
A Generative Approach to Parsing in the

Framework of the Meaning-Text Theory

Alexis Nasr∗

LATTICE-TALANA

Université Paris 7

and

Observatoire de Linguistique Sens-Texte
alexis.nasr@linguist.jussieu.fr

1 Introduction

Our study is concerned with the procedural aspects of the Text⇒ Meaning cor-
respondence (T ⇒ M) in the Meaning-Text Theory (MTT), or, strictly speak-
ing, the construction of the Semantic Representation of a sentence starting
with its Surface Phonetic Representation. More specifically we will be dealing
with the realization of the transition between a Deep Morphological Structure
(DMorphS) and its corresponding Surface Syntactic Structures (SSyntS)1. This
transition corresponds to the common task of syntactic analysis, or parsing; for
the sake of simplicity, it will be referred to, in this paper, as parsing.

The original aspect of this work with respect to the MTT is our choice to devise
a generative procedure in the framework of the MTT. This choice might seem
surprising since the MTT is a non generative theory. It has therefore appeared
important to us to explain the reasons of this choice. This will be done in Sec-
tion 2. The structure of the remaining of the paper is straightforward, Section 3
describes the formalism: its elementary objects, a combining operation and a
generative procedure. The parsing algorithm is described in Section 4.

∗The author would like to thank all the participants to the symposium which took place
in Saint Just during the summer of 1999 for their fruitful comments on earlier versions of this
paper.

1We will ignore in this study the communicative, anaphoric and prosodic structures.

31

2 From an equative to a generative approach to

parsing

The task of parsing, and more generally, the realization of the T ⇒ M transi-
tion in the framework of the MTT has not been much studied and a number of
important choices need to be made when considering this task. We will discuss
in this section what we consider to be the most important of these choices: to
choose between an equative and a generative approach to parsing. We will first
describe what we believe to be the most natural way of considering parsing in
the MTT : the equative approach. We will show that this approach suffers some
important drawbacks from a procedural point of view and propose one way to
overcome them.

In the equative approach, the T ⇒ M transition can be seen as a series of
transitions of a structure of a given representation level to a structure of the
deeper level. If we take a closer look at the transition we are interested in here,
the DMS ⇒ SSyntS transition, we observe that such a transition makes use of
several pieces of informations which are scattered in several places in a Meaning
Text Model (MTM). More precisely, this transition needs rules contained in the
Surface-Syntactic Component: surface syntactic rules (or syntagms), patterns
for elementary phrases and global word order but it also needs informations
contained in the Explanatory Combinatorial Dictionary (ECD)[MP87b]: gov-
ernment patterns of lexemes and lexical functions. More generally, it is supposed
that all rules and representations can and must be consulted during all transi-
tions.

Devising a way to carry out the DMS ⇒ SSyntS transition with such an or-
ganization of the linguistic knowledge naturally leads to a complex procedure.
Without entering into the details of such a procedure, let us just mention that
it must take into account “rules” of very different natures which are represented
in different formalisms and that the rules should be applied synchronously.

Our main goal being to propose an efficient automatic realization of the DMS
⇒ SSyntS transition, we will allow ourselves to modify the representation of
the linguistic knowledge of the MTT when its organization does not favor a
simple procedural schema. In this work, these modifications take the form of a
grouping of the different knowledge sources necessary to perform the DMS ⇒
SSyntS transition. This grouping leads to the definition of a complex object
called elementary tree, described in Subsection 3.1.

It is important at this point to note that our perspective on the MTT is quite
different from the perspective that has been defined in [Mel88] which explicitly
decided to ignore the dynamic (or procedural) aspects of the Meaning ⇔ Text
transitions, considering that they lie outside the scope of linguistics. These
procedural aspects lie, on the contrary, at the heart of our approach. We will

32

refer to our approach as the procedural approach and to [Mel88] approach as the
descriptive one.

The difference between these two perspectives is well illustrated by the difference
of the representation of linguistic knowledge they propose. In the descriptive
perspective, different linguistic phenomena are described by different rules, in
a analytical approach. As an example, there is no reason, from a descriptive
point of view, to merge two different phenomena as agreement and government
patterns in a single object, these two phenomena are therefore described sepa-
rately: agreement is described in surface syntactic rules while the government
pattern of a lexeme is described in its entry, in the ECD. In the procedural
approach, these phenomena are not described separately; they are merged into
a single homogeneous object in order to be taken into account simultaneously in
a single operation during processing. The procedural approach can be described
as a synthetic approach.

