
Fiabilité Logicielle
Généralités

Arnaud Labourel

2025-26

Arnaud Labourel Fiabilité Logicielle 1 / 49

Section 1

Informations générales sur l’enseignement

Arnaud Labourel Fiabilité Logicielle 2 / 49

Fiabilité Logicielle – Agenda
Les lundis sur 6 semaines :

6 cours de 1h30 : 9 heures (A. Labourel)
4 TD de 2h heures : 8 heures (A. Labourel et F.-X. Dupé)
5 TP de 2h heures : 10 heures (A. Labourel et F.-X. Dupé)

MCC : (0, 5 ∗ CC) + (0, 5 ∗ ET) avec CC note de suivi de TP (rendu chaque semaine)

Utilisation de la plateforme AMeTICE

mise en ligne : supports de cours - sujets de TD et de TP
rendu des travaux pratiques via git (etulab)

Adresse mail :

arnaud.labourel@univ-amu.fr
francois-xavier.dupe@univ-amu.fr

Arnaud Labourel Fiabilité Logicielle 3 / 49

arnaud.labourel@univ-amu.fr
francois-xavier.dupe@univ-amu.fr

Fiabilité Logicielle – Contenu

1 Spécifications (aperçu)
2 Tests (boite blanche et boite noire)
3 Méthodes formelles (évoquées rapidement)

Arnaud Labourel Fiabilité Logicielle 4 / 49

Section 2

Introduction à la fiabilité logicielle

Arnaud Labourel Fiabilité Logicielle 5 / 49

Fiabilité logicielle : une définition

Quoi : assurer un certain nombre de propriétés sur le logiciel en production (dans
un environnement donné) qui garantissent son aptitude à remplir sa mission.

Comment : en appliquant des méthodes ou en suivant des méthodologies lors de
son développement et de sa maintenance

Arnaud Labourel Fiabilité Logicielle 6 / 49

Fiabilité logicielle : pourquoi ?

enjeux économique ou de sureté/sécurité des personnes, des infrastructures
et des organisations du fait de l’omniprésence du logiciel

exemple : transports, production énergétique, secteur bancaire, ...

complexité des logiciels : taille des développements - inter-dépendance
logicielles (API, Applications orientée service, cloud, ...)

exemple : noyau Linux 17 millions de lignes de code pour 19000 contributeurs, ...

Arnaud Labourel Fiabilité Logicielle 7 / 49

Fiabilité logicielle : concepts en jeu

Run Time Error : erreur à l’exécution

Adéquation à une spécification

Maintenance logicielle

Sécurité

Performance

Ceci induit des coûts nécessitant du professionnalisme.

Arnaud Labourel Fiabilité Logicielle 8 / 49

Fiabilité vs Qualité logicielle

La qualité logicielle comprend :

le suivi d’une méthodologie visant à garantir une certaine "qualité" (norme
ISO/CEI 9126)

la mise en place d’indicateurs permettant une mesure de qualité

La fiabilité logicielle est une des composantes de la qualité logicielle qui comprend
également :

la facilité d’utilisation

la maintenabilité (mesure l’effort pour modifier le logiciel)

la portabilité (facilité d’utilisation/installation sur différents environnements)

Arnaud Labourel Fiabilité Logicielle 9 / 49

Fiabilité vs Qualité du code

La qualité de code comprend :

lisibilité
efficacité
durabilité (maintenabilité - réutilisabilité - portabilité)

Un code de qualité tend à augmenter la fiabilité du logiciel (relecture plus facile,
bonnes pratiques éliminant des constructions exotiques, ...).

Arnaud Labourel Fiabilité Logicielle 10 / 49

Deux problématiques distinctes : Fiabilité vs Sécurité
Fiabilité : le système se comporte toujours comme attendu (spécification) dans le
cadre/environnement prévu
▶ qualité logicielle
▶ test, simulation, débogage
▶ validation, certification

Sécurité : le système résiste à des attaques malveillantes (contexte non
prévu/prévisible)
▶ virus, malware, phishing
▶ détection d’intrusion, pot de miel
▶ authentification, confidentialité, secret, anonymat, politique de sécurité

Propriétés fonctionnelles (lien entre entrée et sorties) vs propriétés non-fonctionnelles
(tous les autres aspects : performance, sécurité, ...).

