Equivalence of Deterministic
Tree-to-String Transducers
Is Decidable

Helmut Seidl, Sebastian Maneth, Gregor Kemper

TU Minchen, U. of Edinburgh

GT-ALGA, April 12,2016

Overview

Part 1:

Part 2:
Part 3:

Part 4:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Invariants

Overview

Part 1:

Part 2:
Part 3:

Part 4:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Invariants

Tree-to-String Translation

Input

\
width end

height

Tree-to-String Translation

Output

<frame height=20 width=50>
<button>Do not press!</button>

</frame>

Tree-to-String Translation

Output

<frame height=20 width=50>
<button>Do not press!</button>

</frame>

Realized by:

q(frame(xy, x2))
gi(end)

q: (defs(x1, x2))
q(height(xy))

<frame @i(X1)q(X2)</frame>
>

q(x1)q1(x2)
height = q(xy)

Ll

Tree-to-String Translation

Output

<frame height=20 width=50>
<button>Do not press!</button>

</fréﬁé>
Or realized by:

/

q'(frame(xy, x2)) — <frame q{(x1)> q'(X2)</frame>
g;(end) — €

gi(defs(xi,x2)) — q'(x1)q;(x)

q'(height(x1)) — height = g'(x)

Tree-to-String Translation

These two translations are equivalent.

Tree-to-String Translation

These two translations are equivalent.

Unstructured output, though, can be generated in
surprisingly different ways ...

q(f(x1,x2,x3)) — q(x3) aqi(x2) b q(x2)
a1(x3)aq1(x2) g1 (x2) ba

a1 (f(x1, X2, X3)) —
gi(e) — ba
q(e) — ab

Tree-to-String Translation

These two translations are equivalent.

Unstructured output, though, can be generated in

surprisingly different ways ...

VEersus

q(f(X-]) X27 XS))
a1 (f(x1, X2, X3))
ai(e)

qa(e)

%

%
%
%

Ll

q(x3) a qi(x2) b q(x2)
21()(3)671 (Xx2)q1(x2) ba
a

ab

ab q'(%)q'(x2)q'(x3)
ab

Related Work

problem statement Engelfriet, 1980

Related Work (cont.)

with monadic input Culik Il, Karhumaki, 1986
Ruohonen, 1986
Honkala, 2000

Related Work (cont.)

with monadic input

MSO-definable
sequential

Culik Il, Karhumaki, 1986
Ruohonen, 1986
Honkala, 2000

Engelfriet, Maneth, 2006
Staworko et al., 2009

Related Work (cont.)

with monadic input Culik Il, Karhumaki, 1986
Ruohonen, 1986
Honkala, 2000

MSO-definable Engelfriet, Maneth, 2006

sequential Staworko et al., 2009

polynomial program invariants Letichevsky, Lvov, 1996
Mduller-Olm, S., 2004

General Idea

Obvious:

In-equivalence can be verified by counter
example

General Idea

Obvious:

In-equivalence can be verified by counter
example

Required:
Complete proof system for equivalence

Overview

Part 1:

Part 1:
Part 3:

Part 2:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Invariants

Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.

Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.

e There is a topdown-deterministic automaton B with
statespe P

dom(p) is the set of trees accepted at state p

Simplification

e Asingle transducer with states Q = {1,..., n}.
e The transducer is total.

e There is a topdown-deterministic automaton B with
statespe P

/I generalization of algebraic data type
dom(p) is the set of trees accepted at state p
/I trees of type p

Topdown Automaton

Po

button

l

’ Do not press! ‘

height

width end

Topdown Automaton

Po

p2

button

l

’ Do not press! ‘

width end

Simplified Question

For states g, @’ of the transducer, py € P, does it hold that

[al(t) = [d1(t) (t € dom(py))

From Arbitrary Output to Ints
Unary Output

q(f(x1, X)) — ddgi(x1) d gi1(x1) G2(X2)

From Arbitrary Output to Ints
Unary Output

q(f(x1, X)) — ddgi(x1) d gi1(x1) G2(X2)

Succinct representation: Tree-to-int transducer

q(f(x1, X)) — 3+2-qi(x1) + q(x2)

From Arbitrary Output to Ints
Unary Output

q(f(x1, X)) — ddgi(x1) d gi1(x1) G2(X2)

Succinct representation: Tree-to-int transducer

q(f(x1, X)) — 3+2-qi(x1) + q(x2)

Arbitary Output

letters a,b,c,... = digits1,..., h—1
string aabc = 14+h-(1+h-(2+h-3))

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(xi,x2)) —

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(x1,x2), y) —

/I now with an accumulating parameter y
/I for right context

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(x1,x2),y) — 1+3-

/I now with an accumulating parameter y
/I for right context

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(x1,x2),y) — 1+3-aqi(x,

/I now with an accumulating parameter y
/I for right context

Transformation

Wanted

Transformation of tree-to-string into tree-to-int ...

q(f(x1,x2)) — aaqi(x1) b ga(x2)
is simulated by:

q(f(x1,x%2),y) — 14+3-q1(x1,24+ 3 g2(x2, ¥))

/I now with an accumulating parameter y
/I for right context

Overview

Part 1:

Part 2:
Part 3:

Part 4:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Ideals

Equivalence of Tree-to-Int Transducers
ldea

e The semantics of a tree t can be seen as

[t = (1), ... [n1(1)) € Q"

Equivalence of Tree-to-Int Transducers
ldea

e The semantics of a tree t can be seen as

[t = (1), ... [n1(1)) € Q"

e Forstate pof B, let V, = {[t] | t € dom(p)}.

