

Diplôme Inter-Universitaire

Enseigner l'Informatique au Lycée

Programmation de cartes Travaux Pratiques

Contrôle à distance d'un Raspberry Pi

Julien Marot

1 Introduction et paramétrage du smartphone

1.1 Introduction

On souhaite lors de ce TP, prendre le contrôle du Raspberry Pi avec un smartphone.

1.2 Protocole

Figure 1.1 - Application RaspPi Check

Question 1:

La procédure ci-dessous requiert un appareil muni d'Android. Avec un Iphone, on peut installer 'SimplePi '.

- 1. Téléchargez Raspi Check sur votre smartphone;
- 2. Faites les branchements classiques du Raspberry (on alimente à la fin) ; SANS brancher le câble Ethernet.
- 3. Au choix : utilisez le réseau AMU pour fournir une adresse IP au Raspberry. Dans ce cas-là connectez votre téléphone au réseau WiFi AMU. Vous devrez renseigner vos login et mot de passe bien sûr. Sinon suivez les étapes suivantes. Sur votre téléphone, faites un partage de connection : désactivez le WiFi, et créez un hot spot WiFi;
- 4. Eventuellement, donnez un mot de passe simple pour le hot spot WiFi;

- 5. Sur le Raspberry Pi, cliquez sur l'icône WiFi (en haut ou en bas, à droite), et sélectionnez le réseau partagé par votre téléphone;
- 6. Une fois le mot de passe rentré, le Raspberry Pi doit se connecter. Lancez ifconfig sur un terminal;
- 7. Au niveau de l'item 'wlan0' vous pouvez lire l'adresse IP attribuée automatiquement à votre Raspberry.
- 8. Sur votre téléphone : renseignez votre Raspberry. On vous demande l'adresse IP. Ensuite, le login est pi, le mot de passe est raspberry.
- 9. Faites 'Rafraîchir' jusqu'à ce que les informations concernant votre RPi soient accessibles.
- 10. Appuyez sur 'COMMANDES' pour créer votre première commande à distance, par exemple 'ls' qui affiche le contenu du dossier courant (le dossier pi). Choisissez un délai de 10 secondes.

Question 2:

Vérifiez que par défaut le dossier de travail est 'pi'.

2 Prise de photo, contrôle à distance du robot UBBO

Au préalable, réalisez l'installation du package fim qui permet de visualiser une image :

```
sudo apt-get update
sudo apt-get -y install fim
```

2.1 Prise de photo et détection à distance

Sur votre téléphone, créez les commandes suivantes, en sautant une ligne si nécessaire. Vous choisirez à chaque fois un délai de 10 secondes.

- 1. prendre une photo avec raspistill
- 2. Lancer les deux lignes de code qui permettent de se placer dans l'environnement opencv :

```
source /home/pi/.profile
workon cv
```

3. vous placer dans le bureau et faire tourner le programme de détection de visage, afficher l'image de sortie.

```
source /home/pi/.profile
workon cv
cd Bureau
cd FaceDetect
python facedetect.py
fim -a image_output.png
la commande fim -a sert à afficher l'image.
```

4. Un fichier image_output.jpg a dû être créé. L'objectif est maintenant de transférer cette image, avec la commande scp, soit sur un raspberry dont on connaît l'adresse IP, soit sur un serveur.

2.2 Transfert de photo sur un serveur

Voici ce que l'on a fait pour créer un serveur web :

Un serveur http peut être créé : on installe apache2 sur le raspberry *via* :

sudo apt install apache2.

sudo chown -R pi:www-data /var/www/html/
On peut accéder à ce dossier serveur depuis le Raspberry via :

cd /var/www/html/

On peut aussi accéder à ce serveur depuis tout ordinateur connecté à internet : sur une page web, dans la barre d'adresse on écrit : l'adresse IP du Raspberry source (172.17.3.146).

