From finite-memory winning strategies to
finite-memory Nash equilibria
Stéphane Le Roux, joint work with Arno Pauly

Université libre de Bruxelles, inVest project

GT ALGA Marseille 12 April 2016

Questions on system verification as "simple” games (finite graphs).

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?

Result by De Pril 2013, Brihaye, De Pril, and Schewe 2013.

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?
Result by De Pril 2013, Brihaye, De Pril, and Schewe 2013.

Our transfer theorem:

» applicable to, e.g. , energy-parity games.

Questions on system verification as "simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as " complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?
Result by De Pril 2013, Brihaye, De Pril, and Schewe 2013.

Our transfer theorem:
» applicable to, e.g. , energy-parity games.

» sufficient condition approaching necessity,

Turn-based games played on finite graphs

RS

» (V,E) is a finite directed graph s.t. vE # () for all v € V.

Turn-based games played on finite graphs

coart [0 (T e

» (V,E) is a finite directed graph s.t. vE # () for all v € V.
» vy € V is the initial vertex.

Turn-based games played on finite graphs

AR ST e

» (V,E) is a finite directed graph s.t. vE # () for all v € V.

» vy € V is the initial vertex.

» Ais a set (of players) and {V,}.ca is a partition of V.

Turn-based games played on finite graphs

AR ST e

(V,E) is a finite directed graph s.t. vE # () for all v € V.

vg € V is the initial vertex.

v

v

v

Ais a set (of players) and {V,},ca is a partition of V.

v

H are the histories: finite paths in (V/, E) starting at vo.

Turn-based games played on finite graphs

AR ST e

(V,E) is a finite directed graph s.t. vE # () for all v € V.

vg € V is the initial vertex.

v

v

v

Ais a set (of players) and {V,},ca is a partition of V.

v

H are the histories: finite paths in (V/, E) starting at v.

v

[H] are the runs: infinite paths in (V, E) starting at vp.

Turn-based games played on finite graphs

AR ST e

(V,E) is a finite directed graph s.t. vE # () for all v € V.

vg € V is the initial vertex.

v

v

v

Ais a set (of players) and {V,},ca is a partition of V.

v

H are the histories: finite paths in (V/, E) starting at v.
[#] are the runs: infinite paths in (V, E) starting at vo.
<2C [H] x [H] (is the preference of player a € A).

v

v

Nash equilibrium

Y

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.

Nash equilibrium

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
Eg. S(hV3) € {Vl, V3}

Nash equilibrium

Y

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
Eg. 5(hV3) € {Vl, V3}
Def A strategy profile s induces a unique run p(s).

Nash equilibrium

Y

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
Eg. 5(hV3) € {Vl, V3}
Def A strategy profile s induces a unique run p(s).

Notation Let s <, s’ stand for p(s) <, p(s').

Nash equilibrium

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
Eg. S(hV3) € {Vl, V3}
Def A strategy profile s induces a unique run p(s).

Notation Let s <, s’ stand for p(s) <, p(s').

Def Let s be a profile, then s, := s |y, is a strategy for player a.

Nash equilibrium

Y

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
E.g. s(hv3) € {vi,v3}
Def A strategy profile s induces a unique run p(s).
Notation Let s <, s’ stand for p(s) <, p(s').
Def Let s be a profile, then s, := s

vV, is a strategy for player a.
Def A profile s = Upecasp is a Nash equilibrium iff
s makes all the players stable, i.e. for all a € A we have

Nash equilibrium

Y

Def s:H — V is a strategy profile iff h-s(h) € H for all h € H.
E.g. s(hv3) € {vi,v3}
Def A strategy profile s induces a unique run p(s).
Notation Let s <, s’ stand for p(s) <, p(s').
Def Let s be a profile, then s, := s

vV, is a strategy for player a.
Def A profile s = Upecasp is a Nash equilibrium iff

s makes all the players stable, i.e. for all a € A we have

VSQ, s Aa 5; U (UbeA\{a}sb)'

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.
If A= {a, b, c} then (2,7,4) means a gets 2, b gets 7...

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...

2. and (0,2,1) <5 (9,3,0).

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...

2. and (0,2,1) <5 (9,3,0).

