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NON-DETERMINISTIC PARITY TREE AUTOMATA

Non-deterministic parity tree automata :

A= <Q7 Aa Aa Qin, COD
Q: control states
A: labels alphabet
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> AC @QxAX Qx Q: transition relation
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Qin: initial state

> Col: @ — N: colouring function

Run on an A-labeled (infinite binary) tree #: Q-labelling of ¢

consistent with A
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s
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A= { o (‘hn; a, pvp)
(p7 b7 Q7p)(p7 ba D, p) o }

A branch is accepting iff the smallest
colour infinitely often visited is even

A run is accepting iff all its branches are
accepting

A tree is accepted iff there is an accepting
run over it.




TREE AUTOMATA: EXAMPLE

A ={a, b}
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b
g3 — (g3, 43)

F={q,q}
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TREE AUTOMATA:

A ={a, b}

EXAMPLE
Q={a, @ s} A
) @ 2 (02, 05)
a2 (2, 5) © = (a1, )
) g5 — (3. 3)
B (6, 1)

initial state : q; F={g, e}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Biichi).

A run is accepting if all its branches are
accepting (V).

A tree is accepted if there exists an ac-
cepting run (3).
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TREE AUTOMATA: EXAMPLE
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REGULAR TREE LANGUAGES

A subset L of trees is regular if there exists some non-deterministic
parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:
e Coincide with MSO definable languages (hence, expressive).
e Form an effective Boolean algebra.

e Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its
good properties is a challenging problem.



REGULAR TREE LANGUAGES

A subset L of trees is regular if there exists some non-deterministic
parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:
e Coincide with MSO definable languages (hence, expressive).
e Form an effective Boolean algebra.

e Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its
good properties is a challenging problem.

We address this question by considering automata that can
check equality between siblings




TREE AUuTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.



TREE AUuTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an A x {=,#} tree =
by annotating every node « in t by an extra information regarding on
whether the left and the right subtrees rooted at u are equal or not.
More formally, for every u € {0, 1}*,

iy (t(w),=) if Hul] = t[ul]
(t(u), #) if t{u0] # t{ul]




TREE AUuTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree ¢ associate an A x {=,#} tree =
by annotating every node u in ¢ by an extra information regarding on
whether the left and the right subtrees rooted at u are equal or not.
More formally, for every u € {0, 1}*,

i {(t(u),:) if 0] = #ul]
(H(w),#) if t{u0] # tul]

An automaton A with constraints over alphabet A is an automaton
over alphabet A x {=,#} and one lets

Len(A) = {t| £ € L(A)}
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WITH CONSTRAINTS

REG™: class of languages recognised by automata with constraints.

Theorem. The class REG™ is an effective Boolean algebra.

Conjecture. The class REG™ is not closed under projection.
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PROPERTIES OF LANGUAGES ACCEPTED BY AUTOMATA
WITH CONSTRAINTS

REG™: class of languages recognised by automata with constraints.

Theorem. The class REG™ is an effective Boolean algebra.

Conjecture. The class REG™ is not closed under projection.

It captures natural properties beyond MSO like “the tree satisfies ¢
and Vz if the subtree at z satisfies @1, then its two subtrees are
different /equal, and satisfy ¢5”.

a
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a b
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aA“b‘baAb

Proposition. Let A be an automaton with constraints and let ¢ be a
regular tree. Then one can decide whether ¢t € L¢°"(A).




THE CARDINALITY PROBLEM

The cardinality profile x4 of A, is a mapping that assigns to each
state ¢ of A the cardinality of L°°"(A,).

Proposition. Let Xy be the cardinality of the set of natural numbers,
and 2% the cardinality of the set of the real numbers. Then

kA Q— NU{Rg, 2%}
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THE CARDINALITY PROBLEM
The cardinality profile x4 of A, is a mapping that assigns to each
state ¢ of A the cardinality of L°°"(A,).

