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Tree-to-String Translation

Output

<frame height=20 width=50>
<button>Do not press!</button>

</frame>

Realized by:

q(frame(xy, x2))
gi(end)

q: (defs(x1, x2))
q(height(xy))

<frame @i(X1)q(X2)</frame>
>

q(x1)q1(x2)
height = q(xy)

Ll




Tree-to-String Translation

Output

<frame height=20 width=50>
<button>Do not press!</button>

</fréﬁé>
Or realized by:

/

q'(frame(xy, x2)) — <frame q{(x1)> q'(X2)</frame>
g;(end) — €

gi(defs(xi,x2))  — q'(x1)q;(x)

q'(height(x1)) — height = g'(x)
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Tree-to-String Translation

These two translations are equivalent.

Unstructured output, though, can be generated in
surprisingly different ways ...

q(f(x1,x2,x3)) — q(x3) aqi(x2) b q(x2)
a1(x3)aq1(x2) g1 (x2) ba

a1 (f(x1, X2, X3))  —
gi(e) — ba
q(e) — ab



Tree-to-String Translation

These two translations are equivalent.

Unstructured output, though, can be generated in

surprisingly different ways ...

VEersus

q(f(X-] ) X27 XS))
a1 (f(x1, X2, X3))
ai(e)

qa(e)

%

%
%
%

Ll

q(x3) a qi(x2) b q(x2)
21()(3)671 (Xx2)q1(x2) ba
a

ab

ab q'(%)q'(x2)q'(x3)
ab
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In-equivalence can be verified by counter
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Complete proof system for equivalence




Overview

Part 1:

Part 1:
Part 3:

Part 2:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Invariants



Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.




Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.

e There is a topdown-deterministic automaton B with
statespe P

dom(p) is the set of trees accepted at state p



Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.

e There is a topdown-deterministic automaton B with
statespe P

/I generalization of algebraic data type
dom(p) is the set of trees accepted at state p
/I trees of type p
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Topdown Automaton

Po

p2

button

l

’ Do not press! ‘

width end




Simplified Question

For states g, @’ of the transducer, py € P, does it hold that

[al(t) = [d1(t)  (t € dom(py))
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From Arbitrary Output to Ints
Unary Output

q(f(x1, X)) — ddgi(x1) d gi1(x1) G2(X2)

Succinct representation: Tree-to-int transducer

q(f(x1, X)) — 3+2-qi(x1) + q(x2)

Arbitary Output

letters a,b,c,... = digits1,..., h—1
string aabc = 14+h-(1+h-(2+h-3))
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Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(x1,x%2),y) — 14+3-q1(x1,24+ 3 g2(x2, ¥))

/I now with an accumulating parameter y
/I for right context
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Equivalence of Tree-to-Int Transducers
ldea

e The semantics of a tree t can be seen as

[t = (1), ... [n1(1)) € Q"

e Forstate pof B, let V, = {[t] | t € dom(p)}.
e Consider H(v) = v, —Vvg.

e The following statements are equivalent:

1. g, q agree on inputs from £(B)
2. Hiv)=0 (Ve Vy)
3. Hv)=0 (v € Aff(Vy,))

I affine closure
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Computing Affine Closures

Define

[f(xs, ..., X«) = ([TH](x),..., [T-](x)) where
q(f(xi,..., xx)) — T, and

[3-a(x1)+qd'(x1) +2-q(x)+5](x1,%X2) =
3'X1q+X1q/—|—2-X2q/+5

— [f]: Q" x ... x Q" — Q"is affine.
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Consequence
V, = Aff(V,) is the least solution of:

VO IV, o, V)

77 Pk

((p, f) — p1...px transition of B) over the complete lattice
of affine sub-spaces of Q" !

Theorem

e Equivalence of total tree-to-int transducers relative
to some B is decidable in polynomial time.




Computing Affine Closures (cont.)
Consequence
V, = Aff(V,) is the least solution of:
Vo 2 IV, -5 V)

((p, f) — p1...px transition of B) over the complete lattice
of affine sub-spaces of Q" !

