
Automata on Infinite Trees with
Equality and Disequality Constraints

Between Siblings

Arnaud Carayol 1 Christof Löding 2 Olivier Serre 3

1LIGM (Université Paris Est & CNRS)
2RWTH Aachen

3IRIF (Université Paris Diderot – Paris 7 & CNRS)

Supported by the European Community Research Training Network
“Games and Automata for Synthesis and Validation” (2002–2006)

Non-deterministic Parity Tree Automata
Non-deterministic parity tree automata :
A = ⟨Q,A,∆, qin,Col⟩
: Q: control states
: A: labels alphabet
: ∆ ⊆ Q× A×Q×Q: transition relation
: qin: initial state
: Col : Q→ N: colouring function

Run on an A-labeled (infinite binary) tree t: Q-labelling of t
consistent with ∆

a qin

b p

c p

...
...

a p

...
...

b p

b p

...
...

a q

...
...

∆ = {· · · (qin, a, p, p)
(p, b, q, p)(p, b, p, p) · · · }

A branch is accepting iff the smallest
colour infinitely often visited is even
A run is accepting iff all its branches are
accepting
A tree is accepted iff there is an accepting
run over it.

Tree Automata: Example

A = {a, b}

t: a

b a

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1A

b a

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1A

b a

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3) •

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1A

b q2 a q3

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2A a q3A

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2A

→

a q3A

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2A

→

a q3A

a b a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3) •

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2A

→

a q3A

a q1 b q3 a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3A

a q1

A

b q3

A

a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3A

→

a q1

A

b q3

A

a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3A

→

a q1

A

b q3

A

a b

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3) •

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3A

→

a q1

A

b q3

A

a q3 b q3

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3

a q1

A

b q3

A

a q3

A

b q3

A

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3

a q1 b q3 a q3 b q3

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3

a q1 b q3 a q3 b q3

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3

a q1 b q3 a q3 b q3

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Tree Automata: Example

A = {a, b}

t: a q1

b q2 a q3

a q1 b q3 a q3 b q3

AQ = {q1, q2, q3}

q1
A−→ (q1, q3)

q1
A−→ (q2, q3)

q2
A−→ (q2, q3)

q1
b−→ (q1, q3)

q2
b−→ (q1, q3)

q3
a−→ (q3, q3)

q3
b−→ (q3, q3)

initial state : q1 F = {q2, q3}

A branch is accepting if it has in-
finitely many occurrences of a state
from F (Büchi).
A run is accepting if all its branches are
accepting (∀).
A tree is accepted if there exists an ac-
cepting run (∃).

Regular Tree Languages

A subset L of trees is regular if there exists some non-deterministic
parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:
• Coincide with MSO definable languages (hence, expressive).
• Form an effective Boolean algebra.
• Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its
good properties is a challenging problem.

We address this question by considering automata that can
check equality between siblings

Regular Tree Languages

A subset L of trees is regular if there exists some non-deterministic
parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:
• Coincide with MSO definable languages (hence, expressive).
• Form an effective Boolean algebra.
• Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its
good properties is a challenging problem.

We address this question by considering automata that can
check equality between siblings

Tree Automata With Constraints
Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an A×{=, ̸=} tree t
?
=

by annotating every node u in t by an extra information regarding on
whether the left and the right subtrees rooted at u are equal or not.
More formally, for every u ∈ {0, 1}∗,

t
?
=(u) =

{
(t(u),=) if t[u0] = t[u1]
(t(u), ̸=) if t[u0] ̸= t[u1]

Tree Automata With Constraints
Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an A×{=, ̸=} tree t
?
=

by annotating every node u in t by an extra information regarding on
whether the left and the right subtrees rooted at u are equal or not.
More formally, for every u ∈ {0, 1}∗,

t
?
=(u) =

{
(t(u),=) if t[u0] = t[u1]
(t(u), ̸=) if t[u0] ̸= t[u1]

u

?
=

Tree Automata With Constraints
Main idea: works as usual tree automata except that transitions can
be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an A×{=, ̸=} tree t
?
=

by annotating every node u in t by an extra information regarding on
whether the left and the right subtrees rooted at u are equal or not.
More formally, for every u ∈ {0, 1}∗,

t
?
=(u) =

{
(t(u),=) if t[u0] = t[u1]
(t(u), ̸=) if t[u0] ̸= t[u1]

An automaton A with constraints over alphabet A is an automaton
over alphabet A× {=, ̸=} and one lets

Lcon(A) = {t | t
?
= ∈ L(A)}

Properties of Languages Accepted by Automata
with Constraints

REG
?
=: class of languages recognised by automata with constraints.