Equivalence of Tree-to-Int Transducers
ldea

e The semantics of a tree t can be seen as

[t = (1), ... [n1(1)) € Q"

For state p of B, let V,, = {[t] | t € dom(p)}.
Consider H(V) = vq — vgq.

The following statements are equivalent:

1. g, q agree on inputs from £(B)
2. Hiv)=0 (Ve Vy)

Equivalence of Tree-to-Int Transducers
ldea

e The semantics of a tree t can be seen as

[t = (1), ... [n1(1)) € Q"

e Forstate pof B, let V, = {[t] | t € dom(p)}.
e Consider H(v) = v, —Vvg.

e The following statements are equivalent:

1. g, q agree on inputs from £(B)
2. Hiv)=0 (Ve Vy)
3. Hv)=0 (v € Aff(Vy,))

I affine closure

Computing Affine Closures

Define

Computing Affine Closures

Define

[f(xs, ..., x«) = ([TA](%),..., [Th](x)

[3-a(x) +q'(x1) +2- g (x) + 5](X1, X2)

Computing Affine Closures

Define

[f(xs, ..., X«) = ([TH](x),..., [T-](x)) where
q(f(xi,..., xx)) — T, and

[3-a(x1)+qd'(x1) +2-q(x)+5](x1,%X2) =
3'X1q+X1q/—|—2-X2q/+5

Computing Affine Closures

Define

[f(xs, ..., X«) = ([TH](x),..., [T-](x)) where
q(f(xi,..., xx)) — T, and

[3-a(x1)+qd'(x1) +2-q(x)+5](x1,%X2) =
3'X1q+X1q/—|—2-X2q/+5

— [f]: Q" x ... x Q" — Q"is affine.

Computing Affine Closures (cont.)
Consequence
V, = Aff(V,) is the least solution of:

VO IV, o, V)

77 Pk

((p, f) — p1...px transition of B) over the complete lattice
of affine sub-spaces of Q" !

Computing Affine Closures (cont.)
Consequence
V, = Aff(V,) is the least solution of:

VO IV, o, V)

77 Pk

((p, f) — p1...px transition of B) over the complete lattice
of affine sub-spaces of Q" !

Theorem

e Equivalence of total tree-to-int transducers relative
to some B is decidable in polynomial time.

Computing Affine Closures (cont.)
Consequence
V, = Aff(V,) is the least solution of:
Vo 2 IV, -5 V)

((p, f) — p1...px transition of B) over the complete lattice
of affine sub-spaces of Q" !

Theorem
e Equivalence of total tree-to-int transducers relative
to some B is decidable in polynomial time.

e In-Equivalence of linear tree-to-string transducers is
decidable in randomized polynomial time.

Overview

Part 1:

Part 2:
Part 3:

Part 4:

The General Setting

Tree-to-Int Transducers
Affine Spaces

Polynomial Invariants

Tree-to-int Transducers with Parameters

q(f(x1,x2),y) — qi(x1,q1(xe, 1))
qi(alx1),y) — y+aqi(x,y)
qi(e,) = 0

Tree-to-int Transducers with Parameters

q(f(x1, x2),y) — qi(x1,q1(x, 1))
qi(alxi),y) = y+aqi(x,y)
gi(e,y) — 0
((X1,X2)) = ai(x, qi(x4, 1))

Tree-to-int Transducers with Parameters

q(f(x1,x%2),y) — qi(x1,qi(xe, 1))
a(alx),y) = y+ai(x,y)
ai(e,) - 0

q'(f(x1,x2),y) — qi(xe,q1(x1,1))

The semantics of a tree t is a vector
[1]:(Q — Q)"
of affine functions in the parameters

—

can be represented by a matrix ([t]q) € Q™ (+"

Tum

The Semantics of Constructors

[[f]] . (an(/-H) N an(l-H)) N an(/—H)

thus is of the form:

([f1(x1, - .., Xk))g = polynomial in the X;g;

In the Example

q(f(X17X2)) — q1(X1>q1(X271))
a(alx).y) = y+ai(x,y)
ai(e,y) — 0
q(f(x1.%),y) — @0 ai(xi, 1))