Voici la commande pour transférer l'image :

cp -b /home/pi/Bureau/FaceDetect/image_output.png /var/www/html Il est nécessaire, après avoir copié l'image, de détruire le fichier

index.html, avec l'instruction rm index.html

Question 3:

Exécutez cette commande, et vérifiez sur un PC classique que vous pouvez récupérer l'image. Parvenez-vous à trouver l'image transférée sur le RPi distant?

Notez que d'autres solutions existent que le téléphone : prendre le contrôle à distance avec putty par exemple.

2.3 Contrôle à distance du robot UBBO

Prenez le contrôle à distance du Raspberry Pi qui sert de cerveau au robot. Chaque binôme devra le faire à tour de rôle. <u>Question 4</u>:

Ou se trouve le programme de détection ? Placez-vous dans le dossier adéquat, et faites tourner le programme de détection de visage.

Question 5:

Transférez les images résultat obtenues sur un Raspberry Pi distant *via* le serveur.

2.4 Application au robot

Pour mettre en oeuvre cette méthodologie sur le robot UBBO, il est nécessaire de connaître son adresse IP, sans avoir à brancher un clavier et une souris. Pour cela, il faut, au démarrage du robot, lancer automatiquement la commande ifconfig.

Sur Le Raspberry Pi tête du robot, un fichier 'autostart' a été créé dans le dossier adéquat :

```
cd home/pi/.config/lxsession/LXDE-pi/
nano autostart
```

La méthode pour exécuter un programme sur la Raspberry Pi au démarrage consiste à modifier le fichier .bashrc contenu dans /home/pi. Ainsi, une commande s'exécutera au démarrage, ainsi qu'à chaque ouverture d'un nouveau terminal ou lorsqu'une nouvelle connexion SSH est établie.

On a donc placé les commandes ci-dessous au bas du fichier .bashrc :

```
ifconfig
echo -e "\e[1mVoici mon adresse IP :\e[0m"
hostname -I
echo -e "\e[1mVoici mon Login : pi\e[0m"
echo -e "\e[1mVoici mon mot de passe : raspberrypi\e[0m"
```


Diplôme Inter-Universitaire

Enseigner l'Informatique au Lycée

Programmation de cartes Travaux Pratiques

Détection de visages sur Raspberry Pi

Julien Marot

1 Introduction et premières acquisitions

1.1 Introduction

1.1.1 Objectif du TP

On souhaite lors de ce TP, faire du traitement d'image collaboratif avec Raspberry Pi. Le Raspberry Pi est un nano-ordinateur dont le disque dur est constitué d'une carte micro-SD. C'est sur cette carte que sont installés le système d'exploitation et les programmes d'acquisition et de traitement. Le travail sera réparti entre trois binômes formant un groupe, pour écrire un programme commun de détection de visages. Ce programme ne fonctionne que sur l'une des cartes micro-SD fourni au groupe.

1.1.2 Partie hardware

Un avantage majeur du RPi est son faible coût comparé à un ordinateur classique -32 euros-, et un bon compromis entre la taille et les performances : 512 MB RAM et 700MHz de vitesse d'horloge pour le modèle B; 1GB de RAM, Quad Core, et 900MHz de vitesse d'horloge pour le modèle 2.

Figure $1.1 - Raspberry Pi \pmod{B}$.

<u>Question 1 :</u> Sur la figure 1.1, que représentent les éléments 1, 2, 3, 4?

1.2 Mise en route et test d'acquisition

C'est en dernier que l'on alimente le RPi!

Branchez le RPi à un écran via un adaptateur HDMI-VGA et un câble VGA. Branchez une souris, un clavier, et un câble Ethernet, une caméra Pi. Branchez le câble Ethernet au réseau. Enfin, branchez l'alimentation.

1.2.1 Démarrage du RPi

Le RPi démarre automatiquement à la mise sous tension. Si vous utilisez Raspbian Wheezy (un Pi A), le login est pi, le mot de passe est raspberry. Lorsque vous l'écrivez, le mot de passe n'est pas affiché, c'est normal. Si vous travaillez avec le système d'exploitation Raspbian Jessie, vous n'avez pas à fournir de login et mot de passe au démarrage.