Proposition. Let Xy be the cardinality of the set of natural numbers,
and 2% the cardinality of the set of the real numbers. Then

kA Q— NU{Rg, 2%}

For regular tree languages it is known from [Niwinski’91] that one
can compute the cardinality profile.

Our main result is the following:

Theorem. Let A be a parity tree automaton with constraints. Then,
one can compute its cardinality profile.



SoME TooLS

First, get rids of equalities:

Theorem. Let A be an automaton with equality and disequality
constraints. Then one can build an automaton B with disequality
everywhere and s.t. L°°"(A) and L°"(B) have the same cardinality.



SoME TooLS

First, get rids of equalities:

Theorem. Let A be an automaton with equality and disequality
constraints. Then one can build an automaton B with disequality
everywhere and s.t. L°°"(A) and L°"(B) have the same cardinality.

~

Second, over-approximate the language L°"(A,) by L(A) the
language accepted by forgetting the constraints and use the results of
[Niwinski’91] on it.



EXAMPLE

Let t,/tp be defined by t,(e) = a, ty(e) = b, to(u0) = t,(u0) = a and
to(ul) = tp(ul) = b for any u € {0,1}*.



EXAMPLE

Let ¢,/t, be defined by t,(¢) = a, tp(e) = b, t4(u0) = t,(u0) = a and
to(ul) = tp(ul) = b for any u € {0,1}*.

Let A be the safety automaton ({gin, ¢}, {(a, #), (b, %)}, Gin, A 4)
where A = {(Q'L'n', ((l, #)ﬂ Qin, tb)a (qi’rlv ((l, #)7 qb, tb)7 ((]b-, (b7 #)* ta7 tb)}

Then, |L(A)| = Ro. But, L"(A) = {t.}.



COUNTABLE UNCONSTRAINED LANGUAGES (1/2)
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If L(A) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(A) are
exactly those obtained from a tree in L(B) by replacing every leaf by

a regular tree uniquely determined by the leaf label.
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COUNTABLE UNCONSTRAINED LANGUAGES: EXAMPLE

If L(ﬁ) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(VZ) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.
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COUNTABLE UNCONSTRAINED LANGUAGES: EXAMPLE

If L(le\) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(.A) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Let t,/ty be defined by t,(e) = a, t(g) = b, ta(u0) = t,(u0) = a and
to(ul) = tp(ul) = b for any u € {0,1}*.

Let A be the safety automaton ({gimn, q»}, {(a,#), (b, #)}, ¢in, Aa)
where A= {(Qim (CL, 75)’ Qin, tb)v (Qinv (a'a #)7 b, tb)a (va (ba 7é tav tb)}
Then L(B) is (where a+— t, and b+ t):

a a



COUNTABLE UNCONSTRAINED LANGUAGES (2/2)

-~

If L(A) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(le\) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Roadmap to compute the cardinality of L(A) when L(A) is
countable:

e Safely assume that A has disequality everywhere.

e Built from B an automaton on finite trees with constraints C such
that L°™(A) and L°°"™(C) have the same cardinal.

e Use the results from [Bogaert&Tison’02] to compute the cardinal
of Le°"(C).



ALGORITHM TO COMPUTE THE CARDINALITY PROFILE

Input: Tree automaton with disequality constraints everywhere A
Data Structure:

Set S < @ the states of A

Automaton B + A

Function & : Q — N U {Rg, 2%}; x(q) + 2% for all ¢

Code:
1: while dg € Ss.t. |L( 0| <N do
2 r(q) « |Leo(By)]
3 if k(¢) = 0 then
4: B <+ Bgsp
B else if x(q) < Ry then
6 etV LE™ (Bo)i= {t1y- - 5 ol
i B« Bq»—)tl,...,tn
8 end if
S« S\{q}
10: end while
11: return s



EXAMPLE OF EXECUTION

Recall that we defined ¢,/t, by t.(c) = a, tp(e) = b,
to(u0) = tp(u0) = a and t,(ul) = tp(ul) = b for any u e {0, 1}*.

