Fiabilité Logicielle

Généralités

Arnaud Labourel

2025-26

al I l U Aix Marseille Université

Fiabilité Logicielle

Section 1

Informations générales sur |'enseignement

Fiabilité Logicielle

Fiabilité Logicielle — Agenda

Les lundis sur 6 semaines :

@ 6 cours de 1h30 : 9 heures (A. Labourel)
@ 4 TD de 2h heures : 8 heures (A. Labourel et F.-X. Dupé)
@ 5 TP de 2h heures : 10 heures (A. Labourel et F.-X. Dupé)

MCC : (0,5 CC) + (0,5 % ET) avec CC note de suivi de TP (rendu chaque semaine)
Utilisation de la plateforme AMeTICE

@ mise en ligne : supports de cours - sujets de TD et de TP
@ rendu des travaux pratiques via git (etulab)

Adresse mail :

@ arnaud.labourel@univ-amu.fr
@ francois-xavier.dupe®@univ-amu.fr

Fiabilité Logicielle 3/49

arnaud.labourel@univ-amu.fr
francois-xavier.dupe@univ-amu.fr

Fiabilité Logicielle — Contenu

@ Spécifications (apergu)
@ Tests (boite blanche et boite noire)
© Méthodes formelles (évoquées rapidement)

Fiabilité Logicielle

Section 2

Introduction a la fiabilité logicielle

Fiabilité Logicielle

Fiabilité logicielle : une définition

@ Quoi : assurer un certain nombre de propriétés sur le logiciel en production (dans
un environnement donné) qui garantissent son aptitude a remplir sa mission.

@ Comment : en appliquant des méthodes ou en suivant des méthodologies lors de
son développement et de sa maintenance

Fiabilité Logicielle 6 /49

Fiabilité logicielle : pourquoi ?

@ enjeux économique ou de sureté/sécurité des personnes, des infrastructures
et des organisations du fait de I'omniprésence du logiciel

exemple : transports, production énergétique, secteur bancaire, ...

o complexité des logiciels : taille des développements - inter-dépendance
logicielles (API, Applications orientée service, cloud, ...)

exemple : noyau Linux 17 millions de lignes de code pour 19000 contributeurs, ...

Fiabilité Logicielle 7/49

Fiabilité logicielle : concepts en jeu

@ Run Time Error : erreur a |'exécution
@ Adéquation a une spécification

@ Maintenance logicielle

o Sécurité

@ Performance

Ceci induit des colits nécessitant du professionnalisme.

Fiabilité Logicielle 8/ 49

Fiabilité vs Qualité logicielle

La qualité logicielle comprend :

@ le suivi d'une méthodologie visant a garantir une certaine "qualité" (norme

ISO/CEI 9126)
@ la mise en place d'indicateurs permettant une mesure de qualité

La fiabilité logicielle est une des composantes de la qualité logicielle qui comprend
également :

o la facilité d'utilisation
@ la maintenabilité (mesure I'effort pour modifier le logiciel)

@ la portabilité (facilité d'utilisation /installation sur différents environnements)

Fiabilité Logicielle 9/49

Fiabilité vs Qualité du code

La qualité de code comprend :
o lisibilité
o efficacité
@ durabilité (maintenabilité - réutilisabilité - portabilité)

Un code de qualité tend a augmenter la fiabilité du logiciel (relecture plus facile,
bonnes pratiques éliminant des constructions exotiques, ...).

Fiabilité Logicielle

Deux problématiques distinctes : Fiabilité vs Sécurité

o Fiabilité : le systéme se comporte toujours comme attendu (spécification) dans le
cadre/environnement prévu
» qualité logicielle

> test, simulation, débogage
» validation, certification

@ Sécurité : le systeme résiste a des attaques malveillantes (contexte non
prévu/prévisible)

» virus, malware, phishing
» détection d’intrusion, pot de miel
» authentification, confidentialité, secret, anonymat, politique de sécurité

Propriétés fonctionnelles (lien entre entrée et sorties) vs propriétés non-fonctionnelles
(tous les autres aspects : performance, sécurité, ...).