Theorem. The class REG
?
= is an effective Boolean algebra.

Conjecture. The class REG
?
= is not closed under projection.

It captures natural properties beyond MSO like “the tree satisfies φ
and ∀x if the subtree at x satisfies φ1, then its two subtrees are
different/equal, and satisfy φ2”.

a b

b1

00

1

0 1

0 a

b

b

ba

b

bb

a

b

bb

a

ba
...

Proposition. Let A be an automaton with constraints and let t be a
regular tree. Then one can decide whether t ∈ Lcon(A).

Properties of Languages Accepted by Automata
with Constraints

REG
?
=: class of languages recognised by automata with constraints.

Theorem. The class REG
?
= is an effective Boolean algebra.

Conjecture. The class REG
?
= is not closed under projection.

It captures natural properties beyond MSO like “the tree satisfies φ
and ∀x if the subtree at x satisfies φ1, then its two subtrees are
different/equal, and satisfy φ2”.

a b

b1

00

1

0 1

0 a

b

b

ba

b

bb

a

b

bb

a

ba
...

Proposition. Let A be an automaton with constraints and let t be a
regular tree. Then one can decide whether t ∈ Lcon(A).

Properties of Languages Accepted by Automata
with Constraints

REG
?
=: class of languages recognised by automata with constraints.

Theorem. The class REG
?
= is an effective Boolean algebra.

Conjecture. The class REG
?
= is not closed under projection.

It captures natural properties beyond MSO like “the tree satisfies φ
and ∀x if the subtree at x satisfies φ1, then its two subtrees are
different/equal, and satisfy φ2”.

a b

b1

00

1

0 1

0 a

b

b

ba

b

bb

a

b

bb

a

ba
...

Proposition. Let A be an automaton with constraints and let t be a
regular tree. Then one can decide whether t ∈ Lcon(A).

The Cardinality Problem

The cardinality profile κA of A, is a mapping that assigns to each
state q of A the cardinality of Lcon(Aq).

Proposition. Let ℵ0 be the cardinality of the set of natural numbers,
and 2ℵ0 the cardinality of the set of the real numbers. Then

κA : Q→ N ∪ {ℵ0, 2ℵ0}

For regular tree languages it is known from [Niwinski’91] that one
can compute the cardinality profile.

Our main result is the following:

Theorem. Let A be a parity tree automaton with constraints. Then,
one can compute its cardinality profile.

The Cardinality Problem

The cardinality profile κA of A, is a mapping that assigns to each
state q of A the cardinality of Lcon(Aq).

Proposition. Let ℵ0 be the cardinality of the set of natural numbers,
and 2ℵ0 the cardinality of the set of the real numbers. Then

κA : Q→ N ∪ {ℵ0, 2ℵ0}

For regular tree languages it is known from [Niwinski’91] that one
can compute the cardinality profile.

Our main result is the following:

Theorem. Let A be a parity tree automaton with constraints. Then,
one can compute its cardinality profile.

The Cardinality Problem

The cardinality profile κA of A, is a mapping that assigns to each
state q of A the cardinality of Lcon(Aq).

Proposition. Let ℵ0 be the cardinality of the set of natural numbers,
and 2ℵ0 the cardinality of the set of the real numbers. Then

κA : Q→ N ∪ {ℵ0, 2ℵ0}

For regular tree languages it is known from [Niwinski’91] that one
can compute the cardinality profile.

Our main result is the following:

Theorem. Let A be a parity tree automaton with constraints. Then,
one can compute its cardinality profile.

Some Tools

First, get rids of equalities:

Theorem. Let A be an automaton with equality and disequality
constraints. Then one can build an automaton B with disequality
everywhere and s.t. Lcon(A) and Lcon(B) have the same cardinality.

Second, over-approximate the language Lcon(Aq) by L(Â) the
language accepted by forgetting the constraints and use the results of
[Niwinski’91] on it.

Some Tools

First, get rids of equalities:

Theorem. Let A be an automaton with equality and disequality
constraints. Then one can build an automaton B with disequality
everywhere and s.t. Lcon(A) and Lcon(B) have the same cardinality.

Second, over-approximate the language Lcon(Aq) by L(Â) the
language accepted by forgetting the constraints and use the results of
[Niwinski’91] on it.

Example
Let ta/tb be defined by ta(ε) = a, tb(ε) = b, ta(u0) = tb(u0) = a and
ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

Let A be the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.

a

a

a

a

a

a

b

Then, |L(Â)| = ℵ0. But, Lcon(A) = {ta}.