Arnaud Labourel Fiabilité Logicielle 11 / 49

Lien entre fiabilité et sécurité
Absence de fiabilité d’un programme peut entrainer des failles de sécurité.

Heartbleed (faille OpenSSL) en 2014: utilisation de memcpy sans vérification de
taille ⇒ vol d’information et compromission d’informations sensibles

Mauvaise implémentation de l’algorithme de signature ECDSA en Java en 2022 :
oubli de vérification que les deux parties de la signature sont non nulles (auquel
cas la signature est valide quel que soit le message signé)

Causes fréquentes de non-fiabilité :

manque de robustesse de l’application ou des applications/API tiers utilisées
mauvaise utilisation des APIs
mauvaise gestion de la mémoire (fuites, dépassements de tampon, ...)
oubli de gestions de cas particuliers

Arnaud Labourel Fiabilité Logicielle 12 / 49

Fiabilité logicielle : quelques échecs (1/2)

Le 4 juin 1996, le premier vol de la fusée Ariane 5 se termina après 37 secondes
par la perte de contrôle de l’engin, suivie de son explosion.
▶ Réutilisation de code d’Ariane 4 dans Ariane 5 sans prendre en compte que les données

d’entrée ne seraient
▶ Absence de récupération de l’erreur - redondance matériel inutile
▶ Coût : 370 millions $

En 2015, Toyota rappelle 650000 véhicules hybrides suite à un bug logiciel
▶ Les paramètres du logiciel de contrôle des unités de commande des moteurs/générateurs et

du système hybride peuvent générer une dégradation de certains composants électroniques".
Dans certains cas, le véhicule pourrait passer en mode « sécurité » en limitant la puissance
disponible voire même, plus rarement, devenir totalement inopérant.

Arnaud Labourel Fiabilité Logicielle 13 / 49

Fiabilité logicielle : quelques échecs (2/2)
En novembre 2021, les possesseurs de Tesla n’ont pu ouvrir ou démarrer leur
voiture à cause d’un bug informatique.
▶ Un problème de serveur internet, rend inopérante l’application smartphone permettant

habituellement de commander sa Tesla.

Entre 1985 et 1987, l’outil de radiographie Therac-25 fut impliqué dans au moins
six accidents, des patients recevant des doses massives de radiation.
▶ la défaillance est due au logiciel pilotant l’outil.
▶ au moins cinq patients décédèrent des suites de l’irradiation.

projet du logiciel Louvois 1996 - 2013 (gestion des soldes des armées) -
développement initial en interne, puis appel à Stéria
▶ logiciel complexe qui n’a jamais fonctionné : soldes non versées - trop perçu.
▶ abandon définitif du projet en 2013 ; coût : 175 millions €

Arnaud Labourel Fiabilité Logicielle 14 / 49

Fiabilité logicielle et développement logiciel

Crise du logiciel : années 1960
explosion de la taille et de la complexité des logiciels ⇒ difficultés de développement,
de maintenance et de fiabilité

⇒ naissance du terme "génie logiciel" (software engineering) avec les méthodologies
de gestion de projet en cascade et en cycle en V qui intègrent des phases de validation
et de vérification

La fiabilité logicielle est donc un enjeu majeur du développement logiciel depuis plus
de 50 ans qui n’est toujours pas résolu de manière satisfaisante.