Fiabilité Logicielle 11 / 49

Lien entre fiabilité et sécurité

Absence de fiabilité d'un programme peut entrainer des failles de sécurité.

@ Heartbleed (faille OpenSSL) en 2014: utilisation de memcpy sans vérification de
taille = vol d’information et compromission d'informations sensibles

@ Mauvaise implémentation de I'algorithme de signature ECDSA en Java en 2022 :
oubli de vérification que les deux parties de la signature sont non nulles (auquel
cas la signature est valide quel que soit le message signé)

Causes fréquentes de non-fiabilité :

@ manque de robustesse de I'application ou des applications/API tiers utilisées
@ mauvaise utilisation des APls

@ mauvaise gestion de la mémoire (fuites, dépassements de tampon, ...)

@ oubli de gestions de cas particuliers

Fiabilité Logicielle 12 / 49

Fiabilité logicielle : quelques échecs (1/2)

@ Le 4 juin 1996, le premier vol de la fusée Ariane 5 se termina apres 37 secondes
par la perte de controle de |'engin, suivie de son explosion.

» Réutilisation de code d'Ariane 4 dans Ariane 5 sans prendre en compte que les données
d’entrée ne seraient

» Absence de récupération de |'erreur - redondance matériel inutile

» Colit : 370 millions $

@ En 2015, Toyota rappelle 650000 véhicules hybrides suite a un bug logiciel

» Les paramétres du logiciel de contrdle des unités de commande des moteurs/générateurs et
du systéme hybride peuvent générer une dégradation de certains composants électroniques".
Dans certains cas, le véhicule pourrait passer en mode « sécurité » en limitant la puissance
disponible voire méme, plus rarement, devenir totalement inopérant.

Fiabilité Logicielle 13 / 49

Fiabilité logicielle : quelques échecs (2/2)

@ En novembre 2021, les possesseurs de Tesla n'ont pu ouvrir ou démarrer leur
voiture a cause d'un bug informatique.

» Un probleme de serveur internet, rend inopérante |'application smartphone permettant
habituellement de commander sa Tesla.

@ Entre 1985 et 1987, |'outil de radiographie Therac-25 fut impliqué dans au moins
six accidents, des patients recevant des doses massives de radiation.

> la défaillance est due au logiciel pilotant I'outil.
> au moins cing patients décédérent des suites de I'irradiation.

@ projet du logiciel Louvois 1996 - 2013 (gestion des soldes des armées) -
développement initial en interne, puis appel a Stéria

> logiciel complexe qui n’a jamais fonctionné : soldes non versées - trop percu.
» abandon définitif du projet en 2013 ; codt : 175 millions €

Fiabilité Logicielle 14 / 49

Fiabilité logicielle et développement logiciel

Crise du logiciel : années 1960

explosion de la taille et de la complexité des logiciels = difficultés de développement,
de maintenance et de fiabilité

= naissance du terme "génie logiciel" (software engineering) avec les méthodologies
de gestion de projet en cascade et en cycle en V qui intégrent des phases de validation
et de vérification

La fiabilité logicielle est donc un enjeu majeur du développement logiciel depuis plus
de 50 ans qui n'est toujours pas résolu de maniere satisfaisante.

Fiabilité Logicielle 15 / 49

Fiabilité logicielle dans le cycle en V

Expressions
> e ecette
des besoins . Le cycle en V
/ Les tests forment la remontée
Spécifications Validation apres la cascade des analyses
Conception |, . .. Tests
architecturale d’intégration
Conception |, Tests
détaillée unitaires

Fiabilité Logicielle 16 / 49

Fiabilité logicielle avec méthodes agiles et TDD

Méthode Agile :

@ tests au niveau de chacun des sprints, qui en font pleinement partie
@ tests fonctionnels et d'acceptation basés sur les "user stories" du sprint puis
correction des bugs avant le sprint suivant

