AUTOMATA ON INFINITE TREES WITH EQUALITY AND DISEQUALITY CONSTRAINTS BETWEEN SIBLINGS

Arnaud Carayol ¹ Christof Löding ² Olivier Serre ³

¹LIGM (Université Paris Est & CNRS)

²RWTH Aachen

³IRIF (Université Paris Diderot – Paris 7 & CNRS)

Supported by the European Community Research Training Network "Games and Automata for Synthesis and Validation" (2002–2006)

Non-deterministic Parity Tree Automata

Non-deterministic parity tree automata:

 $\mathcal{A} = \langle Q, A, \Delta, q_{in}, \text{Col} \rangle$

 \rightarrow Q: control states

 \rightarrow A: labels alphabet

 $\rightarrow \Delta \subseteq Q \times A \times Q \times Q$: transition relation

 $\rightarrow q_{in}$: initial state

 \rightarrow Col: $Q \rightarrow \mathbb{N}$: colouring function

Run on an A-labeled (infinite binary) tree t: Q-labelling of t consistent with Δ

$$\Delta = \{ \cdots (q_{in}, a, p, p) \\ (p, b, q, p)(p, b, p, p) \cdots \}$$

A branch is **accepting** iff the smallest colour infinitely often visited is even

A run is **accepting** iff all its branches are accepting

A tree is **accepted** iff there is an accepting run over it.

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{\mathcal{A}} (q_1, q_3) \qquad q_2 \xrightarrow{\mathcal{A}} (q_2, q_3)$$

$$q_1 \xrightarrow{\mathcal{A}} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : q_1 $F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3)$$

$$q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{b} (q_2, q_3)$$

$$q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : q_1

$$F = \{q_2, q_3\}$$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{\mathcal{A}} (q_1, q_3) \qquad q_2 \xrightarrow{\mathcal{A}} (q_2, q_3)$$

$$q_1 \xrightarrow{\mathcal{A}} (q_2, q_3) \bullet \qquad q_2 \xrightarrow{\mathcal{b}} (q_1, q_3)$$

$$q_1 \xrightarrow{\mathcal{b}} (q_1, q_3) \qquad q_3 \xrightarrow{\mathcal{b}} (q_3, q_3)$$

$$q_3 \xrightarrow{\mathcal{A}} (q_3, q_3)$$

initial state : q_1 $F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad A$$

$$q_1 \xrightarrow{A} (q_1, q_3) \qquad q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{A} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : $q_1 \qquad F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{A} (q_1, q_3) \qquad q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{A} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : $q_1 \qquad F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3)$$

$$q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3)$$

$$q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : q_1

$$F = \{q_2, q_3\}$$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{\mathcal{A}} (q_1, q_3) \qquad q_2 \xrightarrow{\mathcal{A}} (q_2, q_3)$$

$$q_1 \xrightarrow{\mathcal{A}} (q_2, q_3) \qquad q_2 \xrightarrow{\mathcal{b}} (q_1, q_3) \bullet$$

$$q_1 \xrightarrow{\mathcal{b}} (q_1, q_3) \qquad q_3 \xrightarrow{\mathcal{b}} (q_3, q_3)$$

$$q_3 \xrightarrow{\mathcal{A}} (q_3, q_3)$$

initial state : q_1 $F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3)$$

$$q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$

$$q_1 \xrightarrow{b} F = \{q_2, q_3\}$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$

$$q_4 \xrightarrow{b} (q_4, q_5)$$

$$q_5 \xrightarrow{a} (q_5, q_5)$$

$$q_7 \xrightarrow{b} (q_7, q_5)$$

$$q_8 \xrightarrow{a} (q_8, q_5)$$

$$q_8 \xrightarrow{a} (q_8, q_8)$$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{\mathcal{A}} (q_1, q_3) \qquad q_2 \xrightarrow{\mathcal{A}} (q_2, q_3)$$

$$q_1 \xrightarrow{\mathcal{A}} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : $q_1 \qquad F = \{q_2, q_3\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3)$$

$$q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3)$$

$$q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : q_1

$$F = \{q_2, q_3\}$$

$$Q = \{q_1, q_2, q_3\} \qquad \qquad \mathcal{A}$$

$$q_1 \xrightarrow{A} (q_1, q_3) \qquad q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{A} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$
initial state : $q_1 \qquad F = \{q_2, q_3\}$

 $A = \{a, b\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3)$$

$$q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{b} (q_2, q_3)$$

$$q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$

initial state : q_1 $F = \{q_2, q_3\}$

A branch is accepting if it has infinitely many occurrences of a state from F (Büchi).