Theorem
e Equivalence of total tree-to-int transducers relative
to some B is decidable in polynomial time.

e In-Equivalence of linear tree-to-string transducers is
decidable in randomized polynomial time.
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Tree-to-int Transducers with Parameters

q(f(x1, x2),y) — qi(x1,q1(x, 1))
qi(alxi),y) = y+aqi(x,y)
gi(e,y) — 0
((X1,X2) ) = ai(x, qi(x4, 1))




Tree-to-int Transducers with Parameters

q(f(x1,x%2),y) — qi(x1,qi(xe, 1))
a(alx),y) = y+ai(x,y)
ai(e, ) - 0

q'(f(x1,x2),y) — qi(xe,q1(x1,1))

The semantics of a tree t is a vector
[1]:(Q — Q)"
of affine functions in the parameters

—

can be represented by a matrix ([t]q) € Q™ (+"

Tum



The Semantics of Constructors

[[f]] . (an(/-H) N an(l-H)) N an(/—H)

thus is of the form:

([f1(x1, - .., Xk))g = polynomial in the X;g;




In the Example

q(f(X17X2) ) — q1(X1>q1(X271))
a(alx).y) = y+ai(x,y)
ai(e,y) — 0
q(f(x1.%),y) — @0 ai(xi, 1))




In the Example

q(f(x1,x%2),y) — (X1, qi(xe, 1))
a(alx).y) = y+ai(x,y)
gi(e,y) - 0

q'(f(x1, %), y) — qi(X, qi(x1,1))

X1g,0 + X1gy1 * (Xogy0 + Xogy1 - 1)
X2g0 + Xogy1 * (X1gi0 + X1gy1 - 1)

([F1(x1,%X2)) g0
([F1(x1, X2))qr0
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Polynomial Invariant

polynomial equality:

Zq1'zq/1-zq/0—2'2q0+3i0

n=0A...Arp=0 invariantat p iff

R =...=m{f]) =0 (t € dom(p))

can be described by polynomial ideals ...

TUm
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Polynomial Ideals: A Primer

Rring. [ C Rideal, if

e a+belwheneverabcel,
e r-ac/wheneverac/andr e R.

l is finitely generated, if

I=(a,....,as)n={>74ri-a|reR}

R =Q[z] polynomial ring




Polynomial Ideals — Basis Theorem

David Hilbert (1890)

Every ideal of Q2] is finitely generated !

TUm



Consequence

e Polynomial Invariants can be represented by
polynomial ideals!

e Finite conjunctions suffice!



Consequence

e Polynomial Invariants can be represented by
polynomial ideals!

e Finite conjunctions suffice!
e There are effective algorithms for
» membership

» inclusion
» equality
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Notation: = ([, X))
z fresh set of variables
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Inductive Invariant

Notation: = ([, X))
z fresh set of variables

p— I, CQ[z] isinductive if for p — f(ps, ..., Pk),

b S{reQlz]| rir"/z] €
(o (X1))apg @ - -+ & (o (X)) o }

holds.
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Main Theorem

e Assume p — I, is inductive. Then for every r € I,
r([t]) =0  (t € dom(p))
e ForpeP,let
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Main Theorem

e Assume p — I, is inductive. Then for every r € I,
r([t]) =0  (t € dom(p))
e ForpeP,let

Ib={reQlz]| r([t]) =0 (t e dom(p))}
Then p ~ I, is inductive.

Corollary

Let H(z) = zq — z40. Then g, g’ are equivalent (relative to

Po) iff
H < Iy,

for some inductive invariant.

TUm

gilte,
‘Ew\‘
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Greatest fixpoint iteration may not terminate.
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Discussion

e The best inductive invariant p — 1, is a greatest
fixpoint.

Greatest fixpoint iteration may not terminate.

e Allinductive invariants, though, can be recursively
enumerated!

e All potential counter examples can be enumerated ...
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Theorem

e Equivalence of deterministic tree-to-int transducers
with parameters is decidable.



Wrap-up

Theorem

e Equivalence of deterministic tree-to-int transducers
with parameters is decidable.

e Equvalence of general deterministic tree-to-string
transducers is decidable.



Summary

Parameters allow to encode general output alphabets by
means of unaries, i.e., numbers.




Summary

Parameters allow to encode general output alphabets by
means of unaries, i.e., numbers.

Equivalence for unary transducers can be handled by
means of techniques from precise program analysis, i.e.,
program proving.



Thank you!