These two approaches and the different organization of the linguistic knowledge
they propose should not be put in a competition, they serve different purposes,
it is therefore natural that they differ. The best way to see elementary trees is
to consider them as the result of a compiling of an MTM, in the original form.
The compiling procedure is unfortunately not defined yet and we do not know
at this point if it can be automated.

The grouping process which lead to the definition of elementary trees also had
an unexpected consequence: the new structures can be interpreted as the ele-
mentary objects of a generative formalism, as will be shown in 3. The compiling
process therefore transformed an equative system into a “generative” one. This
transformation introduces some concepts which did not exist in the MTT, as
the concept of a language generated by a MTM. It also opens the way to a new
definition of parsing in the MTT, in this new framework. Parsing a sentence S
given an MTM is not seen anymore as performing the transition between the
Deep Morphological Structure of S and its Surface Syntactic Structures but to
decide whether S belongs to the language generated by the MTM by producing
one or several ways of deriving S using the rules of the MTM in its generative
format. An MTM in this format can therefore be seen as a generative depen-
dency grammar, as the systems proposed in [Hay64, Rob70] and [Gai65].

The approach to parsing we have chosen to explore in this study, the generative
one, is not the only possible one; reductionistic approaches, for example, which
are independent of any generative procedure have been proposed in [Kar95].
The advantage of the generative approach lies in the enormous amount of work
and results about parsing in this framework. Parsing is a complex task and if a
shift to the generative framework allows us to use some of the techniques and
results already developed, such a shift is worthwhile. This shift has another
interesting feature: it can be seen as an attempt to understand the relations
between an equative and a generative system.

33

3 A generative formalism

The generative formalism presented in this section is a tree based, lexical-
ized one. The elementary structures of the formalism, described in 3.1 are
lexico-syntactic trees, as in tree grammars ([GM75]) and in Tree Adjoining
Grammars([JLT75], [Jos87]). Each of these elementary structures is associated
to a lexical item. Elementary trees are combined together through a unique
operation called attachment, described in 3.2. The generative procedure is de-
scribed in section 3.3.

3.1 Elementary trees

Elementary trees can be seen as under-specified fragments of SSyntS. They are
under-specified in the sense that some nodes of the tree are not labeled with
a lexical item. An elementary tree describes a possible lexico-syntactic context
of a given lexeme, which we will call the lexical anchor of the elementary tree,
borrowing this term from Lexicalized Tree Adjoining Grammars. The context
represented by the elementary tree describes part of the passive and the active
valency of the anchor, as well as morphological and lexical dependencies2 exist-
ing between the anchor and other nodes of the elementary tree. Three simple
elementary trees corresponding respectively to an adjective, a verb and a prepo-
sition are represented in Figure 1. Anchors are represented as black nodes, the
label of the dependencies are borrowed from [IM99] and [MP87a].

give

subj
dir-obj

big to

indir-obj

prep

with

modif circ

Figure 1: Three simple elementary trees

As shown in Figure 1, depending on the nature of their anchor, elementary trees
can exhibit different shapes. A first important dimension along which elemen-
tary trees can vary is the representation, in the elementary tree, of the passive
valency of the anchor, which is represented only in elementary trees associated

2We will use informally the term lexical dependency to represent things like governed prepo-
sitions, selection of an auxiliary by a past participle as well as syntagmatic lexical function
(following the classification of lexical functions introduced in [ART93]).

34

to lexemes in a modifier position, as the adjective and the preposition in Fig-
ure 1. This feature allows to restrict the dependents of the anchor represented
in the elementary tree to the active valency of the anchor (the actants of the
anchor). The elementary tree associated to a noun, for example, will not contain
the dependencies that could link this noun, in a SSyntS, to its modifiers. These
dependencies are represented in the elementary trees of the modifiers.