Si vous travaillez avec Raspbian Wheezy, placez-vous en mode GUI (graphical user interface) avec la commande sudo startx.

1.2.2 Acquisition d'image

Pour réaliser une acquisition test, lancez un terminal, et écrivez :

raspistill -t 2000 -o imagetest.jpg -q 5

Vous avez alors une visualisation de deux secondes. Le paramètre -q désigne le taux de compression jpeg. Il est ici fixé à 5%. Question 2 :

Faites quelques acquisitions de la mire en Fig. 2.1 en faisant varier la qualité de la compression. Renommez à chaque fois le fichier imagetest.jpg. Par exemple, imagetest1.jpg pour une compression à 1%. Comment varie l'aspect de l'image quand le taux de compression prend les valeurs q=1, 2, 5, 10, 20, 50, et 100?

1.2.3 Acquisition de vidéo

Pour réaliser une acquisition vidéo, sur le terminal : raspivid -t 5000 -o video.h264 -b 3500000

Dans l'exemple ci-dessus, on enregistre un clip de 5 sec. au rythme spécifié (3.5MBits/sec.). Pour la visualiser, vous pouvez la transférer sur le PC (avec le programme Client_Web.py) et utiliser par exemple VLC si vous êtes sous Windows.

2 Travail collaboratif et tests de détection

2.1 Travail collaboratif

2.1.1 Détection de visage

Formez un groupe de trois binômes. Chaque groupe doit avoir à disposition au moins un Raspberry Pi 3. C'est sur les cartes micro-SD des Raspberry Pi 3 que se trouve une boîte à outils de traitement d'image nommée 'OpenCV' qui permet de faire du traitement d'images.

Question 3 :

Implantez le programme 1 de détection de visage : chaque binôme implante sa partie du programme, désignée par

####### Partie 1, ####### Partie 2, et ####### Partie 3 dans l'algorithme 1 de détection de visage. Sauvegardez vos programmes avec le nom suivant :

####### Prog1, ####### Prog2, et ####### Prog3.

2.1.2 Transfert de programme

Le programme Client_Web permet de transférer un fichier entre un RPi source et un RPi cible.

Il peut déjà être présent sur votre RPi, sinon vous pouvez le télécharger sur la page suivante :

http://www.fresnel.fr/perso/marot/#Teaching

La cible doit être un RPi plutôt puissant (tel un RPi 3), muni d'une carte micro-SD sur laquelle OpenCV est installé.

Question 4 :

Quelle est l'adresse IP de votre cible?

Algorithm 1 Détection de visage

```
####### Partie 1
import picamera
import cv2
camera = picamera.PiCamera()
                             ## Declare la camera
camera.resolution = (1024,768) ## Choix de la resolution (max par def.)
camera.brightness = 60
camera.rotation = 0 ## 0 90 180 ou 270
camera.crop = (0.0,0.0,1,1) ##
camera.capture('image.jpg')
                             ## Prend une photo
                               ## Arrete la camera
camera.close()
####### Partie 2
## Lecture de l'image
image = cv2.imread('image.jpg')
## Charge le classifieur pour la detection de visage
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
## Detection des visages
faces = faceCascade.detectMultiScale(image, 1.3, 5)
## Placement des rectangles sur les visages
for(x, y, w, h) in faces:
    cv2.rectangle(image, (x,y), (x+w, y+h),(0, 255, 0), 2)
## Enregistrement de l'image résultat en jpg
    cv2.imwrite('image_output.jpg',image)
####### Partie 3
## Affichage de l'image avec les visages detectes
namewindow = "Faces found"
cv2.imshow(namewindow,image)
                                        ## Affiche l'image
##cv2.resizeWindow(namewindow,800,600) ## Permet de redimensionner la fenêtre
                                        ## Attend appui sur une touche et...
cv2.waitKey(0)
cv2.destroyWindow(namewindow)
                                        ## Ferme la fenêtre
                                 6
```

• Sur Raspberry Pi source (client) :

Lancer Client_Web. Pour cela, sur la ligne de commande, tapez : python Client_Web.py.

