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Abstract. Two mobile agents (robots) have to meet in an a priori un-
known bounded terrain modeled as a polygon, possibly with polygonal
obstacles. Robots are modeled as points, and each of them is equipped
with a compass. Compasses of robots may be incoherent. Robots con-
struct their routes, but the actual walk of each robot is decided by the
adversary that may, e.g., speed up or slow down the robot. We consider
several scenarios, depending on three factors: (1) obstacles in the terrain
are present, or not, (2) compasses of both robots agree, or not, (3) robots
have or do not have a map of the terrain with their positions marked.
The cost of a rendezvous algorithm is the worst-case sum of lengths of
the robots’ trajectories until their meeting. For each scenario we design
a deterministic rendezvous algorithm and analyze its cost. We also prove
lower bounds on the cost of any deterministic rendezvous algorithm in
each case. For all scenarios these bounds are tight.
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1 Introduction

The problem and the model. Two mobile agents (robots) modeled as points

starting at different locations of an a priori unknown bounded terrain have to

meet. The terrain is represented as a polygon possibly with a finite number of

polygonal obstacles. We assume that the boundary of the terrain is included in

it. Thus, formally, a terrain is a set P0 \ (P1 ∪ · · · ∪ Pk), where P0 is a closed

polygon and P1, . . . ,Pk are disjoint open polygons included in P0. We assume

that a robot knows if it is at an interior or at a boundary point, and in the
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latter case it is capable of walking along the boundary in both directions (i.e., it

knows the slope(s) of the boundary at this point). However, a robot cannot sense

the terrain or the other robot at any vicinity of its current location. Meeting

(rendezvous) is defined as the equality of points representing robots at some

moment of time.

We assume that each robot has a unit of length (not necessarily the same

for the two agents) and a compass. Compasses of robots may be incoherent,

however we assume that robots have the same (clockwise) orientation of their

system of coordinates. An additional tool, which may or may not be available

to the robots, is a map of the terrain. The map available to a robot is scaled

(i.e., it accurately shows the distances), distinguishes the starting positions of

this robot and the other one, and is oriented according to the compass of the

robot. (Hence maps of different robots may have different North.)

All our considerations concern deterministic algorithms. The crucial notion is

the route of the robot which is a finite polygonal path in the terrain. The adver-

sary initially places a robot at some point in the terrain. The robot constructs

its route in steps in the following way. In every step, the robot starts at some

point v; in the first step, v is the starting point chosen by the adversary. The

robot chooses a direction α, according to its compass, and a distance x. If the

segment of length x in direction α starting in v does not intersect the boundary

of the terrain, the step ends when the robot reaches point u at distance x from v

in direction α. Otherwise, the step ends at the closest point of the boundary in

direction α. If the starting point v in a step is in a segment of the boundary of

the terrain, the robot has also an option (in this step) to follow this segment of

the boundary in any of the two directions until its end or for some given distance

along it. Steps are repeated until rendezvous, or until the route of the robot is

completed.

We consider the asynchronous version of the rendezvous problem. The asyn-

chrony of the robots’ movements is captured by the assumption that the actual

walk of each robot is decided by the adversary: the movement of the robot can

be at arbitrary speed, the robot may sometimes stop or go back and forth, as

long as the walk of the robot in each segment of its route is continuous, does not

leave it and covers all of it.1 More formally, the route in a terrain is a sequence

(S1, S2, . . . , Sk) of segments, where Si = [ai, ai+1] is the segment corresponding

to step i. In our algorithms the route is always finite. This means that the robot

stops at some point, regardless of the moves of the other robot. We now describe

the walk f of a robot on its route. Let R = (S1, S2, . . . , Sk) be the route of a

1 Notice that this definition of the adversary is very strong. In fact, all our positive
results (algorithms and their complexity) are valid even with this powerful adversary,
and our negative results hold even for a weaker adversary that can only speed up or
slow down the robot, without moving it back.



