) Domaine Sciences et Technologies
FaCUIt? LICENCE INFORMATIQUE : MATH-INFO
a I I l d_es SCIenqu . . Initiation au Génie logiciel : TD 5
Aix Marseille Universitée Codes UE : SINSU34

Année 2025-26 Gestionnaire de processus

1 Gestionnaire de processus

On veut simuler (de fagon tres simplifiée) un gestion-

naire de processus d’un systeme d’exploitation. Chaque AWAKE

BLOCKED

Les instances de Process représentent des processus avec un état et une durée d’exécution en quantum.

processus posséde un nom, un temps d’exécution prédé-
fini (en nombre de quantums de temps) et un état. Le

gestionnaire de processus possede une liste de processus

parmi lesquels il peut choisir le prochain & exécuter

pendant un quantum (unité indivisible) de temps. Un

processus peut avoir trois états qui dépendent des si- yNBLOCK BLOCK

gnaux recus par le processus. L’automate a droite re-
présente les trois états possibles du processus (READY,
RUNNING et BLOCKED) avec les transitions provo-
quées par quatre types de signaux (SLEEP, AWAKE,
BLOCK et UNBLOCK).

2 Classe Process

public class Process {
enum State { READY, RUNNING, BLOCKED}

private final String name;
private int timeleft;
private State state = State.READY;

private int lastExecDate = O;

public Process(String name, int duration) {
this.name = name;

this.timelLeft = duration;

public void execQuantum(int date) {
System.out.println(date + ":" + name);
timelLeft--;
lastExecDate = date;

}

public boolean isReady() {
return state == State.READY;



¥

public boolean isRunning() {
return state == State.RUNNING;

}

public int getLastExecDate() {
return lastExecDate;

}

public String getName() {
return name;

}

public int getTimeLeft() {

return timelLeft;

public void handleSignal(Signal signal) {
switch (signal) {
case BLOCK -> {
if (state == State.RUNNING) {
System.out.println(name + " blocked");
state = State.BLOCKED;

}
case UNBLOCK -> {
if (state == State.BLOCKED) {
System.out.println(name + " unblocked");
state = State.READY;

}
case SLEEP -> {
if (state == State.RUNNING)
state = State.READY;
}
case AWAKE -> {
if (state == State.READY)
state = State.RUNNING;

3 Enum Signal

Cette énumération permet de représenter les différents types de signal qu’on peut envoyer a un processus.

public enum Signal { BLOCK, UNBLOCK, SLEEP, AWAKE}



4 Classe ProcessManager

Les instances de ProcessManager possede une liste de processus parmi lesquels il peut choisir le prochain a

exécuter pendant un quantum de temps.

public class ProcessManager {
private List<Process> processes = new ArrayList<>();
private int date = O;

private Process running = null;

public void add(Process process) {
processes.add(process);
System.out.println(process.getName() + " new");
}
private Process selectNext() { // Selection par round robin (tourniquet)
Process candidate = null;
int lastDate = Integer.MAX_VALUE;
for(Process process : processes) {
int lastExecDate = process.getLastExecDate();
if (process.isReady() && lastExecDate < lastDate) {
candidate = process;
lastDate = lastExecDate;

}
return candidate;
}
public void exec(int nbQuantum) {
for(int i = 0; i < nbQuantum ; i++) {
Process candidate = selectNext();
switchRunningProcess(candidate) ;

execRunningProcessQuantum() ;

date++;
}
}
private boolean canExecRunningProcess() {
return running != null && running.isRunning();
}
private void switchRunningProcess(Process candidate) {
if (candidate == null) return;
if (running != null) running.handleSignal("sleep");

candidate.handleSignal ("awake") ;

running = candidate;

}
private void execRunningProcessQuantum () {
if (!canExecRunningProcess())

return;



running.execQuantum(date) ;
if (running.getTimeLeft() <= 0) {
processes.remove (running) ;

running = null;

5 Classe AppProcessManager

Cette classe permet d’observer le comportement des classes précédentes en demandant ’exécution de la suite

d’instructions suivante :

public class AppProcessManager {
public static void main(String[] args) {

Process pl = new Process("pl", 5);
Process p2 = new Process("p2", 7);
Process p3 = new Process("p3", 4);
ProcessManager processManager = new ProcessManager();
processManager.add(pl); //affiche "pl new"
processManager.execQuantum(1); // affiche "0:pl"
processManager.add(p2); // affiche "p2 new"
processManager.execQuantum(2); // affiche "1:p2" puis "2:pl1"
processManager.add(p3); // affiche "p3 new"
pl.handleSignal("block"); // affiche "pl blocked"
processManager.execQuantum(3); // affiche "3:p3", "4:p2", "5:p3"
pl.handleSignal ("unblock"); // affiche "pl unblocked"
processManager.execQuantum(10); // affiche "6:pl", "7:p2", "8:p3", "9:pl", etc

6 Principes SOLID

Question 1 : Il s’avere que d’autres types de processus peuvent exister (par exemple des processus avec

différents niveaux de priorités). Selon cette constatation précise, quel principe SOLID a été violé et pourquoi ?

