Evolutionary Stable Strategy - 2×2 games

 $\begin{array}{ll} Cat \ 1 : \mathsf{NE} = \{(Y, Y)\} & \mathsf{ESS} = \{Y\} \\ Cat \ 2 : \mathsf{NE} = \{(X, X), (Y, Y), (\sigma, \sigma)\} & \mathsf{ESS} = \{X, Y\} \\ Cat \ 3 : \mathsf{NE} = \{(X, Y), (Y, X), (\sigma, \sigma)\} & \mathsf{ESS} = \{\sigma\} \\ Cat \ 4 : \mathsf{NE} = \{(X, X)\} & \mathsf{ESS} = \{X\} \end{array}$
The evolution of a population - intuitively

Population composed of several species

Variation of popu. the species = Popu. of the species \times Advantage of the species

Advantage of the species = Fitness of the species - Average fitness of all species

The evolution of a population - more formally (1)

- We consider a population where individuals are divided into n species. Individuals of species i are programmed to play the pure strategy a_i.
- We denote by $p_i(t)$ the number of individuals of species *i* at time *t*.
- The total population at time t is given by

$$p(t) = p_1(t) + \cdots + p_n(t)$$

• The **population state at time** *t* is given by

$$\sigma(t) = (\sigma_1(t), \dots, \sigma_n(t))$$
 where $\sigma_i(t) = \frac{p_i(t)}{p(t)}$

The evolution of a population - more formally (2)

The evolution of the state of the population is given by:

The replicator dynamics (RD)

$$rac{\mathsf{d}}{\mathsf{d}t}\sigma_i(t) = \left(P(\mathsf{a}_i,\sigma(t)) - P(\sigma(t),\sigma(t))
ight) \cdot \sigma_i(t)$$

Theorem

Given any initial condition $\sigma(0) \in \Delta(A)$, the above system of differential equations always admits a unique solution.

The replicator dynamics - 2×2 games

 $\Delta(A) = \{(\sigma_1, \sigma_2) \in [0, 1]^2 \mid \sigma_1 + \sigma_2 = 1\} \simeq [0, 1], \text{ where } \sigma_1 \text{ is the proportion of X}$ The solutions $(\sigma_1(t), 1 - \sigma_1(t))$ of the (RD) behave as follows:

Various concept of stability

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be smooth enough and consider:

$$\frac{\mathsf{d}}{\mathsf{d}t}x(t)=f(x(t)).$$

Let $\varphi : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be a maximal solution of the above equation.

Let $x_0 \in \mathbb{R}^n$, we say that

- x_0 is a stationary point iff $\forall t \in \mathbb{R}$ $\varphi(x_0, t) = x_0$
- x₀ is Lyapunov stable iff

 $\forall U(x_0) \subseteq \mathbb{R}^n \quad \exists V(x_0) \subseteq \mathbb{R}^n \quad \forall x \in V(x_0) \quad \forall t \in \mathbb{R} \quad \varphi(x, t) \in U(x_0)$

• x_0 is asymptotically stable iff x_0 is a Lyapunov stable point and

$$\exists W(x_0) \quad \forall x \in W(x_0) \quad \lim_{t \to +\infty} \varphi(x, t) = x_0$$

Rock-Scissors-Paper

 $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is Lyapunov stable but not asymptotically stable.

The picture is taken from Evolutionnary game theory by J.W. Weibull.

The generalised Rock-Scissors-Paper Games

The pictures are taken from Evolutionnary game theory by J.W. Weibull.

Results

There are several results relating various notions of "static" stability:

- Nash equilibrium,
- Evolutionary Stable Strategy,
- Neutrally Stable Strategy...

with various notions of "dynamic" stability:

- stationary points,
- Lyapunov stable points,
- asymptotically stable point ...

Theorems

• If $\sigma \in \Delta$ is Lyapunov stable, then σ is a NE.

• If $\sigma \in \Delta$ is an ESS, then σ is asymptotically stable.

An alternative dynamics

Replicator dynamics

Variation of popu. the species = Popu. of the species \times Advantage of the species Advantage of the species = Fitness of the species - Average fitness of all species

An alternative dynamics

Replicator dynamics

Variation of popu. the species = Popu. of the species \times Advantage of the species Advantage of the species = Fitness of the species - Average fitness of all species

Alternative hypothesis: offspring react **smartly** to the mixture of past strategies played by the opponents, by playing a **best-reply strategy** to this mixture

Best-reply dynamics

Variation of Strategy Mixture = Best-Reply Strategy - Current Strategy Mixture

Replicator Vs Best-reply

Replicator dynamics

Best-reply dynamics

Pictures taken from Evolutionnary game theory by W. H. Sandholm

Other dynamics

Figure 1: Five basic deterministic dynamics in standard Rock-Paper-Scissors. Colors represent speeds: red

Static vs dynamic approachStatic approachDynamic approach

Equilibria

 \leftarrow

Stable Points

Picture taken from Evolutionnary game theory by W. H. Sandholm

Static approach Dynamic approach Equilibria Stable Points

If we discover a new game

• Find immediately a good strategy is concretely impossible

Static approach Dynamic approach Equilibria Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy

Static approach Dynamic approach Equilibria Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?