And A as the safety automaton ({gin, gv}, {(a,#), (b, %)}, @in, A a)
where A = {(QZH/ (a: 75)’ Qin, tb): (Ql’m ((17 #)'« b, tb)a (QIN (b'~ 75)’ taa tb)}

CL (1

|L(A)| = Ro but Leo™(A) = {t,}.



EXAMPLE OF EXECUTION

Recall that we defined t,/t, by t.(c) = a, tp(e) = b,

to(u0) = tp(u0) = a and t,(ul) = tp(ul) = b for any u e {0, 1}*.
And A as the SafEty automaton ({qzn7 %}7 {(a’v 7&)7 (b7 #)}7 Qin; A.A)
where A = {(QZTH (a7 #)7 Qin, tb)a (QNH (0'7 #)a b, tb)a (Qb> (b7 #)7 taa tb)}

~

|L(A)| = Ng but L"(A) = {t,}.
Consider B that (note that |L(B)| = 280):
e Checks that the leftmost branch is labelled only by ¢’s.

e Checks that any right subtree of a node on that branch is such
that the root is labelled by c¢, the left subtree is ¢, while the right
subtree is accepted by the automaton ..A

6 LCO’I’I (A)




EXAMPLE OF EXECUTION

|L(A)| = Ro but Le(A) = {t,}.

/\

L(‘Oﬂ

yy

= (@8, {(a,#), (b,#), (¢, #)}, e, Ap, Col) with Qs = Q4 U {q, ¢}
and Ag = Ay U {(QCa ( Gy 7&) qc, dc)v (q/u (C 7&) ay an)}

Previous Algorithm:

e First detects that |L(B qm)| < N, computes (gin) = 1 and change
B to By,

e Then detects that |L(B )\ < Ny, computes k(¢,) = 0 and change
B to ch,_m

e Finally detects that x(g.) = 0.



Bucur CASE

Theorem. The algorithm returns the correct cardinality profile.
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Proof ingredients.
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= Countable values are correct.
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there are N ¢-run-tree with holes that are pairwise different.
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= Countable values are correct.
e Define run-tree with holes as pieces of runs where:
e Holes correspond to states where s equals 2%°.
e Parts without holes are accepting and satisfies the constraints.
o Prove that for every state ¢ with x(q) = 2%° and every N >0
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e Combine them to obtain uncountably many accepted trees.

Al



BucHr CASE
Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.
- Countable values are correct.
e Define run-tree with holes as pieces of runs where:
e Holes correspond to states where s equals 2%°.
e Parts without holes are accepting and satisfies the constraints.
o Prove that for every state ¢ with x(q) = 2%° and every N >0
there are N ¢-run-tree with holes that are pairwise different.

e Combine them to obtain uncountably many accepted trees.

/AA RA



Bucur CASE

Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.

->

Countable values are correct.
Define run-tree with holes as pieces of runs where:

e Holes correspond to states where s equals 2%°.

e Parts without holes are accepting and satisfies the constraints.
Prove that for every state ¢ with x(q) = 2% and every N >0
there are N ¢-run-tree with holes that are pairwise different.
Combine them to obtain uncountably many accepted trees.

For Biichi condition do the same but consider only run-tree with
holes s.t. a final state occurs in any path from the root to a hole.



DoEs 1T ALso WORK FOR cO-BuUcHI?

No :-( as there exists a co-Biichi automaton A s.t. |L(A,)| = 2%
for all ¢ while L¢°"(A,) = 0.
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No :-( as there exists a co-Biichi automaton A s.t. |L(A,)| = 2%
for all ¢ while L¢°"(A,) = 0.

Define A = ({qa, @}, {a, b}, gu, A, Col) where Col(g,) = 2 and
Col(gy) = 1, and A consists of those transitions (g, (z,#), o, ¢1)
where x € {a, b} and ¢y, ¢ are any states.

e There is at most one possible run per tree: the one that assigns
¢z to each node labelled by (z, #).

e The unconstrained language from state ¢, is the set of all trees
such that the root is labelled by z and such that any branch
contains finitely many b’s » Uncountable.



