
How to meet asynchronously (almost) everywhere

Jurek Czyzowicz ∗† Arnaud Labourel ∗‡ Andrzej Pelc ∗§

Abstract

Two mobile agents (robots) with distinct labels have to meet in an arbitrary, possibly infi-
nite, unknown connected graph or in an unknown connected terrain in the plane. Agents are
modeled as points, and the route of each of them only depends on its label and on the unknown
environment. The actual walk of each agent also depends on an asynchronous adversary that
may arbitrarily vary the speed of the agent, stop it, or even move it back and forth, as long as
the walk of the agent is continuous, does not leave its route and covers all of it. Meeting in a
graph means that both agents must be at the same time in some node or in some point inside
an edge of the graph, while meeting in a terrain means that both agents must be at the same
time in some point of the terrain. Does there exist a deterministic algorithm that allows any two
agents to meet in any unknown environment in spite of this very powerfull adversary? We give
deterministic rendezvous algorithms for agents starting at arbitrary nodes of any anonymous
connected graph (finite or infinite) and for agents starting at any interior points with rational
coordinates in any closed region of the plane with path-connected interior. In the geometric
scenario agents may have different compasses and different units of length. While our algorithms
work in a very general setting – agents can, indeed, meet almost everywhere – we show that
none of the above few limitations imposed on the environment can be removed. On the other
hand, our algorithm also guarantees the following approximate rendezvous for agents starting at
arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small
positive distance from each other.

keywords: rendezvous, graph, asynchronous, deterministic

∗Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mails:
jurek@uqo.ca, labourel.arnaud@gmail.com, pelc@uqo.ca
†Partially supported by NSERC discovery grant.
‡This work was done during this author’s stay at the Université du Québec en Outaouais as a postdoctoral fellow.
§Partially supported by NSERC discovery grant and by the Research Chair in Distributed Computing at the

Université du Québec en Outaouais.

1 Introduction

The problem and the model. Two mobile agents (robots) starting at different locations of an

unknown environment have to meet. This task is known in the literature as the rendezvous problem,

and has been studied under two alternative scenarios. Either the agents move in a network, modeled

by an undirected connected graph (the graph scenario), or they move in (some subset of) the plane

(the geometric scenario).

In this paper we study the asynchronous version of the rendezvous problem, under both above

scenarios: each agent designs its route and an adversary controls the speed of each agent, can vary

this speed, stop the agent, or even move it back and forth, as long as the walk of the agent in each

segment of its route is continuous, does not leave it and covers all of it. In the asynchronous version

of the graph scenario, meeting at a node may be impossible even in the two-node graph, as the

adversary can desynchronize the agents and make them visit nodes at different times. Thus it is

necessary to relax the requirement and allow agents to meet either in a node or inside an edge. Such

a definition of meeting is natural, e.g., when agents are robots traveling in a labyrinth. We consider

an embedding of the underlying graph in the three-dimensional Euclidean space, with nodes of the

graph being points of the space and edges being pairwise disjoint line segments joining them (hence

there are no edge crossings). Agents are modeled as points moving inside this embedding.

If nodes of the graph have unique labels and the labeling is known, then agents can decide to meet

at a predetermined node and the rendezvous problem reduces to graph exploration. However, in

many applications, when rendezvous is needed in a network of unknown topology, such labeling of

nodes may be unavailable, or agents may be unable to perceive such labels, e.g., due to security

reasons. Hence it is important to design rendezvous algorithms for agents operating in anonymous

graphs, i.e., graphs without unique labeling of nodes. It is important to note that the agents have

to be able to locally distinguish ports at a node: otherwise, an agent may even be unable to visit

all neighbors of a node of degree 3 (after visiting the second neighbor, the agent cannot distinguish

the port leading to the first visited neighbor from that leading to the unvisited one). Consequently,

agents initially located at two nodes of degree 3, might never be able to meet. This justifies a

common assumption made in the literature: all ports at a node are locally labeled by distinct

positive integers. Degrees of nodes can be either finite or infinite. No coherence between those

local labelings is assumed. When an agent leaves a node, it is aware of the port number by which

it leaves and when it enters a node, it is aware of the entry port number. It can also verify, at

each node, whether a given positive integer is a port number at this node. Agents know neither the

graph, nor the initial distance between them. They cannot mark the nodes or the edges in any way.

Rendezvous has to be accomplished regardless of local labelings of ports. Each agent terminates

its walk at the time of meeting the other agent.

In the geometric scenario, we assume that the terrain in which agents operate is a closed subset of

the Euclidean plane, i.e., contains all limits of converging sequences of points in it. The boundary

of the terrain is defined as the set of points having arbitrarily close points both in the terrain and

outside of it. Since the terrain is closed, the boundary is included in it. All other points of the

terrain are its interior points. Each agent can only distinguish if it is currently in an interior point

2

of the terrain or in its boundary. Agents do not know the terrain in which they operate, they cannot

“see” any vicinity of the currently visited point and they cannot leave any marks. Each agent has

its own North direction, orientation and its own unit of length. These directions, orientations and

units may be different for different agents. Again, an agent terminates its walk at the time of

meeting the other agent.

If agents are identical, i.e., they do not have distinct identifiers, and execute the same algorithm,

then deterministic rendezvous is impossible, e.g., in the ring (graph scenario) or in the plane

(geometric scenario): the adversary will make the agents move always in the same direction at the

same speed, keeping them at the same distance at all times, thus they will never meet. Hence we

assume that agents have distinct identifiers, called labels, which are two different positive integers.