A run is accepting if all its branches are accepting (\forall) .

A tree is accepted if there exists an accepting run (\exists) .

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{\mathcal{A}} (q_1, q_3) \qquad q_2 \xrightarrow{\mathcal{A}} (q_2, q_3)$$

$$q_1 \xrightarrow{\mathcal{A}} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$

initial state : q_1 $F = \{q_2, q_3\}$

A branch is accepting if it has infinitely many occurrences of a state from F (Büchi).

A run is accepting if all its branches are accepting (\forall) .

A tree is accepted if there exists an accepting run (\exists) .

 $A = \{a, b\}$

$$Q = \{q_1, q_2, q_3\}$$

$$q_1 \xrightarrow{A} (q_1, q_3) \qquad q_2 \xrightarrow{A} (q_2, q_3)$$

$$q_1 \xrightarrow{A} (q_2, q_3) \qquad q_2 \xrightarrow{b} (q_1, q_3)$$

$$q_1 \xrightarrow{b} (q_1, q_3) \qquad q_3 \xrightarrow{b} (q_3, q_3)$$

$$q_3 \xrightarrow{a} (q_3, q_3)$$

initial state : q_1 $F = \{q_2, q_3\}$

A branch is accepting if it has infinitely many occurrences of a state from F (Büchi).

A run is accepting if all its branches are accepting (\forall) .

A tree is accepted if there exists an accepting run (\exists) .

REGULAR TREE LANGUAGES

A subset L of trees is **regular** if there exists some non-deterministic parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:

- Coincide with MSO definable languages (hence, expressive).
- Form an effective Boolean algebra.
- Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its good properties is a challenging problem.

REGULAR TREE LANGUAGES

A subset L of trees is **regular** if there exists some non-deterministic parity tree automaton A such that L = L(A).

Regular trees languages have many nice properties, among other:

- Coincide with MSO definable languages (hence, expressive).
- Form an effective Boolean algebra.
- Decidable emptiness and cardinality problem.

Whether the class can be extended while preserving (most of) its good properties is a challenging problem.

We address this question by considering automata that can check equality between siblings

TREE AUTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can be guarded by an equality/disequality requirement on siblings.

TREE AUTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an $A \times \{=, \neq\}$ tree $t^{\stackrel{?}{=}}$ by annotating every node u in t by an extra information regarding on whether the left and the right subtrees rooted at u are equal or not. More formally, for every $u \in \{0,1\}^*$,

$$t^{\frac{2}{-}}(u) = \begin{cases} (t(u), =) & \text{if } t[u0] = t[u1] \\ (t(u), \neq) & \text{if } t[u0] \neq t[u1] \end{cases}$$

TREE AUTOMATA WITH CONSTRAINTS

Main idea: works as usual tree automata except that transitions can be guarded by an equality/disequality requirement on siblings.

Formally: With any A-labelled tree t associate an $A \times \{=, \neq\}$ tree $t^{\stackrel{?}{=}}$ by annotating every node u in t by an extra information regarding on whether the left and the right subtrees rooted at u are equal or not. More formally, for every $u \in \{0,1\}^*$,

$$t^{\frac{2}{-}}(u) = \begin{cases} (t(u), =) & \text{if } t[u0] = t[u1] \\ (t(u), \neq) & \text{if } t[u0] \neq t[u1] \end{cases}$$

An automaton \mathcal{A} with constraints over alphabet A is an automaton over alphabet $A \times \{=, \neq\}$ and one lets

$$L^{con}(\mathcal{A}) = \{t \mid t^{\stackrel{?}{=}} \in L(\mathcal{A})\}$$

PROPERTIES OF LANGUAGES ACCEPTED BY AUTOMATA WITH CONSTRAINTS

REG²: class of languages recognised by automata with constraints.