In the Example

q(f(x1,x%2),y) — (X1, qi(xe, 1))
a(alx).y) = y+ai(x,y)
gi(e,y) - 0

q'(f(x1, %), y) — qi(X, qi(x1,1))

X1g,0 + X1gy1 * (Xogy0 + Xogy1 - 1)
X2g0 + Xogy1 * (X1gi0 + X1gy1 - 1)

([F1(x1,%X2)) g0
([F1(x1, X2))qr0

Polynomial Invariant

polynomial equality:

Zq1-Zq/1-Zq/0—2-Zqo+3i0

Polynomial Invariant
polynomial equality:

Zq1-Zq/1-Zq/0—2-Zqo+3i0

rr=0A...Arp=0 nvariantat p iff

n([th =...=rm([t]) =0 (t € dom(p))

Polynomial Invariant

polynomial equality:

Zq1'zq/1-zq/0—2'2q0+3i0

n=0A...Arp=0 invariantat p iff

R =...=m{f]) =0 (t € dom(p))

can be described by polynomial ideals ...

TUm

Polynomial Ideals: A Primer

Rring. [C Rideal, if

e a+belwheneverabcel,
e r-ac/wheneverac/andr e R.

Polynomial Ideals: A Primer

Rring. [C Rideal, if

e a+belwheneverabcel,
e r-ac/wheneverac/andr e R.

I is finitely generated, if

I=(a,....,as)n={>74ri-a|reR}

Polynomial Ideals: A Primer

Rring. [C Rideal, if

e a+belwheneverabcel,
e r-ac/wheneverac/andr e R.

l is finitely generated, if

I=(a,....,as)n={>74ri-a|reR}

R =Q[z] polynomial ring

Polynomial Ideals — Basis Theorem

David Hilbert (1890)

Every ideal of Q2] is finitely generated !

TUm

Consequence

e Polynomial Invariants can be represented by
polynomial ideals!

e Finite conjunctions suffice!

Consequence

e Polynomial Invariants can be represented by
polynomial ideals!

e Finite conjunctions suffice!
e There are effective algorithms for
» membership

» inclusion
» equality

Inductive Invariant

Notation: = ([, X))
z fresh set of variables

Inductive Invariant

Notation: = ([, X))
z fresh set of variables

p— I C Q2]

Inductive Invariant

Notation: = ([, X))
z fresh set of variables

p— I, CQ[z] isinductive if for p — f(py,...

b S{reQlz]| r[r'/z] €
b, ®..0 b,

holds.

7pk),

Inductive Invariant

Notation: = ([, X))
z fresh set of variables

p— I, CQ[z] isinductive if for p — f(ps, ..., Pk),

b S{reQlz]| r[r'/z] €
IP1(X1) ©...0 ka(xk) }

holds.

Inductive Invariant

Notation: = ([, X))
z fresh set of variables

p— I, CQ[z] isinductive if for p — f(ps, ..., Pk),

b S{reQlz]| rir"/z] €
(o (X1))apg @ - -+ & (o (X)) o }

holds.

Main Theorem

e Assume p — I, is inductive. Then for every r € I,
r(it]) =0 (t € dom(p))

Main Theorem

e Assume p — I, is inductive. Then for every r € I,
r([t]) =0 (t € dom(p))
e ForpeP,let

I,={reQlz]|r([t]) =0 (tedom(p))}
Then p — 1, is inductive.

Main Theorem

e Assume p — I, is inductive. Then for every r € I,
r([t]) =0 (t € dom(p))
e ForpeP,let

Ib={reQlz]| r([t]) =0 (t e dom(p))}
Then p ~ I, is inductive.

Corollary

Let H(z) = zq — z40. Then g, g’ are equivalent (relative to

Po) iff
H < Iy,

for some inductive invariant.

TUm

gilte,
‘Ew\‘

Discussion

e The best inductive invariant p — 1, is a greatest
fixpoint.

Greatest fixpoint iteration may not terminate.

Discussion

e The best inductive invariant p — 1, is a greatest
fixpoint.

Greatest fixpoint iteration may not terminate.

e Allinductive invariants, though, can be recursively
enumerated!

Discussion

e The best inductive invariant p — 1, is a greatest
fixpoint.

Greatest fixpoint iteration may not terminate.

e Allinductive invariants, though, can be recursively
enumerated!

e All potential counter examples can be enumerated ...

Wrap-up

Theorem

e Equivalence of deterministic tree-to-int transducers
with parameters is decidable.

Wrap-up

Theorem

e Equivalence of deterministic tree-to-int transducers
with parameters is decidable.

e Equvalence of general deterministic tree-to-string
transducers is decidable.

Summary

Parameters allow to encode general output alphabets by
means of unaries, i.e., numbers.

Summary

Parameters allow to encode general output alphabets by
means of unaries, i.e., numbers.

Equivalence for unary transducers can be handled by
means of techniques from precise program analysis, i.e.,
program proving.

Thank you!