This is their only way to break symmetry. We assume that each agent knows its own label but

not the label of the other agent. This excludes, e.g., rendezvous strategies of the type “waiting

for mommy”, in which the agent with smaller label remains idle and the other agent explores the

graph or the terrain. We do not impose any restriction on the memory of the agents: from the

computational perspective they are viewed as Turing machines.

Two important notions used to describe movements of agents are the route of the agent and its

walk. Roughly speaking, the agent chooses the route where it moves and the adversary describes

the walk on this route, deciding how the agent moves. More precisely, these notions are defined

as follows. The adversary initially places an agent with label ` at some node of the graph or at

some point in the terrain. Given this label and this starting point, the route is chosen by the agent

and is defined as follows. In the case of graph, the agent chooses one of the available ports at the

current node. After getting to the other end of the corresponding edge, the agent chooses one of

the available ports at this node, and so on, indefinitely (until rendezvous). The resulting route of

the agent is the corresponding sequence of edges, which is a (not necessarily simple) path in the

graph.

The route in a terrain is a sequence (S1, S2, . . .) of segments, where Si = [ai, ai+1], defined in stages

as follows, given the agent’s label and the starting point. In stage i the agent starts at point ai, and

a1 is the starting point chosen by the adversary. The agent chooses a direction α and distance x

according to its own North direction, orientation and using its own unit of length. If the segment of

length x in direction α starting in v intersects the boundary of the terrain at some distance y ≤ x
from v, the agent becomes aware of it in the intersection point w closest to v. In this case, the

stage ends at w and in the next stage the agent chooses the reverse direction α and the distance y

(that will cause it to return to v). If the segment of length x in direction α starting in v does not

intersect the boundary of the terrain, the stage ends when the agent reaches point u at distance x

from v in direction α. Stages are repeated indefinitely (until rendezvous).

We now describe the walk f of an agent on its route. Let R = (S1, S2, . . .) be the route of an agent.

In the graph scenario this is a (not necessarily simple) infinite path in the (spatial embedding of)

the graph, and in the geometric scenario it is an infinite polygonal line in the plane. Let (t1, t2, . . .),

where t1 = 0, be an increasing sequence of reals, chosen by the adversary, that represent points in

time. Let fi : [ti, ti+1] → [ai, ai+1] be any continuous function, chosen by the adversary, such that

fi(ti) = ai and fi(ti+1) = ai+1. For any t ∈ [ti, ti+1], we define f(t) = fi(t). The interpretation

3

of the walk f is as follows: at time t the agent is at the point f(t) of its route. This general

definition of the walk and the fact that it is constructed by the adversary capture the asynchronous

characteristics of the process. The movement of the agent can be at arbitrary speed, the agent may

sometimes stop or go back and forth, as long as the walk in each segment of the route is continuous

and covers all of it.

Notice that the power of the asynchronous adversary to produce any continuous walk on the routes

determined by the agents implies the following significant difference with respect to the synchronous

scenario. While in the latter scenario the relative movement of the agents depends only on their

routes, in our setting, this movement is also controlled by the adversary.

Agents with routes R1 and R2 and with walks f1 and f2 meet at time t, if points f1(t) and f2(t) are

identical. A rendezvous is guaranteed for routes R1 and R2, if the agents using these routes meet

at some time t, regardless of the walks chosen by the adversary. A rendezvous algorithm executed

by agents in a graph or in a terrain produces routes of agents, given the label of each agent and its

starting point.

It should be stressed that, while routes of agents are formally defined as infinite sequences of

segments, our results imply that in any instance of the rendezvous problem, meeting will occur

at some finite time, and thus each agent will compute only a finite initial segment of its route.

As mentioned above, agents compute their routes in stages, and given any walk chosen by the

adversary, each stage is completed in finite time. There is no stopping issue in our solution:

rendezvous always occurs at some stage for each of the agents and then both agents stop. Another

feature of our rendezvous algorithms is that in the choice of consecutive segments of its route an

agent does not use the knowledge of the walk to date. Thus the route depends only on the label of

the agent, on the environment (graph or terrain), and on the starting point chosen by the adversary,

but not on its other actions.

Our results. We give two deterministic algorithms, the first for rendezvous in the graph scenario

and the second in the geometric scenario. For the graph scenario, our algorithm accomplishes

rendezvous in any connected countable∗ (finite or infinite) graph, for arbitrary starting nodes. A

consequence of this very general result is the positive answer to the following question from [12]: Is

deterministic asynchronous rendezvous feasible in any finite connected graph without knowing any

upper bound on its size? (In [12] the authors presented a deterministic asynchronous rendezvous

algorithm in arbitrary finite connected graphs with known upper bound on the size.)

For the geometric scenario, our algorithm accomplishes rendezvous for agents starting at arbitrary

interior points with rational coordinates in any closed region of the plane with path-connected

interior. (Recall that a subset T of the plane is path-connected, if for any points u, v ∈ T , there

is a continuous function h : [0, 1] −→ P , such that P ⊆ T and h(0) = u, h(1) = v.) Moreover,

we do not assume that the North directions, orientations and units of length of the agents are

the same: our rendezvous algorithm in the geometric scenario works, if for each agent, the angle

between its North direction and the y-axis is any rational multiple of π, the orientation of each

∗A graph is countable if the set of its nodes is countable, i.e., if there exists a one-to-one function from this set
into the set of natural numbers.

