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Context: Verification of hybrid systems

Hybrid automata

Hybrid automaton = finite automaton + variables
Variables evolve in states and can be tested and updated on transitions.

» Clocks are variables with slope 1 in all states
» Stopwatches are variables with slope 0 or 1

Timed automaton = finite automaton + clocks with guards x <t ¢ and reset
[Alur, Dill 1990]

Verification problems are mostly undecidable
Decidability requires restricting either the flows [Henzinger et al. 1998] or the
jumps [Alur et al. 2000] for flows x = Ax

Other approaches exist like bounded delay reachability or approximations by
discrete transition systems.



The model of PollTA

In Polynomial Interrupt Timed Automata (POLITA)

» variables are interrupt clocks, a restricted form of stopwatches, ordered along
hierarchical levels,

» guards are polynomial constraints and variables can be updated by
polynomials.

Results
Reachability is decidable in 2EXPTIME.
The result still holds for several extensions.
A restricted form of quantitative model checking is also decidable.

The class POLITA is incomparable with the class SWA of Stopwatch
Automata.



Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Several levels with exactly one active clock at each level
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Polynomial constraints

Landing a rocket
First stage (lasting x1): from distance d, the rocket approaches the land
under gravitation g;
Second stage (lasting x): the rocket approaches the land
with constant deceleration h < 0;
Third stage: the rocket must reach the land
with small positive speed (less than ).

@ 1o+t ihd =dN0<gq+he<e @_}

For all g € [7,10]
does there exist an h € [-3, —1]
such that the rocket is landing?

T

Polynomial constraints are also used in the modeling of discrete systems.
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Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition

Algorithmic issues



PollITA: syntax

A — (27 Q7 q07Xa >\7A)
» Alphabet X, finite set of states @, initial state qo,
set of clocks X = {xi,...,x,}, with x, for level k,

v

v

A @ — {1,...,n} state level, with x,(q) the active clock in state g,

Transitions in A: a, u C
q7 k 'g’ |7 o q/’ k/

ps | ~
- ~

» ' -
guard action update

v

v

Guards: conjunctions of polynomial constraints in Q[xi, ..., x,]
P10 with i in {<,<,=,>,>}, and P € Q[xi, ..., x| at level k.

@ 252303 — %xzxf +x1+1>0, a, u
g O



PollTA: updates

From level k to k'

increasing level k < k’
Level i > k: reset

Level k: unchanged or polynomial update xx := P for some P € Q[x1,

0oo ,Xk_l]
Level i < k: unchanged.
(x1 :=x1)
)
2 X2 =Xy — X1
Xo > 2x7, (x3 := 0)

@ (x4 :==0) @



PollTA: updates

From level k to k'

increasing level k < k’

Level i > k: reset
Level k: unchanged or polynomial update x4 := P for some P € Q[x1,. .., Xk—1]
Level i < k: unchanged.

(x1 :=x1) (x1 1= x1)
2 )
5 X2 I=X{ — X1 a0 (%2 1= %)
Xp > 2Xi, (x3 := 0) Xa = 3xix2 + X3, (x3 1= x3)
(xa =

Decreasing level

Level i > k’: reset
Otherwise: unchanged.

u}
8]
I
i
it

DA



Examples

A5 in dimension 2 Aj3 in dimension 3

(2 —1)x3 >1, b

xt+x3 <1

Xp <b— Xl,C

x2<x+1, a

0<x <1
' xR+ x2+x>1

x12>x1—|—1, a, xx:=0



PollTA: semantics

Clock valuation

v=(v(x),...,v(x,)) € R"

A transition system T4 = (S, s0, —) for A = (X, Q, qo, X, \, AA)

» configurations S = Q x R”, initial configuration sy = (qo, vo) with vp =0

> time steps from q at level k: (q,v) 9, (g, v +« d), only x¢ is active, with all
clock values in v 4+ d unchanged except (v +x d)(xx) = v(xk) + d

> discrete steps (g, v) = (¢/, V') for a transition e : g £2% ¢ if v satisfies the
guard g and v/ = v[u].

An execution

alternates time and discrete steps

d d
(90, o) == (os Vo +(q0) d0) = (g1, v1) = (g1, v +a(ar) d1) — ..

DA



Semantics: example

xt>x1+1,a, x:=0

R (2 —1)x¢ >1, b
. <x1+1, a

X2§5*X12, C

X2
b
\ b: x> 4
< c: x» <3.56
b
:
2
a \ X1
— T \

(90,0,0) 23 (g0, 1.2,0) 2 (q1,1.2,0) 2% (g1,1.2,0.97) 2 (gp,1.2,0.97)....
Blue and green curves meet at real roots of —2x° + xi + 20x7 — 10x? — 50x; + 26.



Reachability problem for PollTA

Given A = (X, Q, g0, X, \,A) and gr € Q

is there an execution from initial configuration s = (qo,0) to (gr, v) for some
valuation v 7

Build a finite quotient automaton R 4
time-abstract bisimilar to T4:

states of R 4 are of the form (g, C) for suitable sets of valuations C C R”,
where polynomials of A have constant sign (and number of roots),

time abstract transitions of R 4: (g, C) — (g, succ(C)) where succ(C) is the
time successor of C, consistent with time elapsing in 74,

discrete transitions of R4: (q,C) = (¢/,C") fore: ¢ £2% ¢ in Aif C
satisfies the guard g and C’ = C[u], consistent with discrete steps in T4.