Example
Let ta/tb be defined by ta(ε) = a, tb(ε) = b, ta(u0) = tb(u0) = a and
ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

Let A be the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.

a

a

a

a

a

a

b

Then, |L(Â)| = ℵ0. But, Lcon(A) = {ta}.

Countable Unconstrained Languages (1/2)

If L(Â) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(Â) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Countable Unconstrained Languages (1/2)

If L(Â) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(Â) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Countable Unconstrained Languages: Example
If L(Â) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(Â) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Let ta/tb be defined by ta(ε) = a, tb(ε) = b, ta(u0) = tb(u0) = a and
ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

Let A be the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.

Then L(B) is (where a 7→ ta and b 7→ tb):

a

a

a

a

a

a

b

Countable Unconstrained Languages: Example
If L(Â) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(Â) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Let ta/tb be defined by ta(ε) = a, tb(ε) = b, ta(u0) = tb(u0) = a and
ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

Let A be the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.
Then L(B) is (where a 7→ ta and b 7→ tb):

a a

a b

a b

b b

Countable Unconstrained Languages (2/2)

If L(Â) is countable, then it has a special shape. Namely there is a
regular language of finite trees L(B) such that the trees in L(Â) are
exactly those obtained from a tree in L(B) by replacing every leaf by
a regular tree uniquely determined by the leaf label.

Roadmap to compute the cardinality of L(A) when L(Â) is
countable:

• Safely assume that A has disequality everywhere.
• Built from B an automaton on finite trees with constraints C such

that Lcon(A) and Lcon(C) have the same cardinal.
• Use the results from [Bogaert&Tison’02] to compute the cardinal

of Lcon(C).

Algorithm to Compute the Cardinality Profile

Input: Tree automaton with disequality constraints everywhere A
Data Structure:

Set S← Q the states of A
Automaton B ← A
Function κ : Q→ N ∪ {ℵ0, 2ℵ0}; κ(q)← 2ℵ0 for all q

Code:
1: while ∃q ∈ S s.t. |L(B̂q)| ≤ ℵ0 do
2: κ(q)← |Lcon(Bq)|
3: if κ(q) = 0 then
4: B ← Bq7→∅
5: else if κ(q) < ℵ0 then
6: Let Lcon(Bq) = {t1, . . . , tn}
7: B ← Bq7→t1,...,tn

8: end if
9: S← S \ {q}

10: end while
11: return κ

Example of Execution
Recall that we defined ta/tb by ta(ε) = a, tb(ε) = b,
ta(u0) = tb(u0) = a and ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

And A as the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.

a

a

a

a

a

a

b

|L(Â)| = ℵ0 but Lcon(A) = {ta}.

Example of Execution
Recall that we defined ta/tb by ta(ε) = a, tb(ε) = b,
ta(u0) = tb(u0) = a and ta(u1) = tb(u1) = b for any u ∈ {0, 1}∗.

And A as the safety automaton ({qin, qb}, {(a, ̸=), (b, ̸=)}, qin,∆A)
where ∆ = {(qin, (a, ̸=), qin, tb), (qin, (a, ̸=), qb, tb), (qb, (b, ̸=), ta, tb)}.
|L(Â)| = ℵ0 but Lcon(A) = {ta}.
Consider B that (note that |L(B̂)| = 2ℵ0):

• Checks that the leftmost branch is labelled only by c’s.
• Checks that any right subtree of a node on that branch is such

that the root is labelled by c, the left subtree is ta while the right
subtree is accepted by the automaton .A

c

c c

ta

∈ Lcon(A)

Example of Execution

|L(Â)| = ℵ0 but Lcon(A) = {ta}.

c

c c

ta

∈ Lcon(A)

B = (QB, {(a, ̸=), (b, ̸=), (c, ̸=)}, qc,∆B,Col) with QB = QA ∪ {qc, q′c}
and ∆B = ∆A ∪ {(qc, (c, ̸=), qc, q′c), (q′c, (c, ̸=), ta, qin)}.

Previous Algorithm:
• First detects that |L(B̂qin)| ≤ ℵ0, computes κ(qin) = 1 and change
B to Bqin 7→ta .

• Then detects that |L(B̂q′
c)| ≤ ℵ0, computes κ(q′c) = 0 and change

B to Bq′
c 7→∅.