robot. Let (t1, t2, . . . , tk+1), where t1 = 0, be an increasing sequence of reals, cho-

sen by the adversary, that represent points in time. Let fi : [ti, ti+1]→ [ai, ai+1]

be any continuous function, chosen by the adversary, such that fi(ti) = ai and

fi(ti+1) = ai+1. For any t ∈ [ti, ti+1], we define f(t) = fi(t). The interpretation

of the walk f is as follows: at time t the robot is at the point f(t) of its route and

after time tk+1 the robot remains inert. This general definition of the walk and

the fact that it is constructed by the adversary capture the asynchronous charac-

teristics of the process. Throughout the paper, rendezvous means deterministic

asynchronous rendezvous.

Robots with routes R and R′ and with walks f and f ′ meet at time t, if

points f(t) and f ′(t) are equal. A rendezvous is guaranteed for routes R and

R′, if the robots using these routes meet at some time t, regardless of the walks

chosen by the adversary. The trajectory of a robot is the sequence of segments

on its route until rendezvous. (The last segment of the trajectory of a robot may

be either the last segment of its route or any of its segments or a portion of it,

if the other robot is met there.) The cost of a rendezvous algorithm is the worst

case sum of lengths of segments of trajectories of both robots, where the worst

case is taken over all terrains with the considered values of parameters, and all

adversarial decisions.

We consider several scenarios, depending on three factors: (1) obstacles in

the terrain are present, or not, (2) compasses of both robots agree, or not, (3)

robots have or do not have a map of the terrain. Combinations of the presence or

absence of these factors give rise to eight scenarios. For each scenario we design

a deterministic rendezvous algorithm and analyze its cost. We also prove lower

bounds on the cost of any deterministic rendezvous algorithm in each case. For

all scenarios these bounds are tight.

One final clarification has to be made. For all scenarios except those with

incoherent compasses and the presence of obstacles (regardless of the availability

of a map), robots may be anonymous, i.e., they execute identical algorithms. By

contrast, with the presence of obstacles and incoherent compasses, anonymity

would preclude feasibility of rendezvous in some situations. Consider a square

with one square obstacle positioned at its center. Consider two robots starting

at opposite (diagonal) corners of the larger square, with compasses pointing to

opposite North directions. If they execute identical algorithms and walk at the

same speed, then at each time they are in symmetric positions in the terrain

and hence rendezvous is impossible. The only way to break symmetry for a

deterministic rendezvous in this case is to equip the robots with distinct labels

(which are positive integers). Hence, this is the assumption we make for the

scenarios with the presence of obstacles and incoherent compasses (both with



and without a map). For any label µ, we denote by |µ| the length of the binary

representation of the label, i.e., |µ| = blogµc+ 1.

Our results. The cost of our algorithms depends on some of the following

parameters (different parameters for different scenarios, see the discussion in

Section 4): D is the distance between starting positions of robots in the ter-

rain (i.e., the length of a shortest path between them included in the terrain),

P is the perimeter of the terrain, (i.e., the sum of perimeters of all polygons

P0,P1, . . . ,Pk), x is the largest perimeter of an obstacle, and l and L are the

smaller and larger labels of the two robots, respectively, for the two scenarios

that require different labels, as remarked above., i.e., for the scenarios with the

presence of obstacles and incoherent compasses.

Our rendezvous algorithms rely on two different ideas: either meeting in a

uniquely defined point of the terrain, or meeting on a uniquely defined cycle.

It turns out that a uniquely defined point can be found in all scenarios except

those with the presence of obstacles and incoherent compasses. Apart from this

exception even anonymous robots can meet. On the other hand, with the pres-

ence of obstacles and incoherent compasses, such a uniquely defined point may

not exist, as witnessed by the above quoted example of a square with one square

obstacle positioned at its center. For these scenarios we resort to the technique

of meeting at a common cycle, breaking symmetry by different labels of robots.