Theorem. The class $\mathbf{REG}^{\stackrel{?}{=}}$ is an effective Boolean algebra.

Conjecture. The class REG[±] is not closed under projection.

PROPERTIES OF LANGUAGES ACCEPTED BY AUTOMATA WITH CONSTRAINTS

REG²: class of languages recognised by automata with constraints.

Theorem. The class $\mathbf{REG}^{\stackrel{?}{=}}$ is an effective Boolean algebra.

Conjecture. The class REG[±] is not closed under projection.

It captures natural properties beyond MSO like "the tree satisfies φ and $\forall x$ if the subtree at x satisfies φ_1 , then its two subtrees are different/equal, and satisfy φ_2 ".

PROPERTIES OF LANGUAGES ACCEPTED BY AUTOMATA WITH CONSTRAINTS

REG²: class of languages recognised by automata with constraints.

Theorem. The class $\mathbf{REG}^{\stackrel{?}{=}}$ is an effective Boolean algebra.

Conjecture. The class REG[±] is not closed under projection.

It captures natural properties beyond MSO like "the tree satisfies φ and $\forall x$ if the subtree at x satisfies φ_1 , then its two subtrees are different/equal, and satisfy φ_2 ".

Proposition. Let \mathcal{A} be an automaton with constraints and let t be a regular tree. Then one can decide whether $t \in L^{con}(\mathcal{A})$.

THE CARDINALITY PROBLEM

The cardinality profile $\kappa_{\mathcal{A}}$ of \mathcal{A} , is a mapping that assigns to each state q of \mathcal{A} the cardinality of $L^{con}(\mathcal{A}_q)$.

Proposition. Let \aleph_0 be the cardinality of the set of natural numbers, and 2^{\aleph_0} the cardinality of the set of the real numbers. Then

$$\kappa_{\mathcal{A}}: Q \to \mathbb{N} \cup \{\aleph_0, 2^{\aleph_0}\}$$

THE CARDINALITY PROBLEM

The cardinality profile $\kappa_{\mathcal{A}}$ of \mathcal{A} , is a mapping that assigns to each state q of \mathcal{A} the cardinality of $L^{con}(\mathcal{A}_q)$.

Proposition. Let \aleph_0 be the cardinality of the set of natural numbers, and 2^{\aleph_0} the cardinality of the set of the real numbers. Then

$$\kappa_{\mathcal{A}}: Q \to \mathbb{N} \cup \{\aleph_0, 2^{\aleph_0}\}$$

For regular tree languages it is known from [Niwinski'91] that one can compute the cardinality profile.

THE CARDINALITY PROBLEM

The cardinality profile $\kappa_{\mathcal{A}}$ of \mathcal{A} , is a mapping that assigns to each state q of \mathcal{A} the cardinality of $L^{con}(\mathcal{A}_q)$.

Proposition. Let \aleph_0 be the cardinality of the set of natural numbers, and 2^{\aleph_0} the cardinality of the set of the real numbers. Then

$$\kappa_{\mathcal{A}}: Q \to \mathbb{N} \cup \{\aleph_0, 2^{\aleph_0}\}$$

For regular tree languages it is known from [Niwinski'91] that one can compute the cardinality profile.

Our main result is the following:

Theorem. Let \mathcal{A} be a parity tree automaton with constraints. Then, one can compute its cardinality profile.

Some Tools

First, get rids of equalities:

Theorem. Let \mathcal{A} be an automaton with equality and disequality constraints. Then one can build an automaton \mathcal{B} with **disequality** everywhere and s.t. $L^{con}(\mathcal{A})$ and $L^{con}(\mathcal{B})$ have the same cardinality.

Some Tools

First, get rids of equalities:

Theorem. Let \mathcal{A} be an automaton with equality and disequality constraints. Then one can build an automaton \mathcal{B} with **disequality** everywhere and s.t. $L^{con}(\mathcal{A})$ and $L^{con}(\mathcal{B})$ have the same cardinality.

Second, over-approximate the language $L^{con}(\mathcal{A}_q)$ by $L(\widehat{\mathcal{A}})$ the language accepted by forgetting the constraints and use the results of [Niwinski'91] on it.