4

agent (clockwise or anticlockwise) is arbitrary, and the unit of length of each agent is rational. On

the other hand, our algorithm guarantees the following approximate rendezvous for agents starting

at arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small

positive distance from each other. This implies the perhaps surprising result that if agents have

arbitrarily small positive visibility ranges (rather than 0 visibility range as we assume) and they

start in arbitrary points of the (empty) plane, then they will see each other in finite time, regardless

of the actions of the adversary.

Discussion of limitations. While our algorithms work in a very general setting – agents can,

indeed, meet almost everywhere – it turns out that none of the few limitations imposed on the

environment can be removed. For the graph scenario, the only limitation is connectivity of the

graph. It is clear that rendezvous in disconnected graphs is impossible, if the agents start in

different connected components. For the geometric scenario, let us review the limitations one by

one. First, we assume that the terrain is closed. This assumption cannot be entirely removed for

the following technical reason. Consider the construction of a route in an open disc. An agent

starting at any point, that chooses in the first stage an arbitrary direction and a sufficiently large

distance, at some point would have to leave the disc. Since it does not see anything in its vicinity,

it cannot know where the boundary is before hitting it, and it cannot hit it, as it is not allowed to

leave the terrain. It follows that the agent could not construct further segments of its route. The

second assumption is that agents start at interior points of the terrain. This assumption cannot

be removed either. Indeed, suppose that the terrain is a closed disc with a semi-circle attached

to it. This is a closed subset of the plane with nonempty path-connected interior. Suppose that

one agent starts in the disc and the other at the end of the semi-circle. Since agents need to move

along polygonal lines, the second agent could not move at all and the first one cannot reach it. Our

next assumption is that the interior of the terrain is path-connected. To show that this assumption

cannot be removed, consider two disjoint closed discs joined by an arc of a circle. This terrain is

closed and path-connected, but if each agent starts inside a different disc, again they cannot meet,

because agents need to move along polygonal lines, and hence cannot traverse the joining arc. The

final assumption is that the starting points of the agents have rational coordinates. In Section 4

we prove that if the agents could start in arbitrary points, then rendezvous cannot be guaranteed

even in the plane. We show, however, that for arbitrary starting points approximate rendezvous is

guaranteed.

Related work. The rendezvous problem was first described in [25]. A detailed discussion of the

large literature on rendezvous can be found in the excellent book [4]. Most of the results in this

domain can be divided into two classes: those considering the geometric scenario (rendezvous in

the line, see, e.g., [9, 10, 17], or in the plane, see, e.g., [7, 8]), and those discussing rendezvous in

graphs, e.g., [2, 5]. Some of the authors, e.g., [2, 3, 6, 9, 18] consider the probabilistic scenario

where inputs and/or rendezvous strategies are random. Randomized rendezvous strategies use

random walks in graphs, which were thoroughly investigated and applied also to other problems,

such as graph traversing [1], on-line algorithms [13] and estimating volumes of convex bodies [15].

A generalization of the rendezvous problem is that of gathering [16, 18, 19, 20, 23, 27], when more

than 2 agents have to meet in one location.

5

If graphs are unlabeled, deterministic rendezvous requires breaking symmetry, which can be ac-

complished either by allowing marking nodes or by labeling the agents. Deterministic rendezvous

with anonymous agents working in unlabeled graphs but equipped with tokens used to mark nodes

was considered e.g., in [22]. In [28] the authors studied gathering many agents with unique labels.

In [14, 21, 29] deterministic rendezvous in graphs with labeled agents was considered. However, in

all the above papers, the synchronous setting was assumed. Asynchronous gathering under geo-

metric scenarios has been studied, e.g., in [11, 16, 24] in different models than ours: agents could

not remember past events, but they were assumed to have at least partial visibility of the scene.

The first paper to consider deterministic asynchronous rendezvous in graphs was [12]. The authors

concentrated on complexity of rendezvous in simple graphs, such as the ring and the infinite line.

They also showed feasibility of deterministic asynchronous rendezvous in arbitrary finite connected

graphs with known upper bound on the size. Further improvements of the above results for the in-

finite line were proposed in [26]. Gathering many robots in a graph, under a different asynchronous

model and assuming that the whole graph is seen by each robot, has been studied in [19, 20].

2 Preliminary notions and results

A fundamental notion on which our algorithms are based is that of a tunnel. Consider any graph G

and two routes R1 and R2 starting at nodes v and w, respectively. We say that these routes form a

tunnel, if there exists a prefix [e1, e2, . . . , en] of route R1 and a prefix [en, en−1, . . . , e1] of route R2,

for some edges ei in the graph, such that ei = {vi, vi+1}, where v1 = v and vn+1 = w. Intuitively,

the route R1 has a prefix P ending at w and the route R2 has a prefix which is the reverse of

P , ending at v. By a slight abuse of terminology we will also say that prefixes [e1, e2, . . . , en] and

[en, en−1, . . . , e1] form a tunnel.

Proposition 2.1 If routes R1 and R2 form a tunnel, then they guarantee rendezvous.

Proof: Consider an embedding of the graph G in the three-dimensional Euclidean space, with

nodes of the graph being points of the space and edges being pairwise disjoint line segments joining

them. Consider routes R1 and R2 starting at nodes v and w, respectively. Let agent ai execute

route Ri. Let P be the polygonal line joining v with w, corresponding to the prefixes of the routes,

given by the tunnel. Let D be its length defined as the sum of lengths of edges in the corresponding

prefixes of the routes. (For non-simple paths in the graph, the same edge is counted many times.)