Two-player win/lose games: only payoffs (1,0) or (0,1).

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...

2. and (0,2,1) <5 (9,3,0).

Two-player win/lose games: only payoffs (1,0) or (0,1).
Such games may have winning strategies.

Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...

2. and (0,2,1) <5 (9,3,0).

Two-player win/lose games: only payoffs (1,0) or (0,1).
Such games may have winning strategies.
In such games s = s, U sy, is an NE iff s, or s, is winning.

Some special cases

Usually, the preferences are defined in two stages :
1. by assigning a payoff tuple A — R to each run.
If A= {a, b,c} then (2,7,4) means a gets 2, b gets 7...
2. and (0,2,1) <4 (9,3,0).

Two-player win/lose games: only payoffs (1,0) or (0,1).
Such games may have winning strategies.

In such games s = s, U sy, is an NE iff s, or s, is winning.

If a game has a winning strategy, it is said to be determined.

Finite games in extensive form with R-valued payoffs

start —>

,0

Ny

Finite games in extensive form with R-valued payoffs

start *>

e SR
>

o,oc@

Finite games in extensive form with R-valued payoffs

start *>

272 m /\;2\ a
el 2
7 22 b

The double lines below represent the strategical choices.

-NE
a
/\
2,2 b
/ N\
0,0 3,1

Finite games in extensive form with R-valued payoffs

start *>

(S
L /
2,2 b
[’
O’OC@ 3’1 0,03,1

The double lines below represent the strategical choices.

2,2

-NE -NE
a a

7/ \ /\

2,2 b 2,2 b
/ \ 7 \

0,0 3,1 0,0 3,1

Finite games in extensive form with R-valued payoffs

start *>
AN a
\
0

M /

2,2 b
0 m 3.1 /N
’ __/ ’ 0,0 3,1

The double lines below represent the strategical choices.

2,2

-NE -NE NE
a a a
/\ /\ /\
2,2 b 2,2 b 2,2 b
/ N\ 7 \ 7\
0,0 3,1 0,0 3,1

0,0 3,1

Finite games in extensive form with R-valued payoffs

start *>
AN a
\
0

M /

2,2 b
0 m 3.1 /N
’ __/ ’ 0,0 3,1

The double lines below represent the strategical choices.

2,2

-NE -NE NE NE
a a a a
/\ /\ /\ /\
2,2 b 2,2 b 2,2 b 2,2 b
/ N\ 7 \ 7\ / \
0,0 3,1 0,0 3,1 0,0 3,1

0,0 3,1

Towards the transfer theorem

for turn-based games on finite graphs

Theorem (Gurevich and Harrington 1982)

Two-player win/lose Muller games are finite-memory determined

Theorem (Paul and Simon 2009)

Multi-player multi-outcome Muller games have finite-memory NE.

Towards the transfer theorem

for turn-based games on finite graphs

Theorem (Gurevich and Harrington 1982)

Two-player win/lose Muller games are finite-memory determined

Theorem (Paul and Simon 2009)

Multi-player multi-outcome Muller games have finite-memory NE.

Theorem (still a bit vague)
A game g played on a finite graph has a finite-memory NE if

1. some win/lose derived games are finite-memory determined,

Towards the transfer theorem

for turn-based games on finite graphs

Theorem (Gurevich and Harrington 1982)

Two-player win/lose Muller games are finite-memory determined

Theorem (Paul and Simon 2009)

Multi-player multi-outcome Muller games have finite-memory NE.

Theorem (still a bit vague)
A game g played on a finite graph has a finite-memory NE if
1. some win/lose derived games are finite-memory determined,

2. and the preferences satisfy three conditions.

Future games

ceart o0 T v

Below: future game after the "imposed history” vgv; vs:

/W AN T N

Future games

ceart o0 T v

Below: future game after the "imposed history” vgv; vs:

/W AN T N

Define v3h <fUture v n' iff vovivsh <p vovivsh'.

Threshold games

(T Y
start —

Below: game for b and threshold run vovqv§’

start —
aUc

Threshold games

AN T v

Below: game for b and threshold run vovq v5’

start —

Player b wins if the run p =5, vov1v5’, else aU ¢ wins.