EXAMPLE

Let t_a/t_b be defined by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

EXAMPLE

Let t_a/t_b be defined by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

Let \mathcal{A} be the safety automaton $(\{q_{in}, q_b\}, \{(a, \neq), (b, \neq)\}, q_{in}, \Delta_{\mathcal{A}})$ where $\Delta = \{(q_{in}, (a, \neq), q_{in}, t_b), (q_{in}, (a, \neq), q_b, t_b), (q_b, (b, \neq), t_a, t_b)\}.$

Then,
$$|L(\widehat{A})| = \aleph_0$$
. But, $L^{con}(A) = \{t_a\}$.

COUNTABLE UNCONSTRAINED LANGUAGES (1/2)

If $L(\widehat{A})$ is countable, then it has a special shape. Namely there is a regular language of **finite** trees $L(\mathcal{B})$ such that the trees in $L(\widehat{A})$ are exactly those obtained from a tree in $L(\mathcal{B})$ by replacing every leaf by a regular tree uniquely determined by the leaf label.

COUNTABLE UNCONSTRAINED LANGUAGES (1/2)

If $L(\widehat{A})$ is countable, then it has a special shape. Namely there is a regular language of **finite** trees $L(\mathcal{B})$ such that the trees in $L(\widehat{A})$ are exactly those obtained from a tree in $L(\mathcal{B})$ by replacing every leaf by a regular tree uniquely determined by the leaf label.

COUNTABLE UNCONSTRAINED LANGUAGES: EXAMPLE

If $L(\widehat{A})$ is countable, then it has a special shape. Namely there is a regular language of **finite** trees $L(\mathcal{B})$ such that the trees in $L(\widehat{A})$ are exactly those obtained from a tree in $L(\mathcal{B})$ by replacing every leaf by a regular tree uniquely determined by the leaf label.

Let t_a/t_b be defined by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

Let \mathcal{A} be the safety automaton $(\{q_{in}, q_b\}, \{(a, \neq), (b, \neq)\}, q_{in}, \Delta_{\mathcal{A}})$ where $\Delta = \{(q_{in}, (a, \neq), q_{in}, t_b), (q_{in}, (a, \neq), q_b, t_b), (q_b, (b, \neq), t_a, t_b)\}.$

COUNTABLE UNCONSTRAINED LANGUAGES: EXAMPLE

If $L(\widehat{A})$ is countable, then it has a special shape. Namely there is a regular language of **finite** trees $L(\mathcal{B})$ such that the trees in $L(\widehat{A})$ are exactly those obtained from a tree in $L(\mathcal{B})$ by replacing every leaf by a regular tree uniquely determined by the leaf label.

Let t_a/t_b be defined by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

Let \mathcal{A} be the safety automaton $(\{q_{in}, q_b\}, \{(a, \neq), (b, \neq)\}, q_{in}, \Delta_{\mathcal{A}})$ where $\Delta = \{(q_{in}, (a, \neq), q_{in}, t_b), (q_{in}, (a, \neq), q_b, t_b), (q_b, (b, \neq), t_a, t_b)\}$. Then $L(\mathcal{B})$ is (where $a \mapsto t_a$ and $b \mapsto t_b$):

a

Countable Unconstrained Languages (2/2)

If $L(\widehat{A})$ is countable, then it has a special shape. Namely there is a regular language of **finite** trees $L(\mathcal{B})$ such that the trees in $L(\widehat{A})$ are exactly those obtained from a tree in $L(\mathcal{B})$ by replacing every leaf by a regular tree uniquely determined by the leaf label.

Roadmap to compute the cardinality of L(A) when $L(\widehat{A})$ is countable:

- Safely assume that A has disequality everywhere.
- Built from \mathcal{B} an automaton on finite trees with constraints \mathcal{C} such that $L^{con}(\mathcal{A})$ and $L^{con}(\mathcal{C})$ have the same cardinal.
- Use the results from [Bogaert&Tison'02] to compute the cardinal of $L^{con}(\mathcal{C})$.