TDD : Test Driven Development - Développement dirigé par les tests
Développement incrémental selon le cycle

@ ajout d'une fonctionnalité élémentaire

@ création d'une suite de tests pour cette fonctionnalité

@ développement de code "minimal" (passant les tests) pour cette fonctionnalité
@ tests de non-régression

Fiabilité Logicielle 17 / 49

Fiabilité logicielle avec BDD

BDD : Behavior Driven Development - Développement dirigé par le comportement

@ extension du TDD
o utilisation d'un langage commun entre développeurs, testeurs et clients pour
décrire le comportement attendu du logiciel

@ description des comportements attendus sous forme de scénarios (donnant lieu a
des tests automatisés)

@ permet une meilleure compréhension des exigences et une collaboration plus
étroite entre les différentes parties prenantes du projet

Fiabilité Logicielle 18 / 49

Utilité et cout de la fiabilité logicielle

Utilité de la fiabilité du logiciel :

@ Nécessaire : critéres de qualité logicielle exigée par le client
@ Indispensable : logiciels critiques (transport, nucléaire, ...)
@ Colit : de 30 a 80% du coiit du développement (vérification et validation)

Mais reste souvent vu comme une activité non productive :

o Difficile a3 mettre en ceuvre : équipe dédiée, méthodologies, ...
@ Sacrifié lors des retards de livraison "Ce n'est pas un bug, c'est une feature !"
@ Souvent négligé par les étudiants : "ca compile, ca marche"

Cependant, le colit des erreurs logicielles est important :

@ bug du pentium (erreur dans I'algorithme de division de I'’ALU) : 500 Millions de $
@ logiciel du 737 Max : plusieurs milliards de $

Fiabilité Logicielle 19 / 49

Difficultés de la fiabilité lors du développement logiciel

o Taille des logiciels développés : plusieurs millions de lignes de code

@ spécification incompléte, ambigué ou erronée (oublis de cas particuliers)

@ Complexité des logiciels développés : systemes distribués avec de nombreux
composants

@ Utilisation de code et d'applications tiers (API, bibliotheques, ...)

@ Multitude des scénarios d'utilisation et d'interaction (difficulté de reproduction
des bugs)

Fiabilité Logicielle 20 / 49

Difficultés de la fiabilité lors du cycle de vie

Maintenance

@ Correction d'erreurs
@ ajout de fonctionnalités

v

Réutilisation : logiciel bati sur d'autres versions
ou produits (API)

@ mettre a jour les spécifications
@ reprendre le processus de validation /vérification
(tests, analyses, ...)

Fiabilité Logicielle

ALL MODERN DIGITAL
INFRASTRUCTURE

A PROTECT S0ME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING

21 / 49

Fiabilité logicielle du point de vue du client

Comment assurer la qualité logicielle exigée par le client ?

@ processus et méthodologie de développement (cycle en V, méthode agile, normes
de codage, ...)

@ tests (recette utilisateur/tests d'acceptation)

@ revue de code et audit

@ certification (normes)

@ analyse statique de programmes

@ méthodes formelles

En cas de logiciels critiques, les normes et les méthodes de validation sont renforcées.

Fiabilité Logicielle 22 /49

Fiabilité Logicielle — Contenu

@ Spécifications (apercu) :

@ langue naturelle
@ langages standardisés/normalisés (UML, SDL, SADT, ...)

@ langages formels (logique, automates, ...)

Q Tests :

@ tests boite blanche : couverture de code
@ mocking : simulation de composants externes pour tester des parties

© tests boite noire : tests sans code accessible

© Méthodes formelles :
@ Model-checking : modéliser le systéme par un automate et vérifier des propriétés exprimées

en logique temporelle
@ Analyse statique

© Preuve de programmes - vérification déductive

La spécification en quelques mots (1/2)

Différents formalismes de spécification :
@ langue naturelle

@ langage standardisé et/ou normalisé

» UML : diagrammes de cas d'utilisation, de classes, d’activités, de séquences, ...
» SADT : analyse fonctionnelle descendante représentant les activités et les flux entre elles
» SDL : spécification de systéemes temps-réel

@ langages formels : logique, automates, ...