Consider any walks f1 on R1 and f2 on R2. Let t′ be the first moment when an agent leaves its

starting point and let t′′ be the moment when an agent gets to the end of P other than its starting

point. For any t ∈ [t′, t′′], let d1(t) be the distance of agent a1 from its starting point v at time

t, counted on the route R1, and let d2(t) be the distance of agent a2 from its target point v at

time t, counted on the route R2. Let δ(t) = d2(t) − d1(t). We have δ(t′) = D and δ(t′′) = d ≤ 0.

The function δ is thus a continuous function from the interval [t′, t′′] onto some interval [d′, D],

where d′ ≤ d, in view of the continuity of walks f1 and f2. Since 0 belongs to the interval [d′, D],

there must exist a moment t in the interval [t′, t′′], for which δ(t) = 0. For this point we have

f1(t) = f2(t), and the rendezvous occurs. �

6

We now recall some basic facts from set theory, that will be used in further considerations.

Proposition 2.2 The set of rational numbers and the set of positive rational numbers are count-

able. The cartesian product of two countable sets is countable. The set of all finite sequences with

terms in a countable set is countable.

We denote by N the set of positive integers.

3 Rendezvous in the graph scenario

Let G = (V,E) be the connected graph in which the rendezvous must be performed. Let Sn be the

set of sequences of n positive integers. Let P = {(i, j, s′, s′′) | i, j ∈ N, i < j and ∃n s.t. s′, s′′ ∈ Sn}.
There exists a bijection from the set of positive integers onto P, in view of Proposition 2.2. Let

(ϕ1, ϕ2, . . .) be a fixed enumeration of P. All agents have to agree on the same enumeration. It

is easy to produce a formula computing ϕk for any k. This formula is included in the rendezvous

algorithm. For a finite path r in G, we denote by r the path with the same edges as in r, but in

the reverse order. Remark that r and r form a tunnel.

We first give a high-level idea of the algorithm referring to lines of the pseudo code given below.

We “force” the routes of any two agents to form a tunnel for every possible combination of starting

nodes and labels of the two agents. By Proposition 2.1, this suffices to guarantee rendezvous. Any

starting configuration of robot i placed at node v and robot j placed at node w by the adversary

corresponds to a quadruple (i, j, s′, s′′) where s′ is a sequence of ports inducing a path from v to w

and s′′ is a sequence of ports inducing the reverse path from w to v.

Each agent constructs its route in phases. At the beginning and at the end of each phase the

agent is in its starting node. At phase k the previously constructed initial part of the route rhist is

extended while the agent processes quadruple ϕk (some of the extensions are null). This extension

guarantees that the routes of agents of the corresponding starting configuration will form a tunnel.

When agent with label l processes quadruple ϕk = (i, j, s′, s′′) nothing happens if l 6= i and l 6= j

(line 4). If l = i, agent i tries to extend its route to guarantee rendezvous with agent j under

the hypothesis that a path from v to w corresponds to the sequence s′ of ports and the reverse

path corresponds to the sequence s′′. For this to happen, the agent first tries to follow the path

r(s′) induced by the sequence s′ of ports (lines 8-11). This attempt is considered successful if the

following conditions are satisfied:

• at consecutive nodes of the traversed path, ports with numbers from the sequence s′ are available,

• the reverse path corresponds to the sequence s′′ of ports.

When the attempt is successful (the condition of line 13 is satisfied) the agent is at node w and

it simulates the first k − 1 phases of the execution of the algorithm by agent with label j starting

from w. The effect of this simulation is the path rsim. Upon completion of this part, agent with

label i returns to w. Now the agent is able to further extend its path to form a tunnel with the

7

route of agent j (line 16). Finally, whether the attempt to follow the path r(s′) is successful or not,

the agent with label i backtracks to v (line 17). If l = j, the above actions are performed with the

roles of i and j reversed and the role of s′ and s′′ reversed.

Algorithm GraphRV calls the recursive function GraphRVREC. This function is called in two different

modes controlled by the boolean main. In the “main” mode (main = true) the function is executed

indefinitely, until rendezvous. In the “simulation” mode (main = false), the function is executed

for all values up to a given p, or until rendezvous, whichever comes first. The symbol a denotes

the concatenation of sequences.

v

rv
rw

q
w

rv
_ q _ rw

_ q _ rv
_ q _ rw

_ q · · ·
route of agent j:

rv
_ q _ rw

_ q _ rv
_ q _ rw

route of agent i:

tunnel:
rw

_ q _ rv
_ q _ rw

_ q _ rv
_ q . . .

Figure 1: Tunnel between the routes of two agents

Algorithm GraphRV

INPUT: A starting node v ∈ V and a label l of the agent.

OUTPUT: A rendezvous route r.

GraphRVREC(v, l, 0, true);

function GraphRVREC(node v, label l, integer p,boolean main)

1 k := 1; r := λ;

2 while not rendezvous and (k ≤ p or main) do

3 let ϕk = (i, j, s′, s′′); rhist := r;

4 if l = i or l = j then

5 if l = i then s1 := s′; s2 := s′′; l′ := j;

6 else s1 := s′′; s2 := s′; l′ := i;

7 let s1 = (p1, . . . , pn);m := 1; rs1 := λ;

8 while m ≤ n and pm is a port at the current node do

9 rs1 := rs1
a (em) where em is the edge corresponding to port pm;

10 let am be the port corresponding to em at its other endpoint;

11 m := m+ 1;

12 r := r a rs1 ;

13 if s2 = (an, . . . , a1) then

8

14 let w be the current node;

15 rsim := GraphRVREC(w, l′, k − 1, false);

16 r := r a rsim
a rs1

a rhist
a rs1

a rsim;

17 r := r a rs1 ;

18 k = k + 1;

19 return r

Theorem 3.1 Algorithm GraphRV guarantees asynchronous rendezvous for arbitrary two agents

starting from any nodes of an arbitrary connected graph.