ALGORITHM TO COMPUTE THE CARDINALITY PROFILE

Input: Tree automaton with disequality constraints everywhere \mathcal{A} Data Structure:

```
Set S \leftarrow Q the states of A
Automaton \mathcal{B} \leftarrow A
Function \kappa: Q \to \mathbb{N} \cup \{\aleph_0, 2^{\aleph_0}\}; \ \kappa(q) \leftarrow 2^{\aleph_0} for all q
```

Code:

```
1: while \exists q \in S \text{ s.t. } |L(\widehat{\mathcal{B}_q})| \leq \aleph_0 \text{ do}
2: \kappa(q) \leftarrow |L^{con}(\mathcal{B}_q)|
3: if \kappa(q) = 0 then
4: \mathcal{B} \leftarrow \mathcal{B}_{q \rightarrow \emptyset}
5: else if \kappa(q) < \aleph_0 then
6: Let L^{con}(\mathcal{B}_q) = \{t_1, \dots, t_n\}
7: \mathcal{B} \leftarrow \mathcal{B}_{q \rightarrow t_1, \dots, t_n}
8: end if
9: S \leftarrow S \setminus \{q\}
10: end while
11: return \kappa
```

EXAMPLE OF EXECUTION

Recall that we defined t_a/t_b by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

And A as the safety automaton $(\{q_{in}, q_b\}, \{(a, \neq), (b, \neq)\}, q_{in}, \Delta_A)$ where $\Delta = \{(q_{in}, (a, \neq), q_{in}, t_b), (q_{in}, (a, \neq), q_b, t_b), (q_b, (b, \neq), t_a, t_b)\}.$

$$|L(\widehat{A})| = \aleph_0$$
 but $L^{con}(A) = \{t_a\}.$

Example of Execution

Recall that we defined t_a/t_b by $t_a(\varepsilon) = a$, $t_b(\varepsilon) = b$, $t_a(u0) = t_b(u0) = a$ and $t_a(u1) = t_b(u1) = b$ for any $u \in \{0, 1\}^*$.

And \mathcal{A} as the safety automaton $(\{q_{in}, q_b\}, \{(a, \neq), (b, \neq)\}, q_{in}, \Delta_{\mathcal{A}})$ where $\Delta = \{(q_{in}, (a, \neq), q_{in}, t_b), (q_{in}, (a, \neq), q_b, t_b), (q_b, (b, \neq), t_a, t_b)\}.$ $|L(\widehat{\mathcal{A}})| = \aleph_0$ but $L^{con}(\mathcal{A}) = \{t_a\}.$

Consider \mathcal{B} that (note that $|L(\widehat{\mathcal{B}})| = 2^{\aleph_0}$):

- Checks that the leftmost branch is labelled only by c's.
- Checks that any right subtree of a node on that branch is such that the root is labelled by c, the left subtree is t_a while the right subtree is accepted by the automaton \mathcal{A}

EXAMPLE OF EXECUTION

$$|L(\widehat{\mathcal{A}})| = \aleph_0$$
 but $L^{con}(\mathcal{A}) = \{t_a\}.$

$$\mathcal{B} = (Q_{\mathcal{B}}, \{(a, \neq), (b, \neq), (c, \neq)\}, q_c, \Delta_{\mathcal{B}}, \text{Col}) \text{ with } Q_{\mathcal{B}} = Q_{\mathcal{A}} \cup \{q_c, q_c'\}$$
 and $\Delta_{\mathcal{B}} = \Delta_{\mathcal{A}} \cup \{(q_c, (c, \neq), q_c, q_c'), (q_c', (c, \neq), t_a, q_{in})\}.$

Previous Algorithm:

- First detects that $|L(\widehat{\mathcal{B}_{q_{in}}})| \leq \aleph_0$, computes $\kappa(q_{in}) = 1$ and change \mathcal{B} to $\mathcal{B}_{q_{in} \mapsto t_a}$.
- Then detects that $|L(\widehat{\mathcal{B}_{q'_c}})| \leq \aleph_0$, computes $\kappa(q'_c) = 0$ and change \mathcal{B} to $\mathcal{B}_{q'_c \mapsto \emptyset}$.
- Finally detects that $\kappa(q_c) = 0$.