Fiabilité Logicielle 24 / 49

La spécification en quelques mots (2/2)

@ langage naturel :
& compréhensible par tous (y compris le client)
© sémantique floue, ambigiie (trop verbeux)
@ langage standardisé et/ou normalisé
¢ langage permettant la compréhension entre MOA, MOE et les développeurs
© sémantique pas forcément suffisamment détaillée (seule)
@ langages formels : logique, automates, ...
¢ langage avec une sémantique non ambiglie

© difficile a appréhender par le client (expertise minimale requise pour la
compréhension)

Fiabilité Logicielle 25 / 49

Les tests en quelques mots

@ Tester mon programme
pour découvrir des défauts (bugs)
@ Automatiser les tests

pour systématiser et faciliter la répétition des tests (lors de la maintenance par
exemple)

@ Choisir des tests

pour maximiser la découverte de défauts avec un minimum de tests

Fiabilité Logicielle 26 / 49

Différents types de tests

Niveaux de tests

@ Tests unitaires (ou test de composants)
@ Tests d'intégration

© Tests systeme (ou tests fonctionnels)

@ Tests d'acceptation (ou tests de recette)

Types de tests

@ Tests avec données persistantes
@ Test de non-régression
@ Tests aléatoires (Fuzzing)

Fiabilité Logicielle 27 / 49

Test : erreurs, infections et défauts

erreur :
static int fibonacci(int n) { . . N
i instruction erronée (I'erreur est
if (n == 0) return O; .
// error: should be fibonacci = 1 humaine)
_ A]] infection :
int previous = 0, fibonacci = -1;

propagation des conséquences de
I'erreur dans la suite du
programme

défaut :

constatation d'une faute/ d'un
défaut dans le programme

for (int i = 2; i <= n; i++) {
int temp = previous + fibonacci;
previous = fibonacci;
fibonacci = temp;

}

return fibonacci;

@ Test : faire apparaitre les défauts et documenter
@ Déboggage : remonter a |'erreur
@ Correction : corriger |'erreur

Fiabilité Logicielle 28 / 49

Les méthodes formelles en quelques mots
E. W. Dijkstra (prix Turing 1972)

“Program testing can be used to show the presence of bugs, but never to show their
absence!”

Méthodes formelles : prouver que le programme vérifie certaines propriétés.

Quelques exemples :
@ analyse statique
@ model-checking
@ preuve de programmes

@ génération automatique du programme

Fiabilité Logicielle 29 / 49

Limites théoriques

Théoréme de Rice : toute propriété "intéressante" (non-triviale) d'un programme écrit
dans un langage/formalisme Turing-complet est indécidable

@ Est-ce que le programme termine 7
o Cette variable prend-elle la valeur 0 durant I'exécution 7
o Cette instruction est-elle exécutée ?

Preuve : indécidabilité du probleme de I'arrét.

Fiabilité Logicielle

Automatisation de la vérification de propriétés

Objectif : définir des algorithmes de vérification de propriétés J

AlLogrithme qui, pour un programme P et une propriété ¢, décide si P vérifie ¢

@ correction : si la propriété est vérifiée, I'algorithme répond vrai

Les méthodes incorrectes renvoie des faux-négatifs (I'algorithme valide la
propriété alors qu'elle est fausse)

@ complétude : si la propriété n'est pas vérifiée, I'algorithme répond faux

Les méthodes incomplétes renvoie des faux-positifs (I'algorithme ne peut décider
que la propriété est bien vérifiée)

Fiabilité Logicielle 31 /49

Les méthodes formelles : Analyse statique

@ vérification d'une propriété sans exécution du code
@ approximation du comportement du programme
@ propriétés spécifiques :

» non-déréférencement de pointeur NULL

» vérification des bornes de tableaux

» race condition

> ...