We first summarize our results concerning rendezvous when each of the robots

is equipped with a map showing its own position and that of the other robot. If

compasses of the robots are coherent, then we show a rendezvous algorithm at

cost D, which is clearly optimal. Otherwise, and if the terrain does not contain

obstacles, then we show an algorithm whose cost is again D, and hence opti-

mal. Finally, with incoherent compasses in the presence of obstacles, we show a

rendezvous algorithm at cost O(D|l|); in the latter scenario we show that cost

Ω(D|l|) is necessary for some terrains.

Our results concerning rendezvous without a map are as follows. If compasses

of the robots are coherent, then we show a rendezvous algorithm at cost O(P ).

We also show a matching lower bound Ω(P ) in this case. If compasses of the

robots are incoherent, but the terrain does not contain obstacles, then we show

a rendezvous algorithm at cost O(P ) and again a matching lower bound Ω(P ).

Finally, in the hardest of all scenarios (presence of obstacles, incoherent com-

passes and no map) we have a rendezvous algorithm at cost O(P + x|L|) and a

matching lower bound Ω(P +x|L|). Table 1 summarizes our results. Due to lack

of space, some proofs are removed.

Related work. The rendezvous problem was first described in [24]. A detailed

discussion of the large literature on rendezvous can be found in the excellent

book [4]. Most of the results in this domain can be divided into two classes: those



Rendezvous with a map Rendezvous without a map
PPPPPPPobstacles

compasses
coherent incoherent

PPPPPPPobstacles
compasses

coherent incoherent

no
D

D no
Θ(P )

Θ(P )
yes Θ(D|l|) yes Θ(P + x|L|)

Table 1. Summary of results

considering the geometric scenario (rendezvous in the line, see, e.g., [16, 25], or in

the plane, see, e.g., [7, 8]), and those discussing rendezvous in graphs, e.g., [2, 5].

Some of the authors, e.g., [2, 3, 6] consider the probabilistic scenario where inputs

and/or rendezvous strategies are random. Randomized rendezvous strategies use

random walks in graphs, which were thoroughly investigated and applied also

to other problems, such as, e.g., graph traversing [1]. A generalization of the

rendezvous problem is that of gathering [15, 18, 19], when more than two robots

have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires breaking symme-

try, which can be accomplished either by allowing marking nodes or by labeling

the robots. Deterministic rendezvous with anonymous robots working in unla-

beled graphs but equipped with tokens used to mark nodes was considered e.g.,

in [21]. In [26] the authors studied the task of gathering many robots with unique

labels. In [14, 20, 27] deterministic rendezvous in graphs with labeled robots was

considered. However, in all the above papers, the synchronous setting was as-

sumed. Asynchronous gathering under geometric scenarios has been studied,

e.g., in [11, 15, 22] in different models than ours: robots could not remember past

events, but they were assumed to have at least partial visibility of the scene. The

first paper to consider deterministic asynchronous rendezvous in graphs was [12].

The authors concentrated on complexity of rendezvous in simple graphs, such

as the ring and the infinite line. They also showed feasibility of deterministic

asynchronous rendezvous in arbitrary finite connected graphs with known upper

bound on the size. Further improvements of the above results for the infinite

line were proposed in [25]. Gathering many robots in a graph, under a different

asynchronous model and assuming that the whole graph is seen by each robot,

has been studied in [18, 19].

2 Rendezvous with a map

We start by describing the following procedure that finds a unique shortest path

from the starting position of one robot to the other. The procedure works in all

scenarios in which robots have a map of the terrain with their positions indicated.



Procedure path UniquePath(point v, point w)
1 point u := v; path p := {v};
2 S = {ps | ps is a shortest path between v and w};
3 while (u 6= w) do
4 U :=all paths ps of S such that the first segment of the subpath of ps

leading from u to w is the first in clockwise order around u
starting from the direction vw;

5 p′ :=
⋂

ps∈U ps;

6 extend p with the connected part of p′ containing u;
7 u := new end of path p;
8 return p;

Lemma 1. Procedure UniquePath computes a unique shortest path from v to

w, independent of the robot computing it.