Theorem. The algorithm returns the correct cardinality profile.

Theorem. The algorithm returns the correct cardinality profile.

- At any stage the language (with contraints) is unchanged.
- → Countable values are correct.

Theorem. The algorithm returns the correct cardinality profile.

Proof ingredients.

- → Countable values are correct.
- Define run-tree with holes as pieces of runs where:
 - Holes correspond to states where κ equals 2^{\aleph_0} .
 - Parts without holes are accepting and satisfies the constraints.

• Prove that for every state q with $\kappa(q) = 2^{\aleph_0}$ and every $N \ge 0$ there are N q-run-tree with holes that are **pairwise different**.

Theorem. The algorithm returns the correct cardinality profile.

- → Countable values are correct.
- Define run-tree with holes as pieces of runs where:
 - Holes correspond to states where κ equals 2^{\aleph_0} .
 - Parts without holes are accepting and satisfies the constraints.
- Prove that for every state q with $\kappa(q) = 2^{\aleph_0}$ and every $N \ge 0$ there are N q-run-tree with holes that are **pairwise different**.
- Combine them to obtain uncountably many accepted trees.

Theorem. The algorithm returns the correct cardinality profile.

- → Countable values are correct.
- Define run-tree with holes as pieces of runs where:
 - Holes correspond to states where κ equals 2^{\aleph_0} .
 - Parts without holes are accepting and satisfies the constraints.
- Prove that for every state q with $\kappa(q) = 2^{\aleph_0}$ and every $N \ge 0$ there are N q-run-tree with holes that are **pairwise different**.
- Combine them to obtain uncountably many accepted trees.

Theorem. The algorithm returns the correct cardinality profile.

- → Countable values are correct.
- Define run-tree with holes as pieces of runs where:
 - Holes correspond to states where κ equals 2^{\aleph_0} .
 - Parts without holes are accepting and satisfies the constraints.
- Prove that for every state q with $\kappa(q) = 2^{\aleph_0}$ and every $N \ge 0$ there are N q-run-tree with holes that are **pairwise different**.
- Combine them to obtain uncountably many accepted trees.

Theorem. The algorithm returns the correct cardinality profile.

- → Countable values are correct.
- Define run-tree with holes as pieces of runs where:
 - Holes correspond to states where κ equals 2^{\aleph_0} .
 - Parts without holes are accepting and satisfies the constraints.
- Prove that for every state q with $\kappa(q) = 2^{\aleph_0}$ and every $N \ge 0$ there are N q-run-tree with holes that are **pairwise different**.
- Combine them to obtain uncountably many accepted trees.
- For Büchi condition do the same but consider only run-tree with holes s.t. a final state occurs in any path from the root to a hole.

Does it Also Work for Co-Büchi?

No :-(as there exists a co-Büchi automaton \mathcal{A} s.t. $|L(\mathcal{A}_q)| = 2^{\aleph_0}$ for all q while $L^{con}(\mathcal{A}_q) = \emptyset$.

Does it Also Work for Co-Büchi?

No :-(as there exists a co-Büchi automaton \mathcal{A} s.t. $|L(\mathcal{A}_q)| = 2^{\aleph_0}$ for all q while $L^{con}(\mathcal{A}_q) = \emptyset$.

Define $\mathcal{A} = (\{q_a, q_b\}, \{a, b\}, q_a, \Delta, \text{Col})$ where $\text{Col}(q_a) = 2$ and $\text{Col}(q_b) = 1$, and Δ consists of those transitions $(q_x, (x, \neq), q_0, q_1)$ where $x \in \{a, b\}$ and q_0, q_1 are any states.

- There is at most one possible run per tree: the one that assigns q_x to each node labelled by (x, \neq) .
- The unconstrained language from state q_x is the set of all trees such that the root is labelled by x and such that any branch contains finitely many b's \rightarrow Uncountable.

Does it Also Work for Co-Büchi?

No :-(as there exists a co-Büchi automaton \mathcal{A} s.t. $|L(\mathcal{A}_q)| = 2^{\aleph_0}$ for all q while $L^{con}(\mathcal{A}_q) = \emptyset$.