Proof: Let v and i (resp. w and j) be the starting node and the label of the first agent (resp.

the second agent). There exists a path q linking v to w, since the graph G is connected. Let s′

(resp. s′′) be the finite sequence of ports corresponding to the path q (resp. the path q). In view of

Proposition 2.1, it suffices to prove that the routes of the two agents form a tunnel. We show that,

after the phase corresponding to the quadruple ϕk = (i, j, s′, s′′) during the execution of Algorithm

GraphRV for agents i and j, the routes of the two agents form a tunnel. Observe that this phase

eventually occurs during any execution of GraphRVREC, since all recursive calls of any phase k′ < k

are done with a parameter p strictly smaller than k′. Thus all these phases are completed in finite

time.

First, we show by induction that, at the beginning of phase k of any execution of Algorithm GraphRV,

each agent is at its starting node. This is clearly true for k = 1. Assume that the property holds

for k−1. It follows that during the execution of the phase k−1, the paths rhist and rsim are cycles.

Hence, after the execution of line 16, the agent ends in node w. After the execution of line 17, the

agent returns to the starting node v of the phase k − 1. So, the agent starts phase k in the same

node, and the property is true for all k.

Let rv (resp. rw) be the output of the execution of the first k− 1 phases of Algorithm GraphRV for

agent i (resp. j) starting in node v (resp. w). At the beginning of phase k, the portion of the route

constructed by agent i is rv. After the execution of line 12, the portion of the route constructed by

agent i is rv
a q, since the agent has started the phase in node v. The path rsim computed by the

recursive call of GraphRVREC is equal to rw. It follows that at the end of phase k, the portion of the

route constructed by agent i is ρ = rv
a q a rw

a q a rv
a q a rw

a q. Similarly, at the end of phase

k, the portion of the route constructed by agent j is ρ′ = rw
a q a rv

a q a rw
a q a rv

a q. By

construction, the part rv
a q a rw

a q a rv
a q a rw of ρ and the part rw

a q a rv
a q a rw

a q a rv
of ρ′ form a tunnel (see Fig 1). �

4 Rendezvous in the geometric scenario

In this section we consider the problem of rendezvous in a terrain included in the plane. As

announced in the introduction, we restrict attention to closed subsets of the plane whose interior

is path-connected. We observed that these restrictions cannot be removed.

9

For any system of coordinates σ, define North of σ to be the positive direction of its y-axis. Fix an

arbitrary system of coordinates Σ. Points with rational coordinates in this system will be called

rational. A system of coordinates is said to be aligned if it has the same North, orientation and

unit of length as Σ and its origin is at a rational point. For any point u, let Σu be the shift of the

system Σ with origin at point u.

Lemma 4.1 In any path-connected, open subset S of the plane and for any rational points u, v ∈ S
there exists a polygonal line included in S, with extremities u and v, all of whose vertices are rational.

Proof: By path-connectivity of S, there exists a path p included in S with extremities u and

v, which is a continuous image of the interval [0, 1]. Let d be the distance from p to cS - the

complement of S. Since p∩ cS = ∅ and both p and cS are closed sets, we have d > 0. Partition the

plane into squares of side length at most d/2 with rational vertices. Let Q be the set of squares

intersecting p. Since p is a bounded set, Q is finite. Consider the graph Gp with node set Q, such

that x, y ∈ Q are adjacent if p contains a point belonging to a common boundary of x and y.

Since Gp is connected, there exists a path (x1, . . . , xk) in Gp linking squares x1 containing u and xk
containing v. Let p∗ be the polygonal path (uw1, w1w2, . . . , wk−1wk, wkv), where wi is the center

of square xi, for all i = 1, . . . , k. The path p∗ is rational and contained in the union of squares from

Q. Since each point of p∗ is at distance at most d
√

2/2 from some point of p, we have p∗ ∩ cS = ∅,
hence p∗ is included in S. �

We first give a rendezvous algorithm for agents with an aligned system of coordinates with origin

at their starting points. For this purpose we define the following graph GT = (V,E), for a given

terrain T . The set of nodes V is the union of two disjoint subsets V1, V2. The set V1 is the set of

all interior, rational points of T and the set V2 is defined below.

For each pair of points p1, p2, such that p1 ∈ V1 and p2 is any rational point of the plane, we

consider the segment s = p1p2. If s does not intersect the boundary of T , then p2 must belong to

V1 and we add the edge {p1, p2} to E. If s intersects the boundary of T , we add a new node v to

V2 and we add the edge {p1, v} to E. Note that such a node v is always added to V2 when point

p2 is on the boundary of T or outside of T (and it may or may not be added to V2 when p2 is in

the interior of T). Since each node in V2 corresponds to a pair of rational points p1, p2, there is a

countable number of nodes in V2, each of them having degree 1. The unique port at any node in

V2 has number 1 and ports at any node in V1 are defined as follows. Let (z1, z2, . . .) be any fixed

enumeration of all pairs of rational numbers. Let zi = (q1, q2). Let u be the point in the plane with

coordinates (q1, q2) in the system Σp. The port at p corresponding to edge {p, u} has number i.

