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Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?
Result by De Pril 2013, Brihaye, De Pril, and Schewe 2013.

Our transfer theorem:
» applicable to, e.g. , energy-parity games.

» sufficient condition approaching necessity,
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AR ST e

(V,E) is a finite directed graph s.t. vE # () for all v € V.

vg € V is the initial vertex.

v

v

v

Ais a set (of players) and {V,},ca is a partition of V.

v

H are the histories: finite paths in (V/, E) starting at v.
[#] are the runs: infinite paths in (V, E) starting at vo.
<2C [H] x [H] (is the preference of player a € A).

v

v
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Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
E.g. s(hv3) € {vi,v3}
Def A strategy profile s induces a unique run p(s).
Notation Let s <, s’ stand for p(s) <, p(s').
Def Let s be a profile, then s, := s

vV, is a strategy for player a.
Def A profile s = Upecasp is a Nash equilibrium iff

s makes all the players stable, i.e. for all a € A we have

VSQ, s Aa 5; U (UbeA\{a}sb)'
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Some special cases

Usually, the preferences are defined in two stages :
1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...
2. and (0,2,1) <4 (9,3,0).

Two-player win/lose games: only payoffs (1,0) or (0,1).
Such games may have winning strategies.

In such games s = s, U sy, is an NE iff s, or s, is winning.

If a game has a winning strategy, it is said to be determined.
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Towards the transfer theorem

for turn-based games on finite graphs

Theorem (Gurevich and Harrington 1982)

Two-player win/lose Muller games are finite-memory determined

Theorem (Paul and Simon 2009)

Multi-player multi-outcome Muller games have finite-memory NE.

Theorem (still a bit vague)
A game g played on a finite graph has a finite-memory NE if
1. some win/lose derived games are finite-memory determined,

2. and the preferences satisfy three conditions.
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Below: game for b and threshold run vovq v5’

start —

Player b wins if the run p =5, vov1v5’, else aU ¢ wins.
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Strict weak order

existing concept

A relation < is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

» a strict linear order is a strict weak order,
» so is the usual order over payoffs, e.g. (0,2,1) < (9,3,0).

» The strict weak order (R x {0,1}, <ex) cannot be simulated
by payoff tuples.
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Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

More general: hp < hp' < Hp < Wp' if W = h e H,
where 7 are the classes of an equivalence relation on #.
If the classes are decidable by a finite automaton, < is
automatic-piecewise prefix-linear.

On {0,1}¥ let 0p < 0p' < p <jex p' and 1p < 1p/ < p > p'.
Then < is automatic-piecewise prefix-linear (with two classes),
but < is not prefix-linear: 010 < 011 but 10 > 11.
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The Mont condition

A relation <C V¥ x V¥ is Mont if Yhg, hi, hp,--- € V* we have:
hg ... hnp < hy... hnhn+1p forall ne N implies hop < hghihy ...

Prefix independent, irreflexive relations are Mont:
ho...hnp < hg...hyhpy1p implies p < p.
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Our result

Theorem
Let a game be played by players in A on a graph over finite V s.t.

1. All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory.

2. The <, are automatic-piecewise (with k classes) prefix-linear
Mont strict weak orders.

Then the game has an NE in finite-memory strategies requiring
|Al(m + 2log max(k, |V|)) + 1 bits of memory.
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Counterexamples

Why " All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory”?
1

0
st (a0
0

If finitely many "good” then payoff 0, else limsup average 0 and 1.

The unique player wins all the strict thresholds < 1 and can do so
with finite memory, but the game has no finite-memory NE.
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Counterexamples
1

0
start —
0

Why Mont preferences?

start —

Y

Payoff for Player "circle”: if the diamond is never visited then —1,
else number of visited squares. The threshold games are all
memoryless determined! but there is not even an NE.
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Counterexamples

1
0
S
0
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Gurvich and Oudalov (2014) constructed a four-player 13-state
one-cycle game with no positional NE. So, no transfer theorem
with memoryless determinacy.