DoEs 1T ALso WORK FOR cO-BuUcHI?

No :-( as there exists a co-Biichi automaton A s.t. |L(A,)| = 2%
for all ¢ while L¢°"(A,) = 0.

Define A = ({qa, @}, {a, b}, gu, A, Col) where Col(g,) = 2 and
Col(gy) = 1, and A consists of those transitions (g, (z,#), o, ¢1)
where x € {a, b} and ¢y, ¢ are any states.

e There is at most one possible run per tree: the one that assigns
¢z to each node labelled by (z, #).

e The unconstrained language from state ¢, is the set of all trees
such that the root is labelled by z and such that any branch
contains finitely many b’s » Uncountable.

o But L°°"(A,,) =0 for z € {a, b}. Indeed:

e An accepted tree would contain at least one node u; labelled by b
(to satisfy # at the root).

e Same for the subtree rooted at u;, and so on...

e Hence there is u1 C u2 C ug - - - all labelled by b, leading to
violate co-Biichi condition.



How TO HANDLE THE CO-BUCHI CASE? (1/2)

Trace: pair p = (t,,7,) where t, is an infinite valid tree and r, is a

run of A on tj. starting from some arbitrary state. The trace is
accepting if the run is.
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run of A on tj. starting from some arbitrary state. The trace is
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Xo=10
Xo+1 = Attr(Safety(X,))
Xo =Upg<a X5 for « limit ordinal



How TO HANDLE THE CO-BUCHI CASE? (1/2)

Trace: pair p = (t,,7,) where t, is an infinite valid tree and r, is a

run of A on tj. starting from some arbitrary state. The trace is
accepting if the run is.

We define two (monotone) operations on sets of traces,
Attr(X) = {(¢p, ) | V infinite branch 7, Ju T 7 s.t. (¢,[u], rp[u]) € X}

Safety(X) ={(t,,1,) | V infinite branch =, either Vu C w, Col(r,(u)) = 2,
or JuC 7 s.t. (t,[u], rp[u]) € X and Col(r,(v)) =2 Vv T u}

and an increasing transfinite sequence (X, )q

Xo=10
Xo+1 = Attr(Safety(X,))
Xo =Upg<a X5 for « limit ordinal

Lemma. The limit of (X, ), is the set of accepting traces.



How TO HANDLE THE CO-BUCHI CASE? (2/2)

Work with the infinity profile p 4 of A

00 otherwise

- {LCO"(AQ) if |L°"(Ag)| < 00

Lemma. One can compute the cardinality profile from p 4.
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that one can compute Attr(p) and Safety(p) from p.



How TO HANDLE THE CO-BUCHI CASE? (2/2)

Work with the infinity profile p 4 of A

00 otherwise

- {LCO"(AQ) if |L°"(Ag)| < 00

Lemma. One can compute the cardinality profile from p 4.
A profile is some p : Q — 2%¢977¢¢s |y {00} that is smaller than p 4.

Define a profile counterpart of operators Attr and Safety and show
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Work with the infinity profile p 4 of A
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- {LCO"(AQ) if |L°"(Ag)| < 00

Lemma. One can compute the cardinality profile from p 4.
A profile is some p : Q — 2%¢977¢¢s |y {00} that is smaller than p 4.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = p 4.
To converge, add a speed-up operator on profiles: p — SpeedUp(p).

Lemma. Let py be the profile that maps () to every state and let, for
any i > 0, ps+1 = SpeedUp(Attr(Safety(p;)))-
Then (p;);>0 converges in a finite number of steps to p.a.
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e Form a Boolean algebra.
e Have interesting expressive power.
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Further Work:
e Simplify the proof for the parity case.

o Investigate other decision problems, eg. the regularity problem.

e Find automata models with decidable emptiness that capture
extension of MSO with isomorphism tests.

e Look for applications.



