) Domaine Sciences et Technologies
FaCUlt? MASTER INFORMATIQUE
al I l d.eS SCIenqu . y Génie logiciel : TP 1
Aix Marseille Université Codes UE : SINAOSEL

Année 2025-26 Tests unitaires en boite blanche

1 Tests unitaires sous JUnit

Cette premiere partie du TP constitue un rappel de l'utilisation de I’environnement JUnit de tests unitaires.
JUnit est un environnement de tests unitaires pour Java et nous allons 1'utiliser au sein de I'IDE IntelliJ ! via

le moteur de production Gradle https://gradle.org/.

La version JUnit actuelle est la version 5. La version 4 est de méme philosophie, s’appuyant également sur les
annotations introduites depuis Java 5. La version 4 reste tres utilisée, mais elle n’est pas pleinement compatible

avec la version 5 2.

La version 5 est néanmoins une évolution majeure qui offre de nouvelles constructions. Le site pour JUnit 5 se

trouve & https://junit.org/junit5 3.

1.1 Ecriture de test

Comme évoqué nous allons utiliser IntelliJ et JUnit principalement dans le cadre d’automatisation de production
logicielle via ’outil Gradle. 11 est bien évidemment possible d’utiliser un autre outil de ce type, tel maven, ou

bien simplement JUnit sous IntelliJ et en mode natif.

Avec JUnit, on peut créer une classe de test. Les cas de test s’y retrouvent sous la forme de méthodes identifiées
(précédées) par I'annotation JUnit @Test . Un cas de test pourra utiliser des assertions de la classe Assertions
de JUnit ou comme nos exemples, celles de AssertJ. Ces assertions qui seront utilisées pour vérifier notamment

des égalités (de valeurs, objets, ...) et feront échouer le test si elles ne sont pas vraies.
Voici un exemple de (méthode de) test :

QTest

void testSumReal() {
Complex z1 = new Complex(1.0F, 2.0F);
Complex z2 = new Complex(3.0F, 4.0F);

float expected = 1.0F + 3.0F;

Complex z = zl.sum(z2);
assertThat(z.getRealPart()) .as("problem with Real part of Sum")
.isCloseTo(expected, within(EPSILON));

! https://www.jetbrains.com/fr-fr /idea,/

2 Les versions 3 et antérieures de JUnit utilisaient d’autres techniques pour mettre en place les tests, ces versions ne sont plus
vraiment utilisées

3 Un site qui pourrait également vous étre utile https://www.jmdoudoux.fr/java/dej/chap-junit5.htm

4 Lors de Papparition de cette annotation, IntelliJ vous proposera notamment si nécessaire d’importer les classes JUnit nécessaires
aux tests. Attention a bien choisir la version 5 de JUnit dans ce cas.


https://gradle.org/
https://junit.org/junit5
https://www.jetbrains.com/fr-fr/idea/
https://www.jmdoudoux.fr/java/dej/chap-junit5.htm

}

D’autres annotations JUnit permettent de gérer les initialisations et cas particuliers. Comme toutes les

annotations Java, elles sont de la forme @mot-clé.

— @BeforeAll et @AfterAll permettent d’exécuter des instructions avant et apres ’exécution de la suite
de tests 5.

— @BeforeEach permet de définir des initialisations a faire avant chaque test (typiquement définir un objet
qui sera utilisé par tous les tests) et @AfterEach est similaire mais est effectué apreés chaque test ©.

— @Disabled permet de ne pas effectuer le test qui suit.

Les annotations @. .. et assertions assert... sont a importer si nécessaire (voir les fichiers exemples et la

documentation).

1.2 Utilisation de Junit

On suppose dorénavant que vous disposez de votre propre projet sur le serveur etulab avec une version locale

de celui-ci sur votre machine (voir "Rendu des TPs : spécifications").

Cette premiere partie va vous faire voir ou revoir un usage basique de JUnit.

1. Vous disposez dans les répertoires src/main/java/complex et src/test/java/complex les fichiers
Complex.java et ComplexTest.java respectivement. Le premier contient une implémentation des
nombres complexes et le second un exemple de fichiers pour tester cette implémentation.

2. Sous IntelliJ, vous avez la possibilité de lancer soit I’ensemble des tests de la classe ComplexTest, soit
individuellement chaque méthode de test (via le triangle vert d’exécution dans la colonne & gauche de la

fenétre du code source).

— Lancez la méthode de test testGetterImaginary. Que constatez-vous ?
— Lancez I'ensemble des tests de la classe ComplexTest. Que constatez-vous ?

3. Modifiez a minima la classe de test (au regard de ce qui a été implémenté ou non) afin que la suite des
tests réussisse.

4. En rajoutant des instructions d’impression, vérifier que @BeforeAll et @AfterAll sont effectuées avant
et apres chaque exécution de ’ensemble des tests. Idem pour @BeforeEach et @QAfterEach avant chaque
méthode de test.