Define $\mathcal{A} = (\{q_a, q_b\}, \{a, b\}, q_a, \Delta, \text{Col})$ where $\text{Col}(q_a) = 2$ and $\text{Col}(q_b) = 1$, and Δ consists of those transitions $(q_x, (x, \neq), q_0, q_1)$ where $x \in \{a, b\}$ and q_0, q_1 are any states.

- There is at most one possible run per tree: the one that assigns q_x to each node labelled by (x, \neq) .
- The unconstrained language from state q_x is the set of all trees such that the root is labelled by x and such that any branch contains finitely many b's \rightarrow Uncountable.
- But $L^{con}(\mathcal{A}_{q_x}) = \emptyset$ for $x \in \{a, b\}$. Indeed:
 - An accepted tree would contain at least one node u_1 labelled by b (to satisfy \neq at the root).
 - Same for the subtree rooted at u_1 , and so on...
 - Hence there is u₁ □ u₂ □ u₃ · · · all labelled by b, leading to violate co-Büchi condition.

Trace: pair $\rho = (t_{\rho}, r_{\rho})$ where t_{ρ} is an infinite valid tree and r_{ρ} is a run of \mathcal{A} on $t_{\rho}^{\frac{2}{2}}$. starting from some arbitrary state. The trace is accepting if the run is.

Trace: pair $\rho = (t_{\rho}, r_{\rho})$ where t_{ρ} is an infinite **valid** tree and r_{ρ} is a run of \mathcal{A} on $t_{\rho}^{\frac{2}{}}$. starting from some arbitrary state. The trace is accepting if the run is.

We define two (monotone) operations on sets of traces,

$$\operatorname{Attr}(X) = \{(t_{\rho}, r_{\rho}) \mid \forall \text{ infinite branch } \pi, \exists u \sqsubset \pi \text{ s.t. } (t_{\rho}[u], r_{\rho}[u]) \in X\}$$

Safety(X) =
$$\{(t_{\rho}, r_{\rho}) \mid \forall \text{ infinite branch } \pi, \text{ either } \forall u \sqsubseteq \pi, \text{ } \operatorname{Col}(r_{\rho}(u)) = 2, \text{ }$$
 or $\exists u \sqsubseteq \pi \text{ s.t. } (t_{\rho}[u], r_{\rho}[u]) \in X \text{ and } \operatorname{Col}(r_{\rho}(v)) = 2 \ \forall v \sqsubseteq u \}$

and an increasing transfinite sequence $(X_{\alpha})_{\alpha}$

$$\begin{cases} X_0 = \emptyset \\ X_{\alpha+1} = \text{Attr}(\text{Safety}(X_{\alpha})) \\ X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta} & \text{for } \alpha \text{ limit ordinal} \end{cases}$$

Trace: pair $\rho = (t_{\rho}, r_{\rho})$ where t_{ρ} is an infinite **valid** tree and r_{ρ} is a run of \mathcal{A} on $t_{\overline{\rho}}^2$. starting from some arbitrary state. The trace is accepting if the run is.

We define two (monotone) operations on sets of traces,

$$\operatorname{Attr}(X) = \{(t_{\rho}, r_{\rho}) \mid \forall \text{ infinite branch } \pi, \exists u \sqsubset \pi \text{ s.t. } (t_{\rho}[u], r_{\rho}[u]) \in X\}$$

Safety(X) ={
$$(t_{\rho}, r_{\rho}) \mid \forall$$
 infinite branch π , either $\forall u \sqsubset \pi$, $\operatorname{Col}(r_{\rho}(u)) = 2$, or $\exists u \sqsubset \pi$ s.t. $(t_{\rho}[u], r_{\rho}[u]) \in X$ and $\operatorname{Col}(r_{\rho}(v)) = 2 \ \forall v \sqsubset u$ }

and an increasing transfinite sequence $(X_{\alpha})_{\alpha}$

$$\begin{cases} X_0 = \emptyset \\ X_{\alpha+1} = \text{Attr}(\text{Safety}(X_{\alpha})) \\ X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta} & \text{for } \alpha \text{ limit ordinal} \end{cases}$$

Lemma. The limit of $(X_{\alpha})_{\alpha}$ is the set of accepting traces.