Static approach Dynamic approach Equilibria Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?

Static approach Dynamic approach Equilibria Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?

Our Goal

- Apply this idea of improvement/mutation on games played on graphs
- Prove stabilisation via reduction/minor of games
- Show some links with interdomain routing

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

 v_1 prefers the route $v_1v_2v_{\perp}$ to the route v_1v_{\perp} (preferred to $(v_1v_2)^{\omega}$) v_2 prefers the route $v_2v_1v_{\perp}$ to the route v_2v_{\perp} (preferred to $(v_2v_1)^{\omega}$)

Interdomain routing problem as a game played on a graph

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .

 v_1 prefers the route $v_1v_2v_{\perp}$ to the route v_1v_{\perp} (preferred to $(v_1v_2)^{\omega}$) v_2 prefers the route $v_2v_1v_{\perp}$ to the route v_2v_{\perp} (preferred to $(v_2v_1)^{\omega}$)

 $v_1v_\perp \prec_1 v_1v_2v_\perp$ and $v_2v_\perp \prec_2 v_2v_1v_\perp$

Games played on a graph – The strategic game approach

2 Nash equilibria: (c_1, s_2) and (s_1, c_2)

Static vision of the game: players are perfectly informed and supposed to be intelligent, rational and selfish

Games played on a graph – The evolutionnary approach

Games played on a graph – The evolutionnary approach

Games played on a graph – The evolutionnary approach

Asynchronous nature of the network could block the packets in an undesirable cycle...

Interdomain routing problem - open problem

The game G

The graph of the dynamics: $G\langle \rightarrow \rangle$

Identify necessary and sufficient conditions on G such that G $\langle { \twoheadrightarrow } \rangle$ has no cycle

Ideally, the conditions should be algorithmically simple, locally testable... Numerous interesting partial solutions proposed in the literature

Daggitt, Gurney, Griffin. Asynchronous convergence of policy-rich distributed Bellman-Ford routing protocols. 2018

Games played on a graph – The evolutionnary approach Different dynamics

 D_1 with no cycle

 D_2 with a cycle

Outline

A brief review of strategic games Nash equilibrium et al Symmetric two-player games Evolutionary game theory

- Evolutionary Stable Strategy
- The Replicator Dynamics
- Other Selections Dynamics

3 Games played on graphs

- Two examples of dynamics
- Relations that maintain termination
- More realistic conditions
- Application to interdomain routing

Positional 1-step dynamics $\xrightarrow{P1}$

$$\text{profile}_1 \xrightarrow{P_1} \text{profile}_2$$

if:

- a single player changes at a single node
- this player improves his own outcome

Positional 1-step dynamics $\xrightarrow{P_1}$

$$profile_1 \xrightarrow{P_1} profile_2$$

if:

- a single player changes at a single node
- this player improves his own outcome

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

Positional Concurrent Dynamics \xrightarrow{PC}

$$\text{profile}_1 \xrightarrow{PC} \text{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

both players intend to reach their best outcome $(v_1v_{\perp} \prec_1 v_1v_2v_{\perp} \text{ and } v_2v_{\perp} \prec_2 v_2v_1v_{\perp})$, even if they do not manage to do it (as the reached outcome is $(v_1v_2)^{\omega}$ and $(v_2v_1)^{\omega}$)
Questions

What condition G should satisfy to ensure that

 $G\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on G?

Questions

What condition G should satisfy to ensure that

 $G\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on G?

What relations \rightarrow_1 and \rightarrow_2 should satisfy to ensure that

 $G\langle \rightarrow_1 \rangle$ has no cycles if and only if $G\langle \rightarrow_2 \rangle$ has no cycles?

Questions

What condition G should satisfy to ensure that

 $G\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on G?

What relations \rightarrow_1 and \rightarrow_2 should satisfy to ensure that

 $G\langle \rightarrow_1 \rangle$ has no cycles if and only if $G\langle \rightarrow_2 \rangle$ has no cycles?

What should G_1 and G_2 have in common to ensure that

 $G_1 \langle \rightarrow \rangle$ has no cycles if and only if $G_2 \langle \rightarrow \rangle$ has no cycles?

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

Folklore

If $G_1 \langle \rightarrow_1 \rangle$ simulates $G_2 \langle \rightarrow_2 \rangle$ and the dynamics \rightarrow_1 terminates on G_1 , then the dynamics \rightarrow_2 terminates on G_2 .

Relation between games

 G' is a minor of G if it is obtained by a succession of operations:

- deletion of an edge (and all the corresponding outcomes);
- deletion of an isolated node;
- deletion of a node v with a single edge $v \rightarrow v'$ and no predecessor $u \rightarrow v$ such that $u \rightarrow v'$.