Arnaud Labourel Fiabilité Logicielle 15 / 49

Fiabilité logicielle dans le cycle en V

Spécifications

Conception
architecturale

Conception
détaillée

Tests
unitaires

Expressions

Tests
d’intégration

Validation

Réalisation

Recette
des besoins Le cycle en V

Les tests forment la remontée
après la cascade des analyses

Arnaud Labourel Fiabilité Logicielle 16 / 49

Fiabilité logicielle avec méthodes agiles et TDD

Méthode Agile :

tests au niveau de chacun des sprints, qui en font pleinement partie
tests fonctionnels et d’acceptation basés sur les "user stories" du sprint puis
correction des bugs avant le sprint suivant

TDD : Test Driven Development - Développement dirigé par les tests

Développement incrémental selon le cycle

ajout d’une fonctionnalité élémentaire
création d’une suite de tests pour cette fonctionnalité
développement de code "minimal" (passant les tests) pour cette fonctionnalité
tests de non-régression

Arnaud Labourel Fiabilité Logicielle 17 / 49

Fiabilité logicielle avec BDD

BDD : Behavior Driven Development - Développement dirigé par le comportement

extension du TDD
utilisation d’un langage commun entre développeurs, testeurs et clients pour
décrire le comportement attendu du logiciel
description des comportements attendus sous forme de scénarios (donnant lieu à
des tests automatisés)
permet une meilleure compréhension des exigences et une collaboration plus
étroite entre les différentes parties prenantes du projet

Arnaud Labourel Fiabilité Logicielle 18 / 49

Utilité et coût de la fiabilité logicielle
Utilité de la fiabilité du logiciel :

Nécessaire : critères de qualité logicielle exigée par le client
Indispensable : logiciels critiques (transport, nucléaire, ...)
Coût : de 30 à 80% du coût du développement (vérification et validation)

Mais reste souvent vu comme une activité non productive :

Difficile à mettre en œuvre : équipe dédiée, méthodologies, ...
Sacrifié lors des retards de livraison "Ce n’est pas un bug, c’est une feature !"
Souvent négligé par les étudiants : "ça compile, ça marche"

Cependant, le coût des erreurs logicielles est important :

bug du pentium (erreur dans l’algorithme de division de l’ALU) : 500 Millions de $
logiciel du 737 Max : plusieurs milliards de $

Arnaud Labourel Fiabilité Logicielle 19 / 49

Difficultés de la fiabilité lors du développement logiciel

Taille des logiciels développés : plusieurs millions de lignes de code
spécification incomplète, ambiguë ou erronée (oublis de cas particuliers)
Complexité des logiciels développés : systèmes distribués avec de nombreux
composants
Utilisation de code et d’applications tiers (API, bibliothèques, ...)
Multitude des scénarios d’utilisation et d’interaction (difficulté de reproduction
des bugs)

Arnaud Labourel Fiabilité Logicielle 20 / 49

Difficultés de la fiabilité lors du cycle de vie

Maintenance
Correction d’erreurs
ajout de fonctionnalités

Réutilisation : logiciel bâti sur d’autres versions
ou produits (API)

mettre à jour les spécifications
reprendre le processus de validation/vérification
(tests, analyses, ...)

Arnaud Labourel Fiabilité Logicielle 21 / 49

Fiabilité logicielle du point de vue du client

Comment assurer la qualité logicielle exigée par le client ?

processus et méthodologie de développement (cycle en V, méthode agile, normes
de codage, ...)
tests (recette utilisateur/tests d’acceptation)
revue de code et audit
certification (normes)
analyse statique de programmes
méthodes formelles

En cas de logiciels critiques, les normes et les méthodes de validation sont renforcées.

Arnaud Labourel Fiabilité Logicielle 22 / 49

Fiabilité Logicielle – Contenu
1 Spécifications (aperçu) :

1 langue naturelle
2 langages standardisés/normalisés (UML, SDL, SADT, ...)
3 langages formels (logique, automates, ...)

2 Tests :
1 tests boite blanche : couverture de code
2 mocking : simulation de composants externes pour tester des parties
3 tests boite noire : tests sans code accessible

3 Méthodes formelles :
1 Model-checking : modéliser le système par un automate et vérifier des propriétés exprimées

en logique temporelle
2 Analyse statique
3 Preuve de programmes - vérification déductive

Arnaud Labourel Fiabilité Logicielle 23 / 49

La spécification en quelques mots (1/2)

Différents formalismes de spécification :

langue naturelle

langage standardisé et/ou normalisé
▶ UML : diagrammes de cas d’utilisation, de classes, d’activités, de séquences, ...
▶ SADT : analyse fonctionnelle descendante représentant les activités et les flux entre elles
▶ SDL : spécification de systèmes temps-réel

langages formels : logique, automates, ...