The second fundamental difference concerns the size of the elementary tree (its
domain of locality in Tree Adjoining Grammars terminology) which extends to
all the nodes of the SSyntS entering in a morphological, lexical or semantic
dependency with the anchor. Elementary trees can therefore exhibit extended
domains of locality as shown in the French example of Figure 2. In this ex-
ample, the elementary tree associated to the past participle of the verb donner
contains five other nodes: the auxiliary, since the past participle constrains its
lexical value, the governed preposition à as well as the subject, the direct and
the indirect objects because of the semantic dependency existing between each
of them and the past participle.

dir-obj

Lexical dependency

Syntactic dependency

N

avoir

donner

N

N
à

subj

past. part

Semantic dependency

aux

prep

indir-obj

Figure 2: An extended elementary tree

Elementary trees are represented as feature structures in which syntactic depen-
dencies are represented as complex features. The elementary tree of Figure 2
has been represented as a feature matrix in Figure 3. The features names are
self explanatory, the feature anchor indicates if a node is the anchor of an ele-
mentary tree. We will not get into the details of this representational tool (see

35

for example [Shi86]) although we will use some non conventional features - for
the representation of repeatable dependencies, for example. A detailed descrip-
tion of these features and the way they are handled during unification, when
elementary trees are combined together is an important point but it lies outside
the topic of this paper.

cat = N

cat = V

mode = past-part

anchor = y

cat = N

indir-obj =

cat = N

lex = donner

lex = avoir

cat = Prep

lex = à

subj =

aux =

dir-obj =

prep =

cat = Aux

Figure 3: An elementary tree as a feature matrix

3.1.1 Word order

The most challenging linguistic information to represent in elementary trees and
maybe in any dependency generative grammar is the description of grammatical
word order. Contrary to syntagmatic trees, in which word order and syntactic
structure are closely linked, the dependency framework allows the linguist to
represent the syntactic structure of an utterance independently of the actual
linear order of its words. At this point, it is important to sharpen our termi-
nology. The term dependency tree will designate an unordered dependency tree;
ordered trees will be explicitly referred to as ordered dependency trees. A total
ordering of the nodes of a given tree will be referred to as a linear ordering of the
tree. Hence we have: dependency tree + linear ordering = ordered dependency
tree.

There is no direct relation between a dependency syntactic representation of a
sentence and the sequence of its words. As a consequence, a given dependency

36

tree can correspond to any linear ordering of its nodes. This feature has two
interesting consequences for linguistic description. First, any linear ordering
can potentially be associated to a dependency tree, allowing to represent some
complex non projective 3 structures. The second advantage is the ability to
associate a unique dependency tree to several linear orderings in the case of free
word order languages.

Some dependency formalisms, as [Hay64], merge the representation of syntactic
dependencies and linear ordering in a single ordered dependency tree. Such
systems usually enforce the projectivity principle which constrains the set of
dependency trees that can be generated and avoids the complications attached
to the generation of non projective structures (on this topic, see [KNR98]). This
solution appears to us as an impoverishment of the dependency formalism since
the two advantages mentioned above are lost.

In order to preserve some independence of the syntactic representation and the
linear ordering, we will propose a way to encode linear order in dependency
tree and to express linear order constraints in the elementary trees based on the
notion of positional features. This representational means was originally intro-
duced by P. Hellwig ([Hel85, Hel86]) to represent ordered projective dependency
trees. We will propose an enriched version of positional features which allows
for the representation of partially ordered dependency trees. We will not dis-
cuss in this paper the case of non projective structures. The interested reader
is referred to [Nas96] for a way to represent some non projective structures by
means of positional features.

Positional features give the linear position of a dependency tree node among the
other nodes of the tree. Under the constraint of projectivity, this amounts to
specifying the position of a node d with respect to its governor g (indicating if d

is situated to the left or to the right of g) and its position among the other de-
pendents of g situated on the same side of g. This second piece of information
can be represented in several ways; in Hellwig’s original format it was repre-
sented by a numbering of the siblings: every daughter of a node is associated
to a integer which specifies its position among its siblings. We have chosen to
represent it by indicating for d its closest sibling s separating d and g, s being
referenced by its functional label (the surface syntactic relation labeling the de-
pendency linking s and g). The first feature will be called the side feature and
the second, the separ feature. The closest right or left dependent of a node will
have the symbol * in its separ feature, indicating that it is not separated from
its governor by any other dependent of the governor. Thanks to the projectivity
principle, these two features allow us to define a single ordering of the nodes.
An example of a dependency tree, ordered by means of positional features is

3Projectivity is a property defined on the set of ordered dependency trees, originally intro-
duced by [Lec60]. A dependency is projective if its dependent is not separated, in the linear
sequence, from the governor by anything except descendents of the governor. An ordered
dependency tree is said to be projective if all its dependencies are projective.