5. Modifiez le code de @BeforeEach afin de mutualiser le code de création des objets Complex sur lequel va

se faire chacun des tests.

Nous allons maintenant utiliser Gradle pour continuer notre campagne de test ; le résultat des tests sera
matérialisé comme un rapport au format html. Vous pouvez utiliser gradle en ligne de commande pour lancer
les tests avec gradle test (gradle prend en premier argument la tache & exécuter ici test pour lancer des tests).

Sous IntelliJ, vous pouvez ouvrir la fenétre de 'outil Gradle (View > Tool Windows > Gradle). Vous pouvez

5 Cela constitue ce qu’on appelle le "test fixture".
6 Ceci constitue les préambules et postambules des cas de tests. A noter qu'ils seront exécutés avant et aprés chaque (méthode de)
test mais que le code est identique pour tous.



alors depuis la fenétre ouverte lancer les tests (Tasks > verification > test). Vous retrouverez le résultat

de vos tests dans votre projet comme un artefact html dans build/reports/tests/test/html.

6. Relancez les tests via gradle et vérifier le contenu du fichier de rapport des tests. Combien de tests ont
été lancés 7 Combien de tests sont passés avec succes 7 Quel est le temps d’exécution de la suite de tests
?

7. Ajouter trois méthodes pour tester la méthode inverse de la classe Complex : la premiere et la seconde
devront tester que les parties réelle et imaginaire du résultat sont correctes dans le cas d’un complexe
non nul tandis que la troisiéme devra tester la levée d’une exception dans le cas contraire.

8. Complétez la méthode product de la classe Complex et tester votre implémentation avec les tests fournis.

9. Complétez le code de la méthode static infinite afin que I’exécution de cette méthode ne termine pas
puis activer le test sur infinite. Que se passe-t-il 7 Modifier le test pour qu’il échoue si infinite ne
termine pas en 100ms (utiliser I’assertion assertTimeoutPreemptively (voir la partie Timeout de la

documentation). Vérifier que l’exécution des tests termine.

Avertissement : JUnit 5 permet de programmer une gestion de test tres évoluée (voir la documentation) ce

qui signifie qu’il est possible d’introduire des erreurs dans les suites de test.

2 Couverture de tests avec JaCoCo

Lorsqu’on souhaite tester une implémentation, on va définir un ensemble de tests (également appelé suite de

w7

tests). La question qui se pose alors est de savoir si cette suite est "suffisante" ‘, & savoir qu’elle permet de tester

les différents cas d’utilisation de cette implémentation. On peut alors parler de qualité d’une suite de tests.

Une idée simple pour mesurer cette qualité est de considérer sa couverture ; chaque test va, lors de son
exécution, exécuter un certain nombre d’instructions de I'implémentation & tester. Cette instruction ou ce bloc
d’instructions sera alors dit couvert par ce test. Intuitivement, si une instruction ou un bloc d’instructions n’est
couvert pour aucun test de la suite de tests alors nous n’avons aucune garantie sur ce que fait ce morceau de

code.

Ce tte seconde partie du TP introduit a l'utilisation de I'outil JaCoCo (Java Code Coverage) (https://www.ja
coco.org/jacoco/trunk/index.html). JaCoCo est en fait une bibliotheque de (mesure de) couverture de code
Java utilisable depuis un IDE ou au sein d’outils d’automatisation de production logicielle comme Gradle ou
Maven. JaCoCo s’utilise également en complément d’un environnement de tests tel JUnit (celui que nous allons

considérer) ou TestNG.

2.1 Premiers pas avec JaCoCo

Nous allons utiliser JaCoCo sous IntelliJ avec I'outil gradle ® Pour cela, il vous faudra ouvrir la fenétre gradle

et lancer Tasks > verification > test ou jacocoTestReport).

" Formellement, elle ne le sera jamais. . .
811 est également possible de l'utiliser directement sous IntelliJ. Par ailleurs, IntelliJ posséde son propre outil de calcul de
couverture que nous n’allons pas utiliser dans ce TP mais libre a vous de ’essayer.


https://www.jacoco.org/jacoco/trunk/index.html
https://www.jacoco.org/jacoco/trunk/index.html

Cette action va produire un fichier index.html de rapport que vous trouverez dans
tp2/build/reports/jacoco/test/html. Vous y découvrirez un tableau indexé en ligne par les diffé-
rents packages présents dans le projet et en colonne des informations quantitatives quant-a la couverture du
code. On peut alors naviguer au sein du package, par exemple en cliquant sur palindrome et voir apparaitre
un autre tableau qui concerne alors les classes de ce package. En cliquant sur une classe, on a de nouvelles
informations concernant les méthodes de cette classe. Enfin en cliquant sur une méthode, on voit apparaitre le

code de celle-ci ou les instructions apparaissent comme colorées.

2.1.1 Calcul de la couverture par JaCoCo

Nous allons maintenant aller plus avant sur ce rapport fourni par JaCoCo.

