
Année 2025-26

Domaine Sciences et Technologies
Licence Informatique : math-info
Initiation au Génie logiciel : TD 7

Codes UE : SIN5U34
Fusion de listes et gestion de score

1 Fusion de listes

Question 1 : Qu’affiche l’exécution de la méthode main code suivant ?

public class AlternateListMerger {
private final List<Integer> list1;
private final List<Integer> list2;
public AlternateListMerger(List<Integer> list1, List<Integer> list2) {

this.list1 = list1;
this.list2 = list2;

}
public List<Integer> getMergedList() {

List<Integer> result = new ArrayList<>();
for (int index1 = 0, index2 = 0;

index1 < list1.size() && index2 < list2.size();
index1++, index2++) {

if (index1 < list1.size()) {
result.add(list1.get(index1));

}
if (index2 < list2.size()) {

result.add(list2.get(index2));
}

}
return result;

}
void display() {

for (int value : getMergedList()) {
System.out.print(value + " ");

}
}
public static void main(String[] args) {

List<Integer> list1 = List.of(1, 3, 5);
List<Integer> list2 = List.of(2, 4, 6);
ListMerger AlternatelistMerger = new AlternateListMerger(list1, list2);
listMerger.display();

}
}

Question 2 : On souhaite ajouter une nouvelle façon d’implémenter getMergedList qui fusionnerait les deux
listes en mettant d’abord tous les éléments de la première liste suivis de tous les éléments de la deuxième liste.
Dans le code ci-dessus, quels problèmes de conception identifiez-vous avec ce changement ? À quel(s) principe(s)
SOLID les associez-vous ? Justifiez votre réponse.

Question 3 : On souhaite avoir une deuxième classe ConsecutiveListMerger dont le seul changement par
rapport à AlternateListMerger est dans la méthode getMergedList() et qui correspondra au code ci-dessous.
Proposer une organisation du code sous la forme d’un diagramme de classes UML afin d’éviter la duplication de
code entre les classes ConsecutiveListMerger et AlternateListMerger.

public class ConsecutiveListMerger {
private final List<Integer> list1;
private final List<Integer> list2;
public ConsecutiveListMerger(List<Integer> list1, List<Integer> list2) {

this.list1 = list1;
this.list2 = list2;

}
private List<Integer> getMergedList() {

List<Integer> result = new ArrayList<>();
result.addAll(list1);
result.addAll(list2);

}
void display() {

for (int value : getMergedList()) {
System.out.print(value + " ");

}
}

}

Question 4 : Donnez la nouvelle implémentation en Java de la classe ConsecutiveListMerger en incluant
éventuellement les nouvelles classes et interfaces que vous avez introduites à la question précédente et qui sont
utilisées par la nouvelle implémentation de ConsecutiveListMerger.

2 Gestion de groupes de coupe du monde

Le but de cet exercice est d’écrire un programme qui calcule le classement des groupes de la coupe du monde de
football. Dans cet exercice, nous implémenterons seulement les trois premiers des 8 critères du règlement de la
coupe du monde :

— Le plus grand nombre de points sur tous les matchs (règles des coupes du monde jusqu’à 1990 : victoire
= 2 points, match nul = 1 point) ;

— La différence de buts sur tous les matchs (différences de buts = buts marqués - buts encaissés) ;
— Le plus grand nombre de buts marqués sur tous les matchs.

En d’autres termes, on regarde en premier critère les nombres de points pour départager deux équipes. Si les
deux équipes ont le même nombre de points, on regarde en second critère les différences de buts des deux
équipes. Si les deux équipes ont la même différence de buts, on regarde en troisième critère les nombres de buts
marqués. Vous trouvez ci-dessous un exemple de classement respectant l’ordre :

2

Pays Victoires Nuls Défaites Points Buts pour Buts contre Diff. buts

USA 2 1 0 5 7 3 4
Italie 2 1 0 5 6 2 4
Chili 0 1 2 1 2 4 -2
France 0 1 2 1 1 7 -6

Nous souhaitons pouvoir classer les pays de la façon suivante :

public class Main {
public static void main(String[] args) {

Team chili = new Team("Chili");
Team italy = new Team("Italie");
Team france = new Team("France");
Team usa = new Team("USA");
Team[] teams = { chili, italy, france, usa };
Match[] matches = {

new Match(usa, italy, 2, 2),
new Match(usa, chili, 2, 1),
new Match(usa, france, 3, 0),
new Match(italy, chili, 1, 0),
new Match(italy, france, 3, 0),
new Match(chili, france, 1, 1)

};
Group group = new Group(teams, matches);
group.sort();
for (Team team : group.teams())

System.out.println(team.name());
}

}

Les classes Team, Group et Match sont déjà implémentées à l’exception de la méthode sort de la classe Group.

public class Group {
private final Team[] teams;
private final Match[] matches;

public Group(Team[] teams, Match[] matches) {
this.teams = teams;
this.matches = matches;

}

public void sort() {
// TODO : implements sort

}
}

3

public record Team(String name) {
}

public record Match(Team team1, Team team2, int goalCount1, int goalCount2) {
public boolean isWonBy(Team team) {

return (team1() == team && goalCount1() > goalCount2())
|| (team2() == team && goalCount1() < goalCount2());

}
public boolean isADrawWith(Team team) {

return (team1() == team || team2() == team) && goalCount2() == goalCount1();
}
public int pointsFor(Team team) {

if (isWonBy(team)) { return 2; }
if (isADrawWith(team)) { return 1; }
return 0;

}
public int goalDifferenceFor(Team team) {

if (team.equals(team1())) { return goalCount1() - goalCount2(); }
if (team.equals(team2())) { return goalCount2() - goalCount1(); }
return 0;

}
public int goalCountFor(Team team) {

if (team.equals(team1())) { return goalCount1(); }
if (team.equals(team2())) { return goalCount2(); }
return 0;

}
}

Question 5 : Quelles parties du code doivent être modifiées pour ajouter une nouvelle méthode de calcul des
points qui donne 3 points pour une victoire (et toujours 1 point pour un nul et 0 pour une défaite) ? Quel
principe SOLID n’est pas respecté d’après vous ? Justifiez votre réponse.