Algorithm GeometricRV

The algorithm is a direct application of Algorithm GraphRV to the graph GT . The agent operating

in an unknown terrain T designs a route in the corresponding unknown graph GT as follows. When

the agent chooses a port at a node p ∈ V1, the other end of the corresponding edge is some rational

point ui in the plane that the agent tries to reach from p. Two cases may occur. The agent either

walks in the interior of T until reaching ui, which corresponds to the traversal of an edge between

two nodes of V1, or it hits the boundary of T , which corresponds to a visit of a node p′ ∈ V2. At a

10

node p′ ∈ V2 there is no choice of port, since its degree is 1. The agent takes the unique port which

leads to the (already visited) node p ∈ V1. The resulting route is a sequence of segments joining

rational interior points of the terrain T and of pairs of consecutive segments (vb, bv), where v is a

rational interior point of T and b is a point on the boundary of T .

Since by Lemma 4.1 graph GT is connected, rendezvous is guaranteed in the graph GT , which

implies rendezvous in T .

We now consider the generalized version of the rendezvous problem in the geometric scenario.

Agents may have different systems of coordinates. More precisely the angle between their North

directions can be qπ, for any rational number q, the unit of length of each agent can be any rational

and the orientation can be either clockwise or counterclockwise.

For p, q ∈ Q, we consider the transformation τq,p that is the composition of the rotation by angle

qπ and scaling by the factor of p and the transformation τ ′q,p that is the composition of τq,p and of

the reflection with respect to the x-axis. Let T = {τq,p, τ ′q,p | p, q ∈ Q}. A system of coordinates σ

is acceptable, if there exists t ∈ T such that σ = t(Σ).

The following algorithm is a generalization of Algorithm GeometricRV in which agents can have

acceptable systems of coordinates instead of aligned systems of coordinates.

Algorithm ExtendedGeometricRV

The algorithm is a modification of Algorithm GeometricRV. First, the graph G′T = (V ′, E′) used to

represent the terrain T is different from GT . The set of nodes V ′ is the union of two disjoint subsets

V ′1 , V
′
2 . The set V ′1 is the set of all internal points of T having rational coordinates in any acceptable

system of coordinates. The set V ′2 (resp. E′) is defined similarly as V2 (resp. E) in GT but with

V ′1 replacing V1. More precisely, in the definition of V ′2 , instead of choosing as p2 any rational

point of the plane, as it was done in the definition of V2, we choose as p2 any point with rational

coordinates in any acceptable system of coordinates. Let (z′1, z
′
2, . . .) be any fixed enumeration of

triples composed of two rational numbers and of an element of T . Let zi = (q1, q2, t). Let u be

the point in the plane with coordinates (q1, q2) in the system of coordinates t(σ) with origin at p.

Unlike in Algorithm GeometricRV the port numbering generated by each agent at p is not unique,

but depends on the system of coordinates of the agent. The port at p corresponding to edge {p, u}
has number i in the system of coordinates σ.

The other difference is that during each phase the agent will process sextuples instead of quadru-

ples. The set of sextuples considered is P ′ = {(i, j, s′, s′′, t′, t′′) | i, j ∈ N, i < j and ∃n s.t. s′, s′′ ∈
Sn and t′, t′′ ∈ T }. Observe that P ′ is countable by Proposition 2.2. During phase k corresponding

to ψk = (i, j, s′, s′′, t′, t′′), agent i with the system of coordinates σ computes the path rs′ corre-

sponding to the sequence of ports s′ in the system of coordinates t′(σ) and simulates the k− 1 first

phases of agent j in the system of coordinates (t′′)−1(t′(σ)). Agent j acts in an analogous way,

replacing s′ by s′′ and switching the roles of t′ and t′′.

Theorem 4.1 Algorithm ExtendedGeometricRV guarantees asynchronous rendezvous for arbitrary

two agents with acceptable systems of coordinates and starting from arbitrary rational interior points

11

of any closed terrain T with path-connected interior.

Proof: Let v, i and σ′ (resp. w, j and σ′′) be the starting point, the label and the system of

coordinates of the first agent (resp. the second agent). There exists a path rs with rational vertices

in the system of coordinates Σ linking v to w by Lemma 4.1. Let s′ (resp. s′′) be the finite sequence

of ports corresponding to the route rs (resp. the route rs) in the system of coordinates Σ. Let

t′ (resp. t′′) be the transformation such that Σ = t′(σ′) (resp. Σ = t′′(σ′′)). We show that after

the phase corresponding to the sextuple ψk = (i, j, s′, s′′, t′, t′′) during the executions of Algorithm

ExtendedGeometricRV for agents i and j, the routes of the two agents form a tunnel. Let rv (resp.

rw) be the output of the execution of the first k−1 phases of Algorithm ExtendedGeometricRV for

agent i (resp. j) starting at node v (resp. w) with system of coordinates σ′ (resp. σ′′). At the end of

phase k, the portion of the route constructed by agent i is ρ = rv
a rs

a rw
a rs

a rv
a rs

a rw
a rs,

since Σ = t′(σ′) = t′′(σ′′). Similarly, at the end of phase k, the portion of the route constructed

by agent j is ρ′ = rw
a rs

a rv
a rs

a rw
a rs

a rv
a rs. Hence the routes form a tunnel, which

guarantees asynchronous rendezvous. �

Theorem 4.1 should be contrasted with the following negative result showing that the restriction

on the starting points of the agents cannot be removed, even for rendezvous in the (empty) plane

and even when agents have the same North, the same orientation and the same unit of length.

Proposition 4.1 There is no algorithm that guarantees asynchronous rendezvous of arbitrary

agents starting from arbitrary points in the plane.