Arnaud Labourel Fiabilité Logicielle 24 / 49

La spécification en quelques mots (2/2)
langage naturel :

⊕ compréhensible par tous (y compris le client)

⊖ sémantique floue, ambigüe (trop verbeux)

langage standardisé et/ou normalisé

⊕ langage permettant la compréhension entre MOA, MOE et les développeurs

⊖ sémantique pas forcément suffisamment détaillée (seule)

langages formels : logique, automates, ...

⊕ langage avec une sémantique non ambigüe

⊖ difficile à appréhender par le client (expertise minimale requise pour la
compréhension)

Arnaud Labourel Fiabilité Logicielle 25 / 49

Les tests en quelques mots

Tester mon programme

pour découvrir des défauts (bugs)

Automatiser les tests

pour systématiser et faciliter la répétition des tests (lors de la maintenance par
exemple)

Choisir des tests

pour maximiser la découverte de défauts avec un minimum de tests

Arnaud Labourel Fiabilité Logicielle 26 / 49

Différents types de tests

Niveaux de tests
1 Tests unitaires (ou test de composants)
2 Tests d’intégration
3 Tests système (ou tests fonctionnels)
4 Tests d’acceptation (ou tests de recette)

Types de tests
Tests avec données persistantes
Test de non-régression
Tests aléatoires (Fuzzing)

Arnaud Labourel Fiabilité Logicielle 27 / 49

Test : erreurs, infections et défauts
static int fibonacci(int n) {

if (n == 0) return 0;
// error: should be fibonacci = 1
int previous = 0, fibonacci = -1;
for (int i = 2; i <= n; i++) {

int temp = previous + fibonacci;
previous = fibonacci;
fibonacci = temp;

}
return fibonacci;

erreur :
instruction erronée (l’erreur est
humaine)
infection :
propagation des conséquences de
l’erreur dans la suite du
programme
défaut :
constatation d’une faute/ d’un
défaut dans le programme

Test : faire apparaitre les défauts et documenter
Déboggage : remonter à l’erreur
Correction : corriger l’erreur

Arnaud Labourel Fiabilité Logicielle 28 / 49

Les méthodes formelles en quelques mots
E. W. Dijkstra (prix Turing 1972)
“Program testing can be used to show the presence of bugs, but never to show their
absence!”

Méthodes formelles : prouver que le programme vérifie certaines propriétés.

Quelques exemples :

analyse statique

model-checking

preuve de programmes

génération automatique du programme
Arnaud Labourel Fiabilité Logicielle 29 / 49

Limites théoriques

Théorème de Rice : toute propriété "intéressante" (non-triviale) d’un programme écrit
dans un langage/formalisme Turing-complet est indécidable

Est-ce que le programme termine ?

Cette variable prend-elle la valeur 0 durant l’exécution ?

Cette instruction est-elle exécutée ?

...

Preuve : indécidabilité du problème de l’arrêt.

Arnaud Labourel Fiabilité Logicielle 30 / 49

Automatisation de la vérification de propriétés

Objectif : définir des algorithmes de vérification de propriétés
ALogrithme qui, pour un programme P et une propriété ϕ, décide si P vérifie ϕ

correction : si la propriété est vérifiée, l’algorithme répond vrai

Les méthodes incorrectes renvoie des faux-négatifs (l’algorithme valide la
propriété alors qu’elle est fausse)

complétude : si la propriété n’est pas vérifiée, l’algorithme répond faux

Les méthodes incomplètes renvoie des faux-positifs (l’algorithme ne peut décider
que la propriété est bien vérifiée)

Arnaud Labourel Fiabilité Logicielle 31 / 49

Les méthodes formelles : Analyse statique
vérification d’une propriété sans exécution du code

approximation du comportement du programme

propriétés spécifiques :
▶ non-déréférencement de pointeur NULL

▶ vérification des bornes de tableaux

▶ race condition

▶

outils : FindBugs, Astrée (AbsInt), Frama-C (CEA), Fortify, Zoncolan (Facebook),
...

souvent incomplète, parfois incorrecte
Arnaud Labourel Fiabilité Logicielle 32 / 49

Les méthodes formelles : Model-checking

basé sur un système de transitions "fini" P et une spécification en logique
temporelle S

algorithme de model-checking : P |= S

outils : Spin, Uppaal, ...

correct et complet, mais travaille sur une abstraction du programme

Arnaud Labourel Fiabilité Logicielle 33 / 49

Les méthodes formelles : preuve de programmes
Logiques pour la programmation : logique de Hoare, logique de séparation, ...