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

A profile is some $\mathbf{p}: Q \to 2^{RegTrees} \cup \{\infty\}$ that is smaller than $\mathbf{p}_{\mathcal{A}}$.

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

A **profile** is some $\mathbf{p}: Q \to 2^{RegTrees} \cup \{\infty\}$ that is smaller than $\mathbf{p}_{\mathcal{A}}$.

Define a profile counterpart of operators Attr and Safety and show that one can compute $Attr(\mathbf{p})$ and $Safety(\mathbf{p})$ from \mathbf{p} .

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

A **profile** is some $\mathbf{p}: Q \to 2^{RegTrees} \cup \{\infty\}$ that is smaller than $\mathbf{p}_{\mathcal{A}}$.

Define a profile counterpart of operators Attr and Safety and show that one can compute $Attr(\mathbf{p})$ and $Safety(\mathbf{p})$ from \mathbf{p} .

Lemma. Let **p** be a profile. If $\mathbf{p} = \text{Attr}(\text{Safety}(\mathbf{p}))$ then $\mathbf{p} = \mathbf{p}_{\mathcal{A}}$.

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

A **profile** is some $\mathbf{p}: Q \to 2^{RegTrees} \cup \{\infty\}$ that is smaller than $\mathbf{p}_{\mathcal{A}}$.

Define a profile counterpart of operators Attr and Safety and show that one can compute $Attr(\mathbf{p})$ and $Safety(\mathbf{p})$ from \mathbf{p} .

Lemma. Let **p** be a profile. If $\mathbf{p} = \text{Attr}(\text{Safety}(\mathbf{p}))$ then $\mathbf{p} = \mathbf{p}_{\mathcal{A}}$.

To converge, add a speed-up operator on profiles: $\mathbf{p} \mapsto \operatorname{SpeedUp}(\mathbf{p})$.

Work with the **infinity profile** $\mathbf{p}_{\mathcal{A}}$ of \mathcal{A}

$$\mathbf{p}_{\mathcal{A}}(q) = \begin{cases} L^{con}(\mathcal{A}_q) & \text{if } |L^{con}(\mathcal{A}_q)| < \infty \\ \infty & \text{otherwise} \end{cases}$$

Lemma. One can compute the cardinality profile from $\mathbf{p}_{\mathcal{A}}$.

A **profile** is some $\mathbf{p}: Q \to 2^{RegTrees} \cup \{\infty\}$ that is smaller than $\mathbf{p}_{\mathcal{A}}$.

Define a profile counterpart of operators Attr and Safety and show that one can compute $Attr(\mathbf{p})$ and $Safety(\mathbf{p})$ from \mathbf{p} .

Lemma. Let **p** be a profile. If $\mathbf{p} = \text{Attr}(\text{Safety}(\mathbf{p}))$ then $\mathbf{p} = \mathbf{p}_{\mathcal{A}}$.

To converge, add a speed-up operator on profiles: $\mathbf{p} \mapsto \operatorname{SpeedUp}(\mathbf{p})$.

Lemma. Let \mathbf{p}_0 be the profile that maps \emptyset to every state and let, for any $i \geq 0$, $\mathbf{p}_{i+1} = \operatorname{SpeedUp}(\operatorname{Attr}(\operatorname{Safety}(\mathbf{p}_i)))$.

Then $(\mathbf{p}_i)_{i\geq 0}$ converges in a **finite** number of steps to $\mathbf{p}_{\mathcal{A}}$.

CONCLUSION

Main Contribution: a class of languages of infinite trees that:

- Encompass regular languages.
- Form a Boolean algebra.
- Have interesting expressive power.
- Enjoy a decidable cardinality problem.

CONCLUSION

Main Contribution: a class of languages of infinite trees that:

- Encompass regular languages.
- Form a Boolean algebra.
- Have interesting expressive power.
- Enjoy a decidable cardinality problem.

Further Work:

- Simplify the proof for the parity case.
- Investigate other decision problems, eg. the regularity problem.
- Find automata models with decidable emptiness that capture extension of MSO with isomorphism tests.
- Look for applications.