2.1 Coherent compasses

If robots have a map and coherent compasses, then they can easily agree on

one of their two starting positions and meet at this point at cost D, which is

optimal. This is done by the following Algorithm RVCM (rendezvous with a map

and coherent compasses).

Algorithm RV CM
Let v be the northernmost of the two starting positions of the robots. If both
robots have the same latitude, let v be the easternmost of them. Let w be
the other starting position. The robot starting at v remains inert. The robot
starting at w computes the path p = UniquePath(w, v) and moves along p
until v.

Theorem 1. Algorithm RV CM guarantees rendezvous at cost D, for any two

robots with a map and coherent compasses, in any terrain.

2.2 Incoherent compasses

Terrains without obstacles.

In an empty polygon there is a unique shortest path between starting positions

of the robots [9], and robots with a map can meet in the middle of this path at

cost D, which is optimal. This is done by Algorithm RVM (rendezvous with a

map, without obstacles).

Algorithm RVM
The robot computes the (unique) shortest path between the starting positions
of the two robots. Then, it moves along this shortest path until the middle of
it.



Theorem 2. Algorithm RVM guarantees rendezvous at cost D for any two

robots with a map, in any terrain without obstacles.

Terrains with obstacles.

This is the first of the two scenarios where robots cannot always predetermine

a meeting point. Therefore they compute a common embedding of a ring on

which they are initially situated, and then each robot executes the rendezvous

procedure from [12] for this ring. For the sake of completeness, this procedure

is briefly described below. It consists of two parts: Label Transformation and

Label Execution. The Label Transformation part takes the label µ of an agent

and produces the label µ∗ in the following way. First produce label µ′ consisting

of a string of |µ| zeros, followed by a 1 and then followed by the string µ. The

label µ∗, called the transformed label of the agent, is obtained by replacing in µ′

each 0 by 01 and each 1 by 10. The Label Execution part is divided into phases

numbered 1,2,... For a given agent, we define the execution of bit 0 (resp. 1) in

phase a as performing 3a steps left (resp. right), according to the agent’s local

orientation. For an agent with label µ, phase a consists of consecutive executions

of all bits of µ∗ from left to right.

Using the above procedure, rendezvous with a map, with obstacles is per-

formed by the following Algorithm RVMO. Recall that in this scenario robots

have distinct labels, hence the procedure from [12] can be applied. Rendezvous

is guaranteed to occur on the ring, but the meeting point depends on the walks

of the robots determined by the adversary.

Algorithm RVMO
Phase 1: computation of the embedding1 R of a ring of size 4.
Let v be the starting position of the robot and let w be the starting position of
the other robot. The robot computes the embedding R of a ring, composed of
four nodes v, a, w and b, where a is the midpoint of UniquePath(v, w), b is the
midpoint of UniquePath(w, v), and the four edges are the respective halves of
these paths.
Phase 2: rendezvous on R.
This phase consists in applying the above described rendezvous procedure
from [12] for ring R, whose size (four) is known to the robots.

a This embedding is not necessarily homeomorphic with a circle, it may be degen-
erate.

Theorem 3. Algorithm RVMO guarantees rendezvous at cost O(D|l|) for ar-

bitrary two robots with a map, in any terrain.

The following lower bound shows that the cost of Algorithm RVMO cannot

be improved for some terrains. Indeed, it implies that for all D > 0, there exists



a polygon with a single obstacle, for which the cost of any rendezvous algorithm

for two robots, starting at distance D, is Ω(D|l|).