{x > y} x := x − y {x > 0}

Instrumentalisation du code / annotation (notamment les invariants de boucle)

utilisation de solveurs pour les formules logiques : SMT (Z3 - Microsoft), PVS, ...

correct mais souvent incomplet

Outil : Frama-C (plugin WP), Why3, ...

/* @ ensures A: *a == \old(*b) ;
@ ensures B: *b == \old(*a) ;
@ */
void swap(int *a,int *b) ;

Arnaud Labourel Fiabilité Logicielle 34 / 49

Les méthodes formelles : génération automatique

Génération (automatique) de programmes :

méthode formelle B : raffinements successifs de la spécification vers le code (ligne
14 métro parisien)

calcul des constructions ROCQ (anciennement COQ) : assistant de preuve basé
sur une correspondance entre preuves (calcul des prédicats) et programmes
(lambda-calcul typé d’ordre supérieur)
▶ la spécification est un type d’ordre supérieur

▶ la réalisation (preuve) du type est un programme vérifiant la spécification

▶ mais il faut aider à la réalisation de la preuve

Arnaud Labourel Fiabilité Logicielle 35 / 49

Section 3

Spécifications

Arnaud Labourel Fiabilité Logicielle 36 / 49

Spécification : disclaimer

Survol du thème / ne se veut absolument pas exhaustif

généralités sur la notion de spécification
spécification abstraite algébrique
la méthodologie UML

Arnaud Labourel Fiabilité Logicielle 37 / 49

Spécification : vue d’ensemble

Ensemble de documents donnant une description stable, abstraite (orienté
client/métier), la moins dépendante possible des contraintes liées au matériel, aux
systèmes, à l’environnement.

Ceci comprend notamment :

les attendus fonctionnels

les attendus non-fonctionnels (performance, disponibilité, sécurité, ...)

le contexte de fonctionnement

...

Décrit ce qui doit être fait (Spécification) et non comment (Code).

Arnaud Labourel Fiabilité Logicielle 38 / 49

Spécification : vue d’ensemble (II)

Qualités d’une bonne spécification :

claire, la moins ambigüe possible et cohérente

la plus exhaustive et complète possible

concise et au bon niveau d’abstraction,

Documents "contractuels" entre :

le client / MOA (Maitrise d’OuvrAge) et la MOE (Maitrise d’Œuvre)

l’analyste fonctionnel et le développeur

La spécification précède le développement (ce n’est pas la description du
logiciel)

Arnaud Labourel Fiabilité Logicielle 39 / 49

Différents types de spécification

les spécifications informelles écrites en langage naturelle

les spécifications semi-formelles écrites dans une syntaxe plus précise et normée et
s’appuyant notamment sur des diagrammes d’un formalisme plus ou moins
standardisés et souvent annotés (exemple : UML)

les spécifications formelles écrites dans un formalisme possédant une syntaxe et
une sémantique univoque

Arnaud Labourel Fiabilité Logicielle 40 / 49

Spécifications en langage naturel

compréhensible par tous les partenaires du projet

source de potentielles ambiguïtés, voir de contradictions.

différents niveaux de langage
▶ de manière complètement libre, littéraire...