2.1.1.1 Classe Palindrome
1. Comprendre le sens des couleurs (vert, rouge, jaune).
. Comprendre le sens des taux de couverture pour une classe, les méthodes, les lignes et les branchements
. Comprendre les couleurs données aux instructions de la classe de test.

2

3

4. Pourquoi certaines conditions booléennes sont en jaune ?

5. Est-ce qu’il est possible de couvrir toutes les instructions de la classe Palindrome 7
6

. Enlever certains tests (par @Disabled) et voir comment la couverture évolue.

2.1.1.2 Classe PartialCoverage Effectuer les mémes opérations avec la classe PartialCoverage.java en

ajoutant les cas de test nécessaires. Que conclure ?

2.2 Etude de Couverture de code
2.2.1 Couverture des classes de ’application Complex

Reprendre la classe Complex (comme complétée précédemment). Vérifier la couverture de vos tests sur les

méthodes de cette classe.

1. Analyser les résultats pour la partie compte-rendu.

2. Ajouter des tests pour aller jusqu’a un taux de couverture de 100% si cela est possible. Pour chaque test

ajouté, vous signalerez en commentaire quelle instruction supplémentaire il couvre.

2.2.2 Files a double extrémité

Le but de cette partie sera de coder des files & double extrémité ou deque (abréviation de 'anglais double-ended
queue). Une file & double extrémité est un type abstrait permettant d’ajouter et de supprimer des données
a la fin (queue) ou au début (téte), réunissant ainsi les avantages des files classique et des piles. Vous allez
coder et tester une classe pour les files & double extrémité nommée ArrayDoubleEndedQueue qui implémentera

I'interface DoubleEndedQueue qui définit les méthodes suivantes :

— void addFirst(E e) qui ajoute un élément en début de file ;

— void addLast(E e) qui ajoute un élément en fin de file ;



E removeFirst() qui renvoie et supprime I’élément en début de file ;

E removeLast() qui renvoie et supprime 1’élément en fin de file ;

E getFirst() qui renvoie I’élément en début de file ;

E getLast() qui renvoie I’élément en fin de file ;

int size() qui renvoie le nombre d’éléments de la file ;

boolean contains(Object o) qui renvoie true si la file contient un élément égal (par equals) a o et

false sinon.

La classe ArrayDoubleEndedQueue utilisera un tableau d’Object pour stocker les éléments de la file (il faudra

donc faire un cast pour obtenir le bon type d’objet). La taille du tableau sera égale a la capacité (capacity)

de la file (déterminée a la construction de la file) et ne changera pas par la suite. La file se comptera comme

un buffer circulaire avec comme attribut 'indice du premier élément et le nombre d’éléments de la file. Les

éléments de la file seront donc compris entre indexFirst inclus et (indexFirst + size) % capacity exclus

(voir figure ci-dessous). Toutes les cases ne correspondant pas a des éléments de la file devront étre a null.

Lorsqu’une opération est impossible (acceés & un élément quand il n’y a pas d’élément dans la file ou ajout

d’un élément quand la file a atteint sa capacité maximale), une exception devra étre levée conformément a la
Javadoc de DoubleEndedQueue.

size = 6 indexFirst
v
nullnullnullnull
/ RN
o4 o5 o0 ol 02 03

FIGURE 1 — image

. Créez une classe ArrayDoubleEndedQueue implémentant I'interface DoubleEndedQueue. Pour le moment,
contentez-vous de définir des méthodes par défaut (ne retournant null, 0 ou false et sans autre code).
Vous pouvez réaliser cela rapidement sous IntelliJ en faisant clic droit puis generate puis implements
method un fois que vous avez défini que la classe implémente l'interface.

. Créez et codez la classe ArrayDoubleEndedQueueTest testant que la classe ArrayDoubleEndedQueue
respecte les contraintes décrites dans la documentation de DoubleEndedQueue. Pour le moment, ne

modifiez pas la classe ArrayDoubleEndedQueue.
. Complétez la classe ArrayDoubleEndedQueue afin qu’elle passe les tests de ArrayDoubleEndedQueueTest.
Quel est le taux de couverture de votre suite de test ?

. Si besoin, complétez les tests de ArrayDoubleEndedQueueTest afin d’obtenir une couverture de tous les

arcs de DoubleEndedQueue.

3 Rendu demandé

Il vous faudra rendre la suite de test que vous avez écrite pour ArrayDoubleEndedQueue ainsi qu'un compte-

rendu présentant cette suite. Il faudra préciser pour chaque cas de test son objectif ainsi que les données de test

ainsi que le résultat attendu.



	Tests unitaires sous JUnit
	Écriture de test
	Utilisation de Junit

	Couverture de tests avec JaCoCo
	Premiers pas avec JaCoCo
	Calcul de la couverture par JaCoCo

	Etude de Couverture de code
	Couverture des classes de l'application Complex
	Files à double extrémité


	Rendu demandé