Theorem 4. For any rendezvous algorithm A, for any D > 0, and for any

integers k2 ≥ k1 > 0, there exist two labels l1 and l2 of lengths at most k1 and at

most k2, respectively, and a polygon with a single obstacle of perimeter 2D, such

that algorithm A executed by robots with labels l1 and l2 starting at distance D,

requires cost Ω(Dk1). This holds even if the two robots have a map.

3 Rendezvous without a map

3.1 Coherent compasses

It turns out that robots can recognize the outer boundary of the terrain even

without a map. Hence, if their compasses are coherent, they can identify a

uniquely defined point on this boundary and meet in this point. This is done by

Algorithm RVC (rendezvous with coherent compasses) at cost O(P ).

Algorithm RV C
From its starting position v, the robot follows the half-line α pointing to the
North, as far as possible. When it hits the boundary of a polygon P (i.e.,
either the external boundary of the terrain or the boundary of an obstacle), it
traverses the entire boundary of P. Then, it computes the point u which is the
farthest point from v in P ∩ α. It goes around P until reaching u again and
progresses on α, if possible. If this is impossible, the robot recognizes that it
went around the boundary of P0. It then computes the northernmost points in
P0. Finally, it traverses the boundary of P0 until reaching the easternmost of
these points.

Theorem 5. Algorithm RV C guarantees rendezvous at cost O(P ) for any two

robots with coherent compasses, in any terrain.

The following lower bound shows that the cost of Algorithm RVC is asymp-

totically optimal, for some polygons even without obstacles. This lower bound

Ω(P ) holds even if the distanceD between starting positions of robots is bounded

and if their compasses are coherent.

Theorem 6. There exists a polygon of an arbitrarily large perimeter P , for

which the cost of any rendezvous algorithm for two robots with coherent com-

passes starting at any distance D > 0, is Ω(P ).

Proof. Consider the polygon P ′ obtained by attaching to each side of a regular

k-gon, whose center is at distance D/8 from its boundary, a rectangle of length



3D/8 and of height equal to the side length of the k-gon. The polygon P is

the polygon obtained by gluing two copies of P ′ by the small side of one of the

rectangles, as depicted in Fig. 1. Let P be the perimeter of the polygon P. We

choose k = Θ(P/D). There are two types of rectangles in P, two passing ones

(they share one side) and the 2k − 2 normal ones.

y

passing rectanglesrectangles
normal

3D
8

D
8

x

Fig. 1. Polygon P

Consider all rotations of the polygon P around its center of symmetry by

angles 2πi/k, for i = 0, . . . , k−1. We will prove that any deterministic rendezvous

algorithm requires cost Ω(P ) in at least one of the rotated polygons. Each robot

starts in the center of a different k-gon. We say that a robot has penetrated

a rectangle if it has moved at distance D/8 inside the rectangle. In order to

accomplish rendezvous, at least one robot has to penetrate a passing rectangle.

Each time one robot penetrates a rectangle, the adversary chooses a rotation, so

that all previously penetrated rectangles, including the current one, are normal

rectangles. This choice is coherent with the knowledge previously acquired by the

robots, since normal rectangles are undistinguishable from each other and a robot

needs to penetrate a rectangle in order to distinguish its type. Hence, the two

robots have to penetrate a total of k− 1 rectangles before the adversary cannot

rotate the figure to prevent the penetration of a passing rectangle. It follows

that at least one of the robots has to traverse a total distance of Ω(kD) = Ω(P )

before meeting. ut

3.2 Incoherent compasses

Terrains without obstacles.

In this section, we use the notion of medial axis, proposed by Blum [10], to

define a unique point of rendezvous inside the terrain. Observe that we cannot

use the centroid for the rendezvous point since, as we also consider non-convex

terrains, the centroid is not necessarily inside the terrain. The medial axis M(P)



of a polygon P is defined as the set of points inside P which have more than

one closest point on the boundary of P. Actually, M(P) is a planar tree con-

tained in P, in which nodes are linked by either straight-line segment or arcs of

parabolas [23]. We define the medial point of a polygon P as either the central

node of M(P) or the middle of the central edge of M(P), depending on whether

M(P) has a central node or a central edge. Remark that the medial point of P
is unique and is inside P. The medial axis of a polygon P can be computed as

in [13]. Algorithm RV (rendezvous without obstacles, without a map and with

possibly incoherent compasses) determines the unknown (empty) polygon and

guarantees meeting in its medial point.