L'adresse de l'ordinateur source (inscrite dans le fichier hosts), ainsi que le port utilisé (choisi automatiquement par le programme Client_Web.py) sont fournis au lancement de l'application.

• Sur le RPi cible (serveur) :

Ouvrir une fenêtre web (bouton planète - flèche en haut à gauche), et tapez l'adresse IP qui vous a été donnée par le programme Client_Web sur la raspberry source. Par exemple : http://172.17.107.161:8000/

Question 5 :

Lancez Client_Web sur chaque source. Combien y a-t-il de sources et quelle est leur adresse IP?

<u>Question 6</u>: Avec la fenêtre web, Visualisez-vous le contenu des dossiers dans le quel se trouve l'application Client_Web, et en particulier vos programme?

<u>Question 7</u> : Téléchargez les programmes que vous avez écrits. Sontils enregistrés sur le Raspberry cible ?

Une fois que vous avez téléchargé vos programmes depuis votre RPi, tapez Ctrl C sur la commande du RPi. Cela termine l'application Client_Web. Vous pouvez utiliser vos programmes avec les logiciels installés sur votre Raspberry.

2.2 Tests de détection de visages

Question 8 : Dans le dossier home/pi du Raspberry cible, dans lequel vous avez téléchargé vos programmes, se trouve le fichier haarcascade_frontalface_default.xml. Créez un dossier à votre nom. Dans ce dossier, copiez le fichier haarcascade_frontalface_default.xml, et vos programmes. Votre dossier est-il créé? Contient-il les fichiers de programmes python et le fichier xml?

Question 9 :

Vous pouvez maintenant combiner vos fichiers en un seul programme. Pour cela, ouvrez les programmes avec clic droit > 'text editor'. Copiez et collez les parties 2 et 3 sur le programme qui contient la partie 1. Vous obtenez ainsi le programme complet. Enregistrez le programme sous le nom Detection_Visages.py, et fermez le programme. Etes-vous certains qu'il n'y a pas de redondance?

```
Question 10 : Exécutez votre programme complet. Pour cela :
```

Lancez un terminal via Menu > Accessories. Vous travaillez avec un RPi 3, sous Raspbian Jessie, donc vous devez vous placer dans l'environnement opencv en tapant les lignes de code suivantes :

```
source ~/.profile
workon opencv
```

Sur certaines cartes il est possible que vous ayez plutôt à écrire : source ~/.profile workon cy

Cela dépend de la façon dont OpenCV a été installé. Exécutez votre programme complet de la façon suivante : python Detection_Visages.py

Est-il nécessaire d'appliquer une rotation à l'image? Si oui, comment devez-vous modifier votre programme pour faire en sorte de retourner l'image? Y a-t-il enregistrement des images image.jpg et image_output.jpg?

<u>Question 11 :</u> Quelles sont les conditions dans lesquelles les visages sont bien, ou mal détectés ?

2.3 Conclusion

Vous avez utilisé un système complet d'acquisition et de traitement de signaux échantillonnés. Quels étaient ces signaux en définitive?

De ce TP, que déduisez-vous de la capacité d'un Raspberry Pi à bas coût à exécuter des programmes de traitement d'image avancés? Pour répartir les tâches dans la conception de tels programmes, quels sont les éléments essentiels à maîtriser?

Débranchez votre setup Raspberry en commençant par l'alimentation. Rangez les cartes micro-SD, et les adaptateurs. Refaites les branchements des ordinateurs aux périphériques que vous avez utilisés pour vos Raspberry Pi.

Annexe

Figure 2.1 — Mire de test pour caméras