Afin de permettre de choisir entre les deux méthodes de calcul des points (2 ou 3 points pour une victoire), on
introduit l’interface suivante :

public interface ScoreFunction {
int score(Team team, Match match);

}

La méthode de calcul des points ne sera plus dans la classe Match (plus de méthode pointsFor dans la classe
Match) mais dans une classe implémentant ScoreFunction qui sera utilisé dans Group.

Afin de créer des objets calculant les points d’une équipe (qui seront des instances de classes im-
plémentant ScoreFunction), on utilisera l’interface suivante qui sera implémentée par deux classes
PointsFunctionOldRuleFactory (calcul avec 2 points pour les victoires) et PointsFunctionNewRuleFactory
(calcul avec 3 points pour les victoires) :

4

public interface PointsFunctionFactory {
ScoreFunction createPointsFunction();

}

L’objectif est de permettre l’exécution du code suivant :

Match match = new Match(italy, chili, 1, 0);
ScoreFunction pointsFunction1 = new PointsFunctionNewRuleFactory().createPointsFunction();
System.out.println("New score: " + pointsFunction1.score(italy, match));
// affiche New score: 3
ScoreFunction pointsFunction2 = new PointsFunctionOldRuleFactory().createPointsFunction();
System.out.println("Old score: " + pointsFunction2.score(italy, match));
// affiche Old score: 2

Question 6 : Écrivez le code des classes PointsFunctionOldRuleFactory et PointsFunctionNewRuleFactory
ainsi que le code de la ou les classe(s) des objets créés par les deux versions de la méthode createPointsFunction.

On considère l’interface Comparator<T> ci-dessous qui permet de comparer deux éléments de type T.

public interface Comparator<T> {
/**
* Compares its two arguments for order. Returns a negative integer,
* zero, or a positive integer as the first argument is less than, equal
* to, or greater than the second.<p>
*
*
* @param o1 the first object to be compared.
* @param o2 the second object to be compared.
* @return a negative integer, zero, or a positive integer as the
* first argument is less than, equal to, or greater than the
* second.
*/

int compare(T o1, T o2);
}

On souhaite créer une classe ScoreComparator qui implémente l’interface Comparator<Team> afin de pouvoir
comparer les équipes.

Cette classe devra posséder :

— un constructeur qui prend un tableau de matchs (de type Match[]) et une instance de ScoreFunction
en paramètre ;

— implémente la méthode compare de sorte à retourner pour deux équipes t1 et t2 la valeur de la formule
suivante :

∑
m∈M

(s(t2, m) − s(t1, m))

5

avec m le tableau de matchs et s la fonction calculée par la méthode score l’instance de ScoreFunction
donnée en paramètre au constructeur.

L’objectif est de permettre l’exécution du code suivant :

public class Main {
public static void main(String[] args) {
// Code de création des Team et de Matches

ScoreFunction pointsFunctionOldRule =
new PointsFunctionOldRuleFactory().createPointsFunction();

ScoreComparator scoreComparatorOld = new ScoreComparator(matches, pointsFunctionOldRule);
System.out.println("Comparison USA France (old) : "+scoreComparatorOld.compare(usa, france));
// affiche Comparison USA France (old) : -4
ScoreFunction pointsFunctionNewRule = new PointsFunctionNewRuleFactory().createPointsFunction();
ScoreComparator scoreComparatorNew = new ScoreComparator(matches, pointsFunctionNewRule);
System.out.println("Comparison USA France (new) : " + scoreComparatorNew.compare(usa, france));
// affiche Comparison USA France (new) : -6

}
}

Question 7 : Écrivez le code de la classe ScoreComparator.

On souhaite pouvoir composer plusieurs critères de comparaisons. Pour cela, on va introduire une classe
CompositeComparator<T> qui implémentera l’interface Comparator<T>. Cette classe aura une référence d’une
liste de Comparator<T> et implémentera la méthode compare(T t1, T t2) de façon à retourner la valeur
c.compare(t1, t2) du premier comparateur c dans la liste donnant une comparaison différente de 0 (ou 0 si
tous les comparateurs donne une comparaison à 0).

Question 8 : Écrivez le code de la classe CompositeComparator<T>.

Il reste à écrire l’implémentation de la méthode void sort() de la classe Group qui trie le tableau teams en
considérant les matchs du tableau matches et en composant les fonctions de score suivantes dans cet ordre :

— nombre de points avec l’ancienne règle des points (2 points par victoire et 1 par nul) ;
— différence de buts (goalDifferenceFor) ;
— nombre de buts marqués (goalCountFor).

Vous pouvez utiliser la méthode statique Arrays.sort(T[] array, Comparator<T> comparator) de Java qui
trie le tableau array en respectant le comparateur comparator.

Question 9 : Écrivez le code de la méthode sort de la classe Group.

On souhaite pouvoir classer les groupes selon la nouvelle règle de calcul des points (3 points par victoire et 1
par nul).

Question 10 : Décrivez une réorganisation du code permettant de changer la règle de calcul des points en
modifiant uniquement une seule ligne de la méthode main.

6

	Fusion de listes
	Gestion de groupes de coupe du monde