Algorithm RV
At its starting position, the robot chooses an arbitrary half-line α which it
follows until it hits the boundary of the polygon P0. It traverses the entire
boundary of P0 and computes the medial point v of P0. Then, it moves to v
by a shortest path and stops.

Theorem 7. Algorithm RV guarantees rendezvous at cost O(P ) for any two

robots, in any terrain without obstacles.

The lower bound from Theorem 6 shows that the cost of Algorithm RV cannot

be improved for some polygons.

Terrains with obstacles.

Our last rendezvous algorithm, Algorithm RV O, works for the hardest of all

scenarios: rendezvous with obstacles, no map, and possibly incoherent compasses.

Here again it may be impossible to predetermine a meeting point. Thus robots

identify a common cycle and meet on this cycle. The difference between the

present setting and that of Algorithm RVMO, where a map was available, is that

now robots may start outside of the common cycle and have to reach it before

attempting rendezvous on it. (Hence, in particular, the robots cannot use directly

the procedure for rendezvous in a ring from [12], as was done in Algorithm

RVMO.) Also the common cycle is different: rather than being composed of two

shortest paths between initial positions of the robots (a map seems to be needed

to find such paths), it is the boundary of a (possible) obstacle O in which the

medial point of the outer polygon is hidden. These changes have consequences for

the cost of the algorithm. The fact that the medial point of the outer polygon

has to be found and the obstacle O has to be reached is responsible for the

summand P in the cost. The only bound on the perimeter of this obstacle is x.

Finally, the fact that the adversary may delay the robot with the smaller label

and force the other robot to make its tours of obstacle O before the robot with

the smaller label even reaches the obstacle, is responsible for the summand x|L|,
rather than x|l|, in the cost.



A cycle is a polygonal path whose both extremities are the same point. A

tour of a cycle C is any sequence of all the segments of C in either clockwise or

counterclockwise order starting from a vertex of C. By extension, a partial tour

of C is a path which is a subsequence of a tour of C with the first or the last

segment of the subsequence possibly replaced by a subsegment of it.

Algorithm RV O
Phase 1: Computation of the medial point of P0

At its starting position z, the robot chooses an arbitrary half-line α which it
follows as far as possible. When it hits the boundary of a polygon P, it traverses
the entire boundary of P. Then, it computes the point w which is the farthest
point from z in P ∩α. It goes around P until reaching w again and progresses
on α, if possible. If this is impossible, the robot recognizes that it went around
the boundary of P0. The robot computes the medial point v of P0.
Phase 2: Moving to the medial point of P0

Let u be the current position of the robot. The robot follows the segment uv
as far as possible. Similarly as in the first phase of the algorithm, if the robot
hits a polygon P, it traverses the entire boundary of P. Then, it computes the
point w which is the farthest point from u in P ∩ uv. It goes around P until
reaching w again and progresses on α, if possible. If this is impossible and if the
point v has not been reached, the robot recognizes that v is inside an obstacle
O, and executes phase 3. If the robot reaches v, it does not enter phase 3 of
the algorithm and stops.
Phase 3: Rendezvous around the medial obstacle of the terrain
The robot goes around the obstacle O until it reaches a vertex s. The robot
produces the modified label µ∗ consisting of the binary representation of the
label µ of the robot followed by a 1 and then followed by |µ| zeros. This
phase consists of |µ∗| stages. In stage i, the robot completes two tours of the
boundary of O, starting and ending in s, clockwise if the i-th bit of µ∗ is 1 and
counterclockwise otherwise.