@ outils : FindBugs, Astrée (AbsInt), Frama-C (CEA), Fortify, Zoncolan (Facebook),

@ souvent incompléte, parfois incorrecte

Fiabilité Logicielle

Les méthodes formelles : Model-checking

@ basé sur un systéeme de transitions "fini" P et une spécification en logique
temporelle S

@ algorithme de model-checking : P =S
@ outils : Spin, Uppaal, ...

@ correct et complet, mais travaille sur une abstraction du programme

Fiabilité Logicielle 33 /49

Les méthodes formelles : preuve de programmes

@ Logiques pour la programmation : logique de Hoare, logique de séparation, ...

{x>y} x=x—y{x>0}

@ Instrumentalisation du code / annotation (notamment les invariants de boucle)

o utilisation de solveurs pour les formules logiques : SMT (Z3 - Microsoft), PVS, ...

@ correct mais souvent incomplet
Outil : Frama-C (plugin WP), Why3, ...

/* @ ensures A: *a == \old(*b) ;
@ ensures B: *b == \old(*a)
@ */

void swap(int *a,int *b) ;

J

Fiabilité Logicielle 34 / 49

Les méthodes formelles : génération automatique

Génération (automatique) de programmes :

@ méthode formelle B : raffinements successifs de la spécification vers le code (ligne
14 métro parisien)

@ calcul des constructions ROCQ (anciennement COQ) : assistant de preuve basé
sur une correspondance entre preuves (calcul des prédicats) et programmes
(lambda-calcul typé d'ordre supérieur)

» la spécification est un type d’ordre supérieur
» la réalisation (preuve) du type est un programme vérifiant la spécification

» mais il faut aider a la réalisation de la preuve

Fiabilité Logicielle 35 /49

Section 3

Spécifications

Fiabilité Logicielle

Spécification : disclaimer

Survol du théme / ne se veut absolument pas exhaustif

@ généralités sur la notion de spécification
@ spécification abstraite algébrique
@ la méthodologie UML

Fiabilité Logicielle 37 /49

Spécification : vue d'ensemble

Ensemble de documents donnant une description stable, abstraite (orienté
client/métier), la moins dépendante possible des contraintes liées au matériel, aux
systemes, a I'environnement.

Ceci comprend notamment :
@ les attendus fonctionnels
@ les attendus non-fonctionnels (performance, disponibilité, sécurité, ...)
@ le contexte de fonctionnement
° ..

Décrit ce qui doit étre fait (Spécification) et non comment (Code).

Fiabilité Logicielle 38 /49

Spécification : vue d'ensemble (I1)

Qualités d'une bonne spécification :
@ claire, la moins ambigiie possible et cohérente
@ la plus exhaustive et compléte possible
@ concise et au bon niveau d'abstraction,
Documents "contractuels" entre :
o le client / MOA (Maitrise d'OuvrAge) et la MOE (Maitrise d'Euvre)
@ l'analyste fonctionnel et le développeur
La spécification précede le développement (ce n’est pas la description du

logiciel)

Fiabilité Logicielle 39 / 49

Différents types de spécification

@ les spécifications informelles écrites en langage naturelle

@ les spécifications semi-formelles écrites dans une syntaxe plus précise et normée et
s'appuyant notamment sur des diagrammes d'un formalisme plus ou moins
standardisés et souvent annotés (exemple : UML)

@ les spécifications formelles écrites dans un formalisme possédant une syntaxe et
une sémantique univoque

Fiabilité Logicielle 40 / 49

Spécifications en langage naturel

@ compréhensible par tous les partenaires du projet
@ source de potentielles ambiguités, voir de contradictions.
o différents niveaux de langage

» de maniére complétement libre, littéraire...