Proof: Consider an agent with a fixed label operating in the empty plane. Since the terrain is

fixed, the route of this agent depends only on the starting point. Let R = (e1, e2, ...) be the route of

the agent with label 1 starting at a fixed point v. Consider the route R2(w) of the agent with label

2 starting at point w. Since there are no boundary points in the terrain, for any starting points w′

and w′′, route R2(w
′′) is a parallel shift of route R2(w

′) by the vector (w′, w′′). Both of them are

polygonal lines.

We will say that two routes are almost disjoint if all vertices of each of them are outside the other

route. Observe that if, for some starting point w, route R2(w) of agent 2 is almost disjoint from

route R of agent 1, then the adversary can avoid rendezvous of agents 1 and 2 following these

routes, by first moving agent 1 to the end of the first segment of its route, then moving agent 2 to

the end of the first segment of its route and so on, alternating traversals of agents on consecutive

segments of their routes. Hence, in order to prove our result, it is enough to show the existence of

a point w∗, such that route R2(w
∗) is almost disjoint from route R.

Let (f1, f2, ...) be the sequence of vectors corresponding to consecutive segments of the route R2(w),

for any starting point w. For any fixed point w, denote by fj(w) the segment corresponding to

vector fj on route R2(w). Let (p1, p2, . . .) be any sequence that orders all couples (ei, fj), for all

positive integers i, j. For any k, let pk = (eik , fjk) We will construct by induction a descending

sequence of closed discs (D1, D2, . . .) of positive radii, satisfying the following invariant. For all

points w ∈ Dk, both endpoints of the segment eik are outside of the segment fjk(w) and both

12

endpoints of the segment fjk(w) are outside of the segment eik . Suppose that the invariant is

satisfied for k− 1 (for k = 1 we may take as D0 any disc with radius 1). The set of points w inside

disc Dk−1 that may possibly violate the invariant for k is contained in the union of four segments:

two segments parallel to fjk and two segments parallel to eik . There exists a closed disc of positive

radius contained in Dk−1 which is disjoint from those four segments. Let Dk be such a disc. Thus

the invariant is satisfied for k. This completes the construction by induction.

The intersection of all discs Dk is non-empty. Let w∗ be a point in this intersection. Since

(p1, p2, . . .) enumerated all couples (ei, fj), it follows that route R2(w
∗) is almost disjoint from

route R, and hence agents 1 and 2 starting at points v and w∗, respectively, do not meet for some

walks chosen by the adversary. �

While Proposition 4.1 shows that rendezvous of agents starting from arbitrary points is impossible,

it turns out that a slightly easier task can be accomplished in this setting. For any ε > 0, we say

that routes R1 and R2 of agents guarantee ε-approximate rendezvous, if at some point t of time, the

agents get at distance at most ε from each other, regardless of the walks chosen by the adversary.

Theorem 4.2 Algorithm ExtendedGeometricRV guarantees ε-approximate rendezvous for any ε >

0, for arbitrary two agents, with acceptable systems of coordinates, starting from arbitrary points

of any closed terrain T with path-connected interior.

Proof: Consider any ε > 0. Take any two agents starting at interior points v and w of the terrain

T . Let ρ > 0 be the distance from w to the boundary of T . Choose a point w′ with rational

coordinates in Σv, in the interior of the disc D of radius ρ/2 centered at w. By Lemma 4.1 (applied

to the system Σv instead of Σ), there exists a rational polygonal line P in the system Σv, included

in the interior of T and joining v and w′. Let d > 0 be the distance between P and the boundary

of T . Let r = min(ρ/2, d/2, ε). Choose a point w′′ with rational coordinates in the system Σv, at

distance less than r from w. Let Pv be the polygonal line P extended by the segment w′w′′. Note

that Pv is at distance at least r from the boundary of T . Indeed, if x ∈ P , then the distance from

x to the boundary is at least d > r, and if x ∈ w′w′′, then the distance from x to the boundary is

at least ρ/2 ≥ r, as the entire segment w′w′′ is included in disc D.

Let Φ be the translation by the vector (w′′w) and let Pw be the image of Pv with respect to Φ. The

point w is one of the extremities of Pw. Since the distance from w′′ to w is less than r, the entire

polygonal line Pw is in the interior of T . The polygonal line Pw is rational in the system Σw.

Let f be any walk of the first agent on any route with the initial part Pv starting at v, and let g

be any walk of the second agent on any route with the initial part Pw starting at w. Consider the

composition g∗ = Φ−1 ◦ g. Hence g∗ is a walk on a route with initial part Pv, starting at w′′. By

Theorem 4.1, Algorithm ExtendedGeometricRV guarantees rendezvous of agents at some point in

time t, for the walk f starting at v and the walk g∗ starting at w′′.

Consider the positions at time t of both agents starting at v and w, in walks f and g. Since

f(t) = g∗(t) = Φ−1(g(t)), and Φ is a translation by a vector of length less than r (hence less than

ε), it follows that the distance between f(t) and g(t) is less than ε. Since walks f and g were

13

arbitrarily chosen by the adversary, this guarantees ε-approximate rendezvous. �

A consequence of Theorem 4.2 is that if agents have arbitrarily small positive visibility ranges

(rather than 0 visibility range as we assumed), have acceptable systems of coordinates and start

from arbitrary points of the (empty) plane, then Algorithm ExtendedGeometricRV guarantees that

they will see each other in finite time, regardless of the actions of the adversary.