Let u1u2 and u2u3 be consecutive segments in clockwise order (resp. coun-

terclockwise order) of a cycle. For a given walk f of a robot a, we say that the

robot traverses in a clockwise way (resp. in a counterclockwise way) a vertex

u2 of a cycle at time t if f(t) = u2 and there exist positive reals ε1 and ε2 and

points y and z such that y = f(t− ε1) is an internal point of u1u2, z = f(t+ ε2)

is an internal point of u2u3 and the robot walks in u1u2 ∪ u2u3 during the time

period [t− ε1, t+ ε2].

Before establishing the correctness and cost of Algorithm RV O, we need to

show the following two lemmas.

Lemma 2. Consider two robots on cycle C. Suppose that one robot executes a

tour of C in some sense of rotation, starting and ending in v. If during the same



period of time, the other robot either traverses v for the first time in the other

sense of rotation or does not traverse it at all, then the two robots meet.

Lemma 3. Consider two robots on a cycle C and let k ≥ 0 be an integer. If a

robot executes either a partial tour of C followed by at most k tours of C, or at

most k tours of C followed by a partial tour of C, while the second robot executes

k + 2 tours of C, then the two robots meet.

Theorem 8. Algorithm RV O guarantees rendezvous at cost O(P + x|L|) for

any two robots in any terrain for which x is the largest perimeter of an obstacle.

Proof. Let a1 and a2 be the two robots that have to meet. The first phase of

the algorithm that consists in reaching P0 and making the tour of the boundary

of P0 costs at most 3P , since the boundary of each polygon of the terrain is

traversed at most twice and the total length of parts of α inside the terrain is at

most P . For the same reason as in phase 1, the total cost of phase 2 is at most

3P .

If the medial point of P0 is inside the terrain, then the robots meet at the

end of phase 2 at total cost of at most 12P . Otherwise, both robots eventually

enter phase 3 of the algorithm and they are on the boundary of the obstacle

O containing the medial point of P0. The cost follows from the fact that each

robot travels a distance O(x|L|) in phase 3. Indeed, each robot executes at most

2|L|+ 1 stages and each stage costs at most 2x. Hence it remains to show that

rendezvous occurs in this case as well.

Assume for contradiction that the two robots never meet. Notice that the

modified label l∗ cannot be the suffix of the modified label L∗. Indeed, if |l∗| =
|L∗| then the two labels are different since l 6= L, and otherwise the second part

of l∗, consisting of 1 followed by |l| zeros, cannot be the suffix of L∗. Hence, there

exists an index i such that the (|l∗| − i)-th bit of l∗ differs from the (|L∗| − i)-th
bit of L∗. We call important stages the (|l∗| − i)-th stage of the robot with label

l and the (|L∗| − i)-th stage of the robot with label L.

For j = 1, 2, let tj be the moment when robot aj enters its important stage

and let t′ be the first moment when both robots have finished the execution of the

algorithm. Suppose by symmetry that t1 ≤ t2, i.e., robot a1 was the first to enter

its important stage. Then a2 must have entered its important stage during the

first tour of the important stage of a1. Otherwise, robot a2 would have completed

2i + 2 tours between t2 and t′, while robot a1 would have completed at most

2i+ 1 tours. Hence, the two robots would have met in view of Lemma 3. Hence,

from the time t2, robot a2 completes one tour in some sense of rotation, starting

and ending at a vertex v, while robot a1 either traverses v for the first time in

the other sense of rotation or does not traverse it at all. Hence by Lemma 2, the

two robots meet. ut



The following result gives a lower bound matching the cost of Algorithm

RVO.

Theorem 9. There exist terrains for which the cost of any rendezvous algorithm

is Ω(P + x|L|). This holds for arbitrarily small D > 0.

4 Discussion of parameters

We presented rendezvous algorithms, analyzed their cost and proved matching

lower bounds in all considered scenarios. However, it is important to note that

the formulas describing the cost depend on the chosen parameters in each case.