The sets C will be cells from a cylindrical decomposition adapted to the polynomials

in A.



Cylindrical decomposition: basic example

The decomposition starts from a set of polynomials and proceeds in two phases:
Elimination phase and Lifting phase.

Starting from single polynomial P; = x¥ + x5 + x3 — 1 € Q[xy, x2][x3]

Elimination phase
Produces polynomials in Q[x, x2] and Q[x1] required to determine the sign of Ps.
First polynmial P, = x2 + x2 — 1 is produced.
If P> > 0 then Pz has no real root.

If P, =0 then P3; has 0 as single root.
If P, < 0 then P; has two real roots.

In turn the sign of P, € Q[xi][x2] depends on P; = x? — 1.

Lifting phase

Produces partitions of R, R? and R3 organized in a tree of cells
where the signs of these polynomials (in {—1,0,1}) are constant.



Lifting phase

" Level 1: partition of R in 5 cells
/// _ Cfoo = _007_1[7 C,].:{—l},CO :]_171[a

Ci = {1}, Cyoo =1, +o]




Lifting phase

Level 2 : partition of R?

Above C_,: a single cell C_ xR

Above C_1: three cells

{=1}x] = 00,0[ {(=1,0)}, {-1}x]0, +-oc]

Level 1 : partition of R in 5 cells
Cfoo =] — o0, _1[7 C,]. - {_1}7 CO :] - 17 1[a
G = {1}7 Cioo :]1’ +OO[




Level 2 above (
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Level 2 above (
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Level 2 above (
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-1<x<1

x2 = /1 —x2

—1<x <1

—V1-xX <x < /1—x3

-1l<x<1

xo = —y/1 — x2



Level 2 above (

—l<x <1

o> V1=K

C —l<x <1

0.1 x2 = /1 —x2

—1l<x<1

b Cop “VI-xd <xe<y1-x

C -1l<x<l1

R

—l<x<1

Co,—o0 X < —y/1—x2




The tree of cells

RO
7
c_oo/ C., G G \c+oo
{—1}><]—oo,0[\ \/ ¥ ¥ \ ¥
C_oo xR {(=1,0} Cioo xR
{—1}x]0, +o0o[
C—oo X Rz {_1}X]Ov "_OO[X]R C+oo X Rz




Building the quotient

partially, for A3, using the sphere case with some refinements:

xt4+x3 <1

0<x <1
E+xE+x3>1



Building the quotient

partially, for A3, using the sphere case with some refinements:

0<x <1
E+xE3+x>1

level 1: Ry = (X1 = 0), R, = (0 <x1 < 1),



Building the quotient
partially, for As, using the sphere case with some refinements:

x4+x3 <1

0<x <1

level 1: Ry = (X1 = 0), R, = (0 <x1 < 1),
level 2 above Ry: Riyg = (Rl,Xz = 0), Ry = (R1,0 <xp < 4/1-— X12),



Building the quotient

partially, for As, using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),

Riiz = (Ri1,x3 = /1 — x2 — x2), Ri1z = (Ri1,x3 > /1 — x? — x2),



Building the quotient

partially, for As, using the sphere case with some refinements:

xt4+x3 <1

O<x <1

level 1: Ry = (X1 = 0), Ry = (0 <x < 1),
level 2 above Ry: Rig = (Ri,x2 = 0), Ri1 = (R1,0 < x2 < /1 — x3),
level 3 above Ri1: Ri19 = (R11,X3 = 0), Ri11 = (R11,0 < x3 < 4/1 —X12 —X2),

Riiz = (Ri1,x3 = /1 — x2 — x2), Ri1z = (Ri1,x3 > /1 — x? — x2),

and back to level 1



Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a
family of polynomials P = {Px}k<n with Px C Q[x1, ..., xk] for level k.

Some polynomials do not have always the same degree and roots.
For instance, B = (2x; — 1)x3 — 1 is of degree 2 in x; if and only if x; # 3.

For A,
Starting from {x1,A} and {x;,B,C} with A=x —x; —1land C =x +xZ -5
results in

7)1 - {X17A7Da EvFa G},

772 = {XQ, B, C},
with D = 2x; — 1, E = X12 -5 F = —2Xi5 —|—X{1 + 20x13 — 10x12 — 50x; + 26,
G = 4(2X1 — 1)2



Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of
the roots of these polynomials (and the intervals between them), obtained by
iteratively increasing the level.

A description like x3 > y/1 — x? — x5 cannot be obtained in general.

» A point is coded by “the n'" root of P".
» The interval ](n, P), (m, Q)[ is coded by a root of (PQ)’.

This lifting phase can be performed on-the-fly, producing only the reachable part of
the quotient automaton R 4.



Conclusion

In the class POLITA

» Reachability is decidable in 2EXPTIME.
» The untimed language of a POLITA (with final states) is regular.

» Model checking is decidable for a quantitative version of CTL using
polynomial constraints on the automaton clocks.

» Guards can be extended by adding parameters, auxiliary clocks, and updates
can be done at levels lower than the current level.

» POLITA and Stopwatch Automata are incomparable w.r.t. timed language
acceptance.

Future work
» Experiments, thanks to Rémi Garnier and Mathieu Huot (L3 students of ENS
Cachan) who developped a prototype.
» Adapt more efficient methods for quantifier elimination.

» Extension to o-minimal decidable theories.
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