▶ de manière très encadrée (structurée) par une méthode qui fournit un plan précis de ce qu’il
faut décrire

Arnaud Labourel Fiabilité Logicielle 41 / 49

Spécifications semi-formelles

facilement compréhensible entre analyste fonctionnel et développeur (voir entre le
client et l’équipe-projet)

source de moins d’ambiguïté que la spécification en langue naturelle.

pas complètement adapté pour un traitement automatisé (mais permet souvent le
test et/ou la simulation)

Arnaud Labourel Fiabilité Logicielle 42 / 49

Formalisme de description (de données)
REGEXP : expressions régulières (présentes dans tous les langages de
programmation)

ABNF : Augmented Backus-Naur Form

grammaire (BNF) augmentée pour la définition des normes internet

le format d’une date dans le RFC 2822 :

date = day month year
year = 4*DIGIT / obs-year
month = (FWS month-name FWS) / obs-month
month-name = "Jan" / "Feb" / "Mar" / "Apr" /

"May" / "Jun" / "Jul" / "Aug" /
"Sep" / "Oct" / "Nov" / "Dec"

day = ([FWS] 1*2DIGIT) / obs-day
Arnaud Labourel Fiabilité Logicielle 43 / 49

Automates

Automates d’états finis :
machine de Mealy, machine
de Moore
Automates étendus
exemple : digicode A-B-A en
3 essais max

Automates

Automates d’états finis : machine de Mealy, machine de Moore

Automates étendus

exemple : digicode A-B-A en 3 essais max

0cpt:=0 1 2 3

err

. . .

sicpt < 3 : B , C
cpt := cpt + 1

A

sicpt < 3 : C
cpt := cpt + 1

sicpt < 3 : A
cpt := cpt + 1

B A

sicpt < 3 : B , C
cpt := cpt + 1

sicpt = 3 : B , C
cpt := cpt + 1

sicpt = 3 : A, C
cpt := cpt + 1

sicpt = 3 : B , C
cpt := cpt + 1

JM Talbot Fiabilité Logicielle - SINB34A 2024-25 9 / 13

Arnaud Labourel Fiabilité Logicielle 44 / 49

Diagrammes UML d’états-transitions ou d’activité

diagramme états-transitions : automates à états finis
diagramme d’activités : flux de contrôle (avec
parallélisme possible)

Arnaud Labourel Fiabilité Logicielle 45 / 49

Formalismes logiques
logiques "génériques" interprétées sur un domaine spécifique : logique du premier
ordre, logiques d’ordre supérieur,

∀i , j ∈ [0, n − 1], i ≤ j ⇒ T [i] ≤ T [j]

logiques dédiées à la spécification :
▶ LTL : logique temporelle de temps discret

G(req → F granted)

▶ TLTL, MTL, MITL : logiques temporisées de temps continu

G(req → F≤3 granted)

▶ TLA+ : logic temporal of actions (systèmes distribués)Arnaud Labourel Fiabilité Logicielle 46 / 49

Logique et UML
OCL (Object Constraint Language) au sein d’UML

propriétés invariantes :

context Banque
inv: not (clients -> exists (age < 18))

Il n’existe pas de clients de la banque dont l’age est inférieur à 18 ans

définition de pré- et post-conditions

context Compte::débiter(somme : Integer)
pre: somme > 0
post: solde = solde@pre - somme

▶ la somme à débiter doit être positive pour que l’appel de l’opération soit valide
▶ après l’exécution de l’opération, l’attribut solde doit être débité du bon montant

Arnaud Labourel Fiabilité Logicielle 47 / 49

Méthodes B et Z

Formalismes formels de spécification basés sur un langage de haut-niveau incluant la
logique et les ensembles

la spécification est précisée via un mécanisme de raffinement
l’ultime étape de raffinement permet une implémentation directe.

Arnaud Labourel Fiabilité Logicielle 48 / 49

Exemple B simple
MACHINE

swap // échange les valeurs de deux variables xx et yy
VARIABLES

xx, yy // déclarations des variables
INVARIANT

xx : NAT & yy : NAT // les variables restent des naturels
INITIALISATION

xx :: NAT || yy :: NAT // initialisation parallèle
OPERATIONS

echange =
BEGIN

xx := yy || yy := xx
END

END
Arnaud Labourel Fiabilité Logicielle 49 / 49

	Informations générales sur l’enseignement
	Introduction à la fiabilité logicielle
	Spécifications