Strict weak order

existing concept

A relation < is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

Strict weak order

existing concept

A relation < is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

» a strict linear order is a strict weak order,

Strict weak order

existing concept

A relation < is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

» a strict linear order is a strict weak order,

> so is the usual order over payoffs, e.g. (0,2,1) < (9,3,0).

Strict weak order

existing concept

A relation < is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

» a strict linear order is a strict weak order,
» so is the usual order over payoffs, e.g. (0,2,1) < (9,3,0).

» The strict weak order (R x {0,1}, <ex) cannot be simulated
by payoff tuples.

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp' & Hp < KWp forall h, W, p, p.

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

More general: hp < hp' < Hp < Wp' if W = h e H,
where H are the classes of an equivalence relation on H.

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

More general: hp < hp' < Hp < Wp' if W = h e H,
where 7 are the classes of an equivalence relation on #.
If the classes are decidable by a finite automaton, < is
automatic-piecewise prefix-linear.

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

More general: hp < hp' < Hp < Wp' if W = h e H,
where 7 are the classes of an equivalence relation on #.
If the classes are decidable by a finite automaton, < is
automatic-piecewise prefix-linear.

On {0,1}¥ let 0p < 0p' < p <jex p' and 1p < 1p/ < p > p'.
Then < is automatic-piecewise prefix-linear (with two classes),

11

Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation < is prefix-linear if
hp < hp! < Hp < Hp forall h, ', p, p.

The lexicographic order on {0,1}* is prefix-linear.

More general: hp < hp' < Hp < Wp' if W = h e H,
where 7 are the classes of an equivalence relation on #.
If the classes are decidable by a finite automaton, < is
automatic-piecewise prefix-linear.

On {0,1}¥ let 0p < 0p' < p <jex p' and 1p < 1p/ < p > p'.
Then < is automatic-piecewise prefix-linear (with two classes),
but < is not prefix-linear: 010 < 011 but 10 > 11.

12

The Mont condition

A relation <C V¥ x V¥ is Mont if Yhg, hi, hp,--- € V* we have:
ho...hap < hg...hyh,1p for all n € N implies hgp < hohiho ...

12

The Mont condition

A relation <C V¥ x V¥ is Mont if Yhg, hi, hp,--- € V* we have:
hg ... hnp < hy... hnhn+1p forall ne N implies hop < hghihy ...

Prefix independent, irreflexive relations are Mont:
ho...hnp < hg...hyhpy1p implies p < p.

13

Our result

Theorem
Let a game be played by players in A on a graph over finite V s.t.

1. All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory.

13

Our result

Theorem
Let a game be played by players in A on a graph over finite V s.t.
1. All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory.

2. The <, are automatic-piecewise (with k classes) prefix-linear
Mont strict weak orders.

13

Our result

Theorem
Let a game be played by players in A on a graph over finite V s.t.

1. All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory.

2. The <, are automatic-piecewise (with k classes) prefix-linear
Mont strict weak orders.

Then the game has an NE in finite-memory strategies requiring
|Al(m + 2log max(k, |V|)) + 1 bits of memory.

14

Counterexamples

Why " All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory”?
1

0
st (a0
0

If finitely many "good” then payoff 0, else limsup average 0 and 1.

14

Counterexamples

Why " All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory”?
1

0
st (a0
0

If finitely many "good” then payoff 0, else limsup average 0 and 1.

The unique player wins all the strict thresholds < 1 and can do so
with finite memory, but the game has no finite-memory NE.

14

Counterexamples
1

0
start —
0

Why Mont preferences?

start —

Y

Payoff for Player "circle”: if the diamond is never visited then —1,
else number of visited squares.

14

Counterexamples
1

0
start —
0

Why Mont preferences?

start —

Y

Payoff for Player "circle”: if the diamond is never visited then —1,
else number of visited squares. The threshold games are all
memoryless determined! but there is not even an NE.

14

Counterexamples

1
0
S
0

)

start —

Y

Gurvich and Oudalov (2014) constructed a four-player 13-state
one-cycle game with no positional NE. So, no transfer theorem
with memoryless determinacy.