Relation between games

 G' is a minor of G if it is obtained by a succession of operations:

- deletion of an edge (and all the corresponding outcomes);
- deletion of an isolated node;
- deletion of a node v with a single edge $v \rightarrow v'$ and no predecessor $u \rightarrow v$ such that $u \rightarrow v'$.

Relation between simulation and minor

Theorem

Relation between simulation and minor

Theorem

If G' is a minor of G, then $G\langle \xrightarrow{P_1} \rangle$ simulates $G'\langle \xrightarrow{P_1} \rangle$. In particular, if $\xrightarrow{P_1}$ terminates for G, it terminates for G' too.

Theorem

If G' is a minor of G, then $G\langle \xrightarrow{PC} \rangle$ simulates $G'\langle \xrightarrow{PC} \rangle$. In particular, if \xrightarrow{PC} terminates for G, it terminates for G' too.

Remark: $G\langle \xrightarrow{P_1} \rangle \sqsubseteq G\langle \xrightarrow{PC} \rangle$

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of fair termination

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of fair termination

More realistic dynamics

Consider *best reply* variants $\xrightarrow{bP1}$ and \xrightarrow{bPC} of the two dynamics, where each player that modifies its strategy changes in the best possible way

Previous theorem

If G' is a minor of G, then $G\langle \stackrel{PC}{\longrightarrow} \rangle$ simulates $G'\langle \stackrel{PC}{\longrightarrow} \rangle$. In particular, if $\stackrel{PC}{\longrightarrow}$ terminates for G, it terminates for G' too.

• Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'

Previous theorem

If G' is a minor of G, then $G\langle \xrightarrow{PC} \rangle$ simulates $G'\langle \xrightarrow{PC} \rangle$. In particular, if \xrightarrow{PC} terminates for G, it terminates for G' too.

• Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'

Previous theorem

If G' is a minor of G, then $G\langle \stackrel{PC}{\longrightarrow} \rangle$ simulates $G'\langle \stackrel{PC}{\longrightarrow} \rangle$. In particular, if $\stackrel{PC}{\longrightarrow}$ terminates for G, it terminates for G' too.

• Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'

Previous theorem

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'

Previous theorem

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'

Previous theorem

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'

Previous theorem

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Previous theorem

If G' is a minor of G, then $G\langle \xrightarrow{PC} \rangle$ simulates $G'\langle \xrightarrow{PC} \rangle$. In particular, if \xrightarrow{PC} terminates for G, it terminates for G' too.

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Theorem

If G' is a *dominant minor* of G, then $\xrightarrow{bPC} / \xrightarrow{bP1}$ fairly terminates for G if and only if it fairly terminates for G'.

Previous theorem

If G' is a minor of G, then $G\langle \xrightarrow{PC} \rangle$ simulates $G'\langle \xrightarrow{PC} \rangle$. In particular, if \xrightarrow{PC} terminates for G, it terminates for G' too.

- Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not *terminate*) but not for G'
- The reciprocal does not hold...

Theorem

If G' is a *dominant minor* of G, then $\xrightarrow{bPC} / \xrightarrow{bP1}$ fairly terminates for G if and only if it fairly terminates for G'.

• Use of simulations that are partially invertible...

Interdomain routing

• Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Sami, Shapira, Zohar, 2009]

If G is a one-target game for which $\xrightarrow{\text{bPC}}$ fairly terminates, then it has exactly one *equilibrium*.

Interdomain routing

• Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Griffin, Shepherd, Wilfong, 2002]

There exists a pattern, called *dispute wheel* such that if G is a one-target game that has no dispute wheels, then $\xrightarrow{\text{bPC}}$ fairly terminates.

 $\forall 1 \leq i \leq k \quad \pi_i \prec_{u_i} h_i \pi_{i+1}$

Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if

 \xrightarrow{PC} terminates for G, then G has no strong dispute wheel.

Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if

 \xrightarrow{PC} terminates for G, then G has no strong dispute wheel.

Theorem

If G satisfies a locality condition on the preferences, then \xrightarrow{PC} fairly terminates for G if and only if G has no strong dispute wheel.

Reciprocal?

Theorem

There exists a stronger pattern, called strong dispute wheel, such that if

 \xrightarrow{PC} terminates for G, then G has no strong dispute wheel.

Theorem

If G satisfies a locality condition on the preferences, then \xrightarrow{PC} fairly terminates for G if and only if G has no strong dispute wheel.

Theorem

Finding a strong dispute wheel in G can be tested by searching whether G contains the following game as a minor:

Summary

- Looking for equilibria in dynamics of *n*-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Summary

- Looking for equilibria in dynamics of *n*-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of
 →^{bPC} in one-target games
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Summary

- Looking for equilibria in dynamics of *n*-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of
 →^{bPC} in one-target games
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Thank you! Questions?