Question 2 : Par ailleurs, le gestionnaire de processus pourrait avoir une autre fagon de sélectionner les
prochains processus a exécuter et une autre fagon d’exécuter un processus pendant un quantum de temps. Selon

cette constatation précise, quel principe SOLID a été violé et pourquoi ¢

Question 3 : Si on veut proposer de nouveaux états pour les processus, il faut changer le contenu la classe

Process. Selon cette constatation précise, quel principe SOLID a été violé et pourquoi ?

Question 4 : On souhaite rajouter des processus qui ne sont jamais censés s’arréter (les processus “démons”).

Or, la classe Process possede une méthode int getTimeLeft (). Selon cette constatation précise, quel principe



SOLID a été violé et pourquoi ?

7 Patron de conception template method

Question 5 : Pour rajouter les processus démons de la question précédente, on vous demande de rajouter
des classes AbstractProcess, Daemon et FiniteProcess de telle sorte a ce que Daemon et FiniteProcess
étendent AbstractProcess (cf. diagramme de classes ci-apres). L'objectif est que FiniteProcess remplace la
classe Process et que Daemon permette de créer des processus démons. Pour ceci AbstractProcess contiendra
une méthode abstraite boolean isOver () qui indique si le processus est terminé. Donner le code des classes

AbstractProcess, Daemon et FiniteProcess.

@ AbstractProcess

o name : String
O state : State

o lastExecDate : int @ FiniteProcess
‘ @ Daemon ‘ o AbstractProcess(name : String) o timeLeft : int
o isOver() : boolean <3

o Daemon(name : String)
o isOver() : boolean

o execQuantum(date : int)
o FiniteProcess(name : String, duration : int)
o isOver() : boolean

o isReady() : boolean

o isRunning() : boolean

o getName() : String

o handleSignal(signal : Signal)
o getlLastExecDate() : int

o execQuantum(date : int)

8 Patron de conception strategy

Question 6 : Réécrire la classe ProcessManager pour qu’elle délégue la sélection de processus d une instance
d’une classe de l’interface ProcessSelector contenant ['unique méthode Process selectNext (List<Process>

processes) (cf. le diagramme ci-dessous).

@ ProcessManager

O processes : List<AbstractProcess>
O date : int

O running : AbstractProcess @ ProcessSelector ‘
o selector : ProcessSelector

‘ o select(processes : List<AbstractProcess>) : AbstractProcess ‘

o ProcessManager(selector : ProcessSelector)
o setProcessSelector(selector : ProcessSelector) A
o add(process : AbstractProcess)
o exec(nbQuantum : int)

‘ @ RoundRobinSelector ‘

‘ o select(processes : List<AbstractProcess>) : AbstractProcess ‘




9 Patron de conception state

State est un patron de conception comportemental qui permet de modifier le comportement d’un objet lorsque
son état interne change. L’objet donne I'impression qu’il change de classe. Le principe repose sur le fait qu'un
programme possede un nombre fini d’états. Le programme se comporte différemment selon son état et peut en

changer instantanément. Pour cela on crée :

1. une interface état contenant les méthodes que doit faire chaque état ;
2. pour chaque état possible une classe pour cet état qui gere les méthodes et les transitions de 1’état ;

3. une classe contexte contenant un état et déléguant les opérations a I’état courant.

De maniere générale, cela nous donne le diagramme de classe suivant :

@ Context
this.state = state; . 5 SEe
state.setContext(this)

o Context(initialState : State)

@ State

o doThis()

state.doThis(); o changeState(state : State) o doThat()
-o doThis()
o doThat()
= \
\
/ \

@ ConcreteState2 @ ConcreteState1
initialState = new ConcreteState(); o context : Context o context : Context
context = new Context(initialState); ] i
contextidoThis(); o sethntext(c : Context) (6} sethntext(c : Context)

o doThis() o doThis()
o doThat() o doThat()

Question 7 : Pour le moment, les processus définis ne peuvent étre que dans trois états : ready, running ou
blocked. Comme un processus peut habituellement étre dans plus d’états (il existe neuf états de processus sous
Unix), il faut prévoir 'ajout (ou le retrait) d’autres états dans des versions ultérieures du programme. Vous allez
utiliser le patron de conception State pour définir les états possibles d’un processus ainsi que ses transitions.

Dessinez le diagramme de classe correspondant d cette modification.

Question 8 : Donnez les modifications a faire dans le code pour obtenir la réorganisation du code que vous

avez décrite pour la question précédente.

Question 9 : On souhaite rajouter de nouveaux processus avec différents niveaux de priorités allant de 1 a 10
et d’utiliser les priorités pour la sélection du processus a exécuter (par exemple en ne sélectionnant le prochain
processus a exécuter uniquement parmi ceux de priorité maximale qui peuvent s’exécuter). Décrivez da [’aide
d’un diagramme de classes la maniére de réorganiser le code pour prendre compte cette modification tout en

gardant la possibilité d’avoir un systéme de processus sams priorité.



	Gestionnaire de processus
	Classe Process
	Enum Signal
	Classe ProcessManager
	Classe AppProcessManager
	Principes SOLID
	Patron de conception template method
	Patron de conception strategy
	Patron de conception state