• Finally detects that κ(qc) = 0.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.
• At any stage the language (with contraints) is unchanged.
: Countable values are correct.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.
: Countable values are correct.
• Define run-tree with holes as pieces of runs where:

• Holes correspond to states where κ equals 2ℵ0 .
• Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with κ(q) = 2ℵ0 and every N ≥ 0
there are N q-run-tree with holes that are pairwise different.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.
Proof ingredients.
: Countable values are correct.
• Define run-tree with holes as pieces of runs where:

• Holes correspond to states where κ equals 2ℵ0 .
• Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with κ(q) = 2ℵ0 and every N ≥ 0
there are N q-run-tree with holes that are pairwise different.

• Combine them to obtain uncountably many accepted trees.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.
Proof ingredients.
: Countable values are correct.
• Define run-tree with holes as pieces of runs where:

• Holes correspond to states where κ equals 2ℵ0 .
• Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with κ(q) = 2ℵ0 and every N ≥ 0
there are N q-run-tree with holes that are pairwise different.

• Combine them to obtain uncountably many accepted trees.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.
Proof ingredients.
: Countable values are correct.
• Define run-tree with holes as pieces of runs where:

• Holes correspond to states where κ equals 2ℵ0 .
• Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with κ(q) = 2ℵ0 and every N ≥ 0
there are N q-run-tree with holes that are pairwise different.

• Combine them to obtain uncountably many accepted trees.

Büchi Case
Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.
: Countable values are correct.
• Define run-tree with holes as pieces of runs where:

• Holes correspond to states where κ equals 2ℵ0 .
• Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with κ(q) = 2ℵ0 and every N ≥ 0
there are N q-run-tree with holes that are pairwise different.

• Combine them to obtain uncountably many accepted trees.
• For Büchi condition do the same but consider only run-tree with

holes s.t. a final state occurs in any path from the root to a hole.

Does it Also Work for co-Büchi?
No :-(as there exists a co-Büchi automaton A s.t. |L(Aq)| = 2ℵ0

for all q while Lcon(Aq) = ∅.

Define A = ({qa, qb}, {a, b}, qa,∆,Col) where Col(qa) = 2 and
Col(qb) = 1, and ∆ consists of those transitions (qx, (x, ̸=), q0, q1)
where x ∈ {a, b} and q0, q1 are any states.

• There is at most one possible run per tree: the one that assigns
qx to each node labelled by (x, ̸=).

• The unconstrained language from state qx is the set of all trees
such that the root is labelled by x and such that any branch
contains finitely many b’s : Uncountable.

• But Lcon(Aqx) = ∅ for x ∈ {a, b}. Indeed:
• An accepted tree would contain at least one node u1 labelled by b

(to satisfy ̸= at the root).
• Same for the subtree rooted at u1, and so on…
• Hence there is u1 ⊏ u2 ⊏ u3 · · · all labelled by b, leading to

violate co-Büchi condition.

Does it Also Work for co-Büchi?
No :-(as there exists a co-Büchi automaton A s.t. |L(Aq)| = 2ℵ0

for all q while Lcon(Aq) = ∅.

Define A = ({qa, qb}, {a, b}, qa,∆,Col) where Col(qa) = 2 and
Col(qb) = 1, and ∆ consists of those transitions (qx, (x, ̸=), q0, q1)
where x ∈ {a, b} and q0, q1 are any states.

• There is at most one possible run per tree: the one that assigns
qx to each node labelled by (x, ̸=).

• The unconstrained language from state qx is the set of all trees
such that the root is labelled by x and such that any branch
contains finitely many b’s : Uncountable.

• But Lcon(Aqx) = ∅ for x ∈ {a, b}. Indeed:
• An accepted tree would contain at least one node u1 labelled by b

(to satisfy ̸= at the root).
• Same for the subtree rooted at u1, and so on…
• Hence there is u1 ⊏ u2 ⊏ u3 · · · all labelled by b, leading to

violate co-Büchi condition.

Does it Also Work for co-Büchi?
No :-(as there exists a co-Büchi automaton A s.t. |L(Aq)| = 2ℵ0

for all q while Lcon(Aq) = ∅.

Define A = ({qa, qb}, {a, b}, qa,∆,Col) where Col(qa) = 2 and
Col(qb) = 1, and ∆ consists of those transitions (qx, (x, ̸=), q0, q1)
where x ∈ {a, b} and q0, q1 are any states.

• There is at most one possible run per tree: the one that assigns
qx to each node labelled by (x, ̸=).

• The unconstrained language from state qx is the set of all trees
such that the root is labelled by x and such that any branch
contains finitely many b’s : Uncountable.