» de maniére trés encadrée (structurée) par une méthode qui fournit un plan précis de ce qu'il
faut décrire

Fiabilité Logicielle 41 / 49

Spécifications semi-formelles

o facilement compréhensible entre analyste fonctionnel et développeur (voir entre le
client et I'équipe-projet)

@ source de moins d'ambiguité que la spécification en langue naturelle.

@ pas complétement adapté pour un traitement automatisé (mais permet souvent le
test et/ou la simulation)

Fiabilité Logicielle

Formalisme de description (de données)

@ REGEXP : expressions réguliéres (présentes dans tous les langages de

programmation)

o ABNF : Augmented Backus-Naur Form

grammaire (BNF) augmentée pour la définition des normes internet

le format d'une date dans le RFC 2822 :

date =
year =
month =
month-name =

day =

Fiabilité Logicielle 43 / 49

day month year
4xDIGIT / obs-year
(FWS month-name FWS) / obs-month
"Jan" / "Feb" / "Mar" / "Apr" /
"May" / "Jun" / "Jul" / "Aug" /
"Sep" / "Oct" / "Nov" / "Dec"
([FWS] 1*2DIGIT) / obs-day

Automates

@ Automates d'états finis :
machine de Mealy, machine
de Moore

@ Automates étendus
exemple : digicode A-B-A en
3 essais max

sicpt <3:B,C
cpt :=cpt+1

sicpt <3:B,C,
cpt 1= cpt

sicpt <3: A
cpt:=cpt+1

sicpt <3:C
cpti=cpt+1

sicpt =3: A, C
cpt :=cpt +1

sicpt =3:B,C
cpt :=cpt +1

sicpt =3:B,C
cpt :=cpt +1

Fiabilité Logicielle

44 / 49

Diagrammes UML d’états-transitions ou d'activité

Jafficher numéro client . .
>| associer client

[client trouvé]

chercher client

Insérer carte

Saisir code
[Annulation] "

[code valide]

Cholsir opération

créer client
[code invalide]

[client non trouvél

@ diagramme états-transitions : automates a états finis
@ diagramme d'activités : flux de contrdle (avec
parallélisme possible)

Saisir montant

autorisé
Distribuer billets.
Restituer carte

@

Fiabilité Logicielle 45 / 49

Formalismes logiques

@ logiques "génériques" interprétées sur un domaine spécifique : logique du premier
ordre, logiques d'ordre supérieur,
Vi,je0,n—1], i<j= T[i] < T[]
o logiques dédiées a la spécification :

» LTL : logique temporelle de temps discret

G(req — F granted)

» TLTL, MTL, MITL : logiques temporisées de temps continu

G(req — F<3 granted)

Logique et UML

OCL (Object Constraint Language) au sein d'UML
@ propriétés invariantes :

context Banque
inv: not (clients -> exists (age < 18))

Il n'existe pas de clients de la banque dont |'age est inférieur a 18 ans
@ définition de pré- et post-conditions

context Compte::débiter(somme : Integer)
pre: somme > O
post: solde = solde@pre - somme

» la somme a débiter doit étre positive pour que I'appel de I'opération soit valide
» aprés |'exécution de |'opération, I'attribut solde doit &tre débité du bon montant

Fiabilité Logicielle 47 / 49

Méthodes B et Z

Formalismes formels de spécification basés sur un langage de haut-niveau incluant la
logique et les ensembles

@ la spécification est précisée via un mécanisme de raffinement
@ |'ultime étape de raffinement permet une implémentation directe.

Fiabilité Logicielle 48 / 49

Exemple B simple

MACHINE
swap // échange les valeurs de deux variables xx et yy
VARIABLES
xx, yy // déclarations des variables
INVARIANT
xx : NAT & yy : NAT // les variables restent des naturels
INITIALISATION
xx :: NAT || yy :: NAT // initialisation paralléle
OPERATIONS
echange
BEGIN
XX

yy] yy T XX
END

END

	Informations générales sur l’enseignement
	Introduction à la fiabilité logicielle
	Spécifications