5 Conclusion

We provided deterministic asynchronous rendezvous algorithms for graphs and for terrains in the

plane. In this paper we studied only the feasibility of rendezvous and our results are very general:

for the graph scenario, we showed that rendezvous is possible in any connected countable (finite

or infinite) graph, starting from any nodes, without any information on the graph. The only thing

an agent needs to know is its own label. In particular, this result implies a positive solution of a

problem from [12].

Our algorithms rely on an arbitrary fixed enumeration of quadruples (i, j, s′, s′′), where i and

j are positive integers and s′ and s′′ are finite sequences of positive integers. The complexity

of the algorithm (measured by the worst-case length of paths that the agents have to traverse

until rendezvous) depends on this enumeration, but we do not think any enumeration can make

the algorithm efficient. Thus a natural interesting question left for further investigations is the

following:

Does there exist a deterministic asynchronous rendezvous algorithm, working for

any connected unknown graphs, with complexity polynomial in the labels of the agents

and in the initial distance between them?

References

[1] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász, and C. Rackoff, Random walks, univer-

sal traversal sequences, and the complexity of maze problems, Proc. Annual Symposium on

Foundations of Computer Science FOCS’1979, 218-223.

[2] S. Alpern, The rendezvous search problem, SIAM J. on Control and Optimization 33 (1995),

673-683.

[3] S. Alpern, Rendezvous search on labelled networks, Naval Reaserch Logistics 49 (2002), 256-

274.

[4] S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in Operations

research and Management Science, number 55, Kluwer Academic Publishers, 2002. Kluwer

Academic Publisher, 2002.

14

[5] J. Alpern, V. Baston, and S. Essegaier, Rendezvous search on a graph, Journal of Applied

Probability 36 (1999), 223-231.

[6] E. Anderson and R. Weber, The rendezvous problem on discrete locations, Journal of Applied

Probability 28 (1990), 839-851.

[7] E. Anderson and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th Annual ACM

Symp. on Computational Geometry, 365-373, 1998.

[8] E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Research 49

(2001), 107-118.

[9] V. Baston and S. Gal, Rendezvous on the line when the players’ initial distance is given by an

unknown probability distribution, SIAM J. on Control and Optimization 36 (1998), 1880-1889.

[10] V. Baston and S. Gal, Rendezvous search when marks are left at the starting points, Naval

Res. Log. 48 (2001), 722-731.

[11] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Solving the Robots Gathering Problem,

Proc. 30th International Colloquium on Automata, Languages and Programming (ICALP

2003), 1181-1196.

[12] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro, Asynchronous deter-

ministic rendezvous in graphs, Theoretical Computer Science 355 (2006), 315-326.

[13] D. Coppersmith,, P. Doyle, P. Raghavan, and M. Snir, Random walks on weighted graphs,

and applications to on-line algorithms, Proc. 22nd Annual ACM Symposium on Theory of

Computing (STOC’1990), 369-378.

[14] A. Dessmark, P. Fraigniaud, D. Kowalski, and A. Pelc, Deterministic rendezvous in graphs,

Algorithmica 46 (2006), 69-96.

[15] M. Dyer, A. Frieze, and R. Kannan, A random polynomial time algorithm for estimating

volumes of convex bodies, Proc. 21st Annual ACM Symposium on Theory of Computing

(STOC’1989), 375-381.

[16] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous oblivious

robots with limited visibility, Proc. 18th Annual Symposium on Theoretical Aspects of Com-

puter Science STACS’2001, LNCS 2010, 247-258.

[17] S. Gal, Rendezvous search on the line, Operations Research 47 (1999), 974-976.

[18] A. Israeli and M. Jalfon, Token management schemes and random walks yield self stabilizing

mutual exclusion, Proc. PODC’1990, 119-131.

[19] R. Klasing, A. Kosowski, A. Navarra, Taking advantage of symmetries: gathering of asyn-

chronous oblivious robots on a ring. Proc. 12th International Conference on Principles of

Distributed Systems, (OPODIS 2008), 446-462.

15

[20] R. Klasing, E. Markou, A. Pelc, Gathering asynchronous oblivious mobile robots in a ring,

Theoretical Computer Science 390 (2008), 27-39.

[21] D. Kowalski, A. Malinowski, How to meet in anonymous network. Theoretical Computer Sci-

ence 399 (2008), 141-156.

[22] E. Kranakis, D. Krizanc, N. Santoro and C. Sawchuk, Mobile agent rendezvous in a ring, Proc.

23rd International Conference on Distributed Computing Systems (ICDCS’2003), 592-599.

[23] W. Lim and S. Alpern, Minimax rendezvous on the line, SIAM J. on Control and Optimization

34 (1996), 1650-1665.

[24] G. Prencipe, Impossibility of gathering by a set of autonomous mobile robots, Theoretical

Computer Science 384 (2007), 222-231.

[25] T. Schelling, The strategy of conflict, Oxford University Press, Oxford, 1960.

[26] G. Stachowiak, Asynchronous Deterministic Rendezvous on the Line, SOFSEM 2009: 497-508.

[27] L. Thomas, Finding your kids when they are lost, Journal on Operational Res. Soc. 43 (1992),

637-639.

[28] X. Yu and M. Yung, Agent rendezvous: a dynamic symmetry-breaking problem, Proc. Inter-

national Colloquium on Automata, Languages, and Programming (ICALP’1996), LNCS 1099,

610-621.

[29] A. Ta-Shma, U. Zwick, Deterministic rendezvous, treasure hunts and strongly universal explo-

ration sequences., Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2007), 599-608.

16