• But Lcon(Aqx) = ∅ for x ∈ {a, b}. Indeed:
• An accepted tree would contain at least one node u1 labelled by b

(to satisfy ̸= at the root).
• Same for the subtree rooted at u1, and so on…
• Hence there is u1 ⊏ u2 ⊏ u3 · · · all labelled by b, leading to

violate co-Büchi condition.

How to Handle the co-Büchi Case? (1/2)

Trace: pair ρ = (tρ, rρ) where tρ is an infinite valid tree and rρ is a
run of A on t

?
=
ρ . starting from some arbitrary state. The trace is

accepting if the run is.

We define two (monotone) operations on sets of traces,

Attr(X) = {(tρ, rρ) | ∀ infinite branch π, ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X}

Safety(X) ={(tρ, rρ) | ∀ infinite branch π, either ∀u ⊏ π, Col(rρ(u)) = 2,

or ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X and Col(rρ(v)) = 2 ∀v ⊏ u}

and an increasing transfinite sequence (Xα)α
X0 = ∅
Xα+1 = Attr(Safety(Xα))

Xα =
∪

β<α Xβ for α limit ordinal

Lemma. The limit of (Xα)α is the set of accepting traces.

How to Handle the co-Büchi Case? (1/2)

Trace: pair ρ = (tρ, rρ) where tρ is an infinite valid tree and rρ is a
run of A on t

?
=
ρ . starting from some arbitrary state. The trace is

accepting if the run is.

We define two (monotone) operations on sets of traces,

Attr(X) = {(tρ, rρ) | ∀ infinite branch π, ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X}

Safety(X) ={(tρ, rρ) | ∀ infinite branch π, either ∀u ⊏ π, Col(rρ(u)) = 2,

or ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X and Col(rρ(v)) = 2 ∀v ⊏ u}

and an increasing transfinite sequence (Xα)α
X0 = ∅
Xα+1 = Attr(Safety(Xα))

Xα =
∪

β<α Xβ for α limit ordinal

Lemma. The limit of (Xα)α is the set of accepting traces.

How to Handle the co-Büchi Case? (1/2)

Trace: pair ρ = (tρ, rρ) where tρ is an infinite valid tree and rρ is a
run of A on t

?
=
ρ . starting from some arbitrary state. The trace is

accepting if the run is.

We define two (monotone) operations on sets of traces,

Attr(X) = {(tρ, rρ) | ∀ infinite branch π, ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X}

Safety(X) ={(tρ, rρ) | ∀ infinite branch π, either ∀u ⊏ π, Col(rρ(u)) = 2,

or ∃u ⊏ π s.t. (tρ[u], rρ[u]) ∈ X and Col(rρ(v)) = 2 ∀v ⊏ u}

and an increasing transfinite sequence (Xα)α
X0 = ∅
Xα+1 = Attr(Safety(Xα))

Xα =
∪

β<α Xβ for α limit ordinal

Lemma. The limit of (Xα)α is the set of accepting traces.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

How to Handle the co-Büchi Case? (2/2)

Work with the infinity profile pA of A

pA(q) =
{

Lcon(Aq) if |Lcon(Aq)| <∞
∞ otherwise

Lemma. One can compute the cardinality profile from pA.

A profile is some p : Q→ 2RegTrees ∪ {∞} that is smaller than pA.

Define a profile counterpart of operators Attr and Safety and show
that one can compute Attr(p) and Safety(p) from p.

Lemma. Let p be a profile. If p = Attr(Safety(p)) then p = pA.

To converge, add a speed-up operator on profiles: p 7→ SpeedUp(p).

Lemma. Let p0 be the profile that maps ∅ to every state and let, for
any i ≥ 0, pi+1 = SpeedUp(Attr(Safety(pi))).
Then (pi)i≥0 converges in a finite number of steps to pA.

Conclusion

Main Contribution: a class of languages of infinite trees that:
• Encompass regular languages.
• Form a Boolean algebra.
• Have interesting expressive power.
• Enjoy a decidable cardinality problem.

Further Work:
• Simplify the proof for the parity case.
• Investigate other decision problems, eg. the regularity problem.
• Find automata models with decidable emptiness that capture

extension of MSO with isomorphism tests.
• Look for applications.

Conclusion

Main Contribution: a class of languages of infinite trees that:
• Encompass regular languages.
• Form a Boolean algebra.
• Have interesting expressive power.
• Enjoy a decidable cardinality problem.

Further Work:
• Simplify the proof for the parity case.
• Investigate other decision problems, eg. the regularity problem.
• Find automata models with decidable emptiness that capture

extension of MSO with isomorphism tests.
• Look for applications.