All our results have the following form. For a given scenario we choose some

parameters (among D, P , x, l, L), show an algorithm whose cost in any terrain

is O(f), where f is some simple function of the chosen parameters, and then

prove that for some class of terrains any rendezvous algorithm requires cost

Ω(f), which shows that the complexity of our algorithm cannot be improved in

general, for the chosen parameters.

This yields the question which parameters should be chosen. In the case of

complexities D and Θ(P ), this choice does not seem controversial, as here D

and P are very natural parameters, and the only ones in these simple cases.

However, for the two scenarios with incoherent compasses and with the presence

of obstacles, there are several other possible parameters, and their choice may

raise a doubt. As mentioned in the introduction, in these two scenarios, distinct

labels of robots are necessary to break symmetry, since rendezvous is impossible

for anonymous robots. Hence any rendezvous algorithm has to use labels l and

L as inputs, and thus the choice of these labels as parameters seems natural.

By contrast, the choice of parameter x may seem more controversial. Why do

we want to express the cost of a rendezvous algorithm in terms of the largest

perimeter of an obstacle? Are there other natural choices of parameter sets?

What are their implications?

Let us start by pondering the second question. It is not hard to give examples

of other natural choices of parameters for the two scenarios with incoherent com-

passes and with the presence of obstacles. For example, in the hardest scenario

(without a map), we could drop parameter x and try to express the cost of the

same Algorithm RVO only in terms of D, P , l, and L. Since x ≤ P , we would

get O(P |L|) instead of O(P +x|L|). Incidentally, as in our lower bound example

of terrains we have x = Θ(P ), this new complexity O(P |L|) is optimal for the

same reason as the former one.

Another possibility would be adding, instead of dropping a parameter. We

could, for example, add the parameter Pe which is the length of the external

perimeter of the terrain, i.e., the perimeter of polygon P0. Then it becomes



natural to modify Algorithm RVO as follows. The first two phases are the same.

In the third phase, the robot goes around obstacle O and compares its perimeter

to Pe. If the perimeter of O is smaller (or equal), then the algorithm proceeds

as before, and if it is larger, then the robot goes back to the boundary of P0

and executes Phase 3 on this boundary instead of the boundary of O. The new

algorithm has complexity O(P + min(x, Pe)|L|). Its complexity is again optimal

because in our lower bound example we can choose the parameter y = min(x, Pe)

and enlarge the largest of the two boundaries by lengthy but thin zigzags. Thus

we can preserve the lower bound Ω(P + min(x, Pe)|L|), even when x and Pe

differ significantly.

The reason why we chose parameters D, P , l, L, and x instead of just D, P , l

and L, is that complexity O(P+x|L|) shows a certain continuity of the complex-

ity of Algorithm RVO with respect to the sizes of obstacles: when the largest

obstacle decreases, this complexity approaches O(P ) and it becomes O(P ) if

there are no obstacles. In this case our algorithm coincides with Algorithm RV.

This is not the case with complexity O(P |L|). On the other hand, this choice

coincides with O(P + min(x, Pe)|L|) in many important cases, for example for

convex obstacles (as then we have x < Pe).

It is then natural to ask what happens if we add parameter x in the scenario

with incoherent compasses and with the presence of obstacles but with the map.

Obviously we could still use Algorithm RVO and get complexity O(P + x|L|).
However, our lower bound argument in this scenario gives in fact only Ω(D +

min(x,D)|l|). In our example we had D = Θ(x) but we only get Ω(D + x|l|)
even if D is much larger than x. On the other hand, if D is much smaller than

x, we can only get the lower bound Ω(D|l|) because it matches the complexity

of RVMO in this case. Hence it is natural to ask if there exists a rendezvous

algorithm with cost O(D + min(x,D)|l|) for arbitrary terrains in this scenario.

We leave this as an open question.
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