37

represented in Figure 4. This tree corresponds to the French sentence Il vendit
gaiement son âme au diable (literally He sold cheerfully his soul to the devil). It
is important to note that without the projectivity assumption these two features
are not sufficient to order a dependency tree. For the sake of readability, the
positional features have been displayed in a table.

vendre

il gaiement

son

subj
circum indir-obj

ame

gaiement

son

diable

l
r
r
l
r
r *

*

*
node

ame
*

dir-obj

separside
il

dir-obj

circum

det prep

diable

detà

*le l le

à

Figure 4: An ordered dependency tree

In order to represent partially ordered dependency trees, we will under-specify
the two positional features. When the position of a node d with respect to its
governor g is unconstrained, i.e. d can either appear to the left or to the right
of g, the side feature of d will not be specified. The separ feature will give
the list of the possible closest separating siblings of d among its siblings. An
example of a partially ordered tree is given in Figure 5. In this example, the
three right dependents of the main verb are not ordered. This tree corresponds
to the six possible permutations of the three right dependents.

Word order constraints in the elementary trees are expressed by specifying the
positional features of some nodes. More precisely, the positional features are
defined for all the dependents of the anchor as well as for the anchor when
its passive valency is defined in the elementary tree. The three elementary
trees of Figure 1, enriched with positional features, are represented in Figure 6.
The positional features of the adjective big, for example, indicates that it must
appear at the left of its governor and that
It is important to note that the separ feature of an elementary tree node can
refer to siblings that are not present in the elementary tree but which could be
added during a tree combining operation, as described in 3.2.

38

il gaiement

son

circum
dir-obj

indir-obj

ame

gaiement

son

il

diable

l
r
r
l
r
r

*, dir-o, indir-o
*, indir-o, circ

*, dir-o, circ
*

*

*
separnode

ame

side

subj

diable

à

le

det

prepdet

à

vendre

*le l

Figure 5: A partially ordered dependency tree

big

side = l
sep = (*)

modif

give

subj
dir-obj

to

indir-obj

side = rside = r
sep = (*, circ) sep = (*,

circ, dir-o)

side = l
sep = (circ, *)

with

side = l
sep = (*)

side = l

circ

prep

sep = (dir-o,
indir-o, circ)

Figure 6: Elementary trees with positional constraints

3.2 Combining elementary trees

Elementary trees constitute the static part of the generative formalism. The
dynamic part consists in a single tree combining operation called attachment.
Contrary to most generative formalisms, the one presented here is not based on
rewriting: it is neither a string rewriting system, where a symbol is rewritten
by a sequences of other symbols, as in a syntagmatic grammar ([Cho57]), nor a
tree rewriting system, where a node is rewritten as a tree, as in Tree Adjoining
Grammars. The attachment operation combines two trees to form a new one.

39

Although this difference is not fundamental, it gives a different status to the two
usual products of a derivation: the string and the syntactic tree. In the formal-
ism described here, the syntactic structure is not a by-product of a derivation,
as in a string rewriting system; it is the main and actually the unique product
of a derivation. The string itself cannot exist without its associated syntactic
tree.

Attachment is a non commutative binary operation based on unification. At-
taching a tree T1 in a tree T2 (Attach(T1, T2)) amounts to unifying the root of
T1 and a node of T2. We have represented in Figure 7 two attachment operations.

a

man

man

a

see

subj

side = r

dir-obj

(circ)

John
side = l
(circ)

(modif)

subj

see

side = l

side = r
(circ)det

dir-obj

John
side = l
(circ)

John

T1

T1

side = l
(modif)

det

T2

side = l side = r
(circ) (circ)

see

subj dir-obj

T2

subj

side = r

see

dir-obj

John
side = l
(circ)

(circ)

Attach(T1, T2)

Attach(T1, T2)

Figure 7: Two attachment operations

Besides the success of the unification, a successful attachment operation must
fulfill two more conditions:

Connectivity. After an attachment has been performed and a tree T was pro-
duced, the subgraph composed of dependencies linking black nodes of T , which
will be called the black domain of T , must be connected. As a consequence,
during an attachment of a tree T1 in a tree T2, a black node of T1 and a black
node of T2 must be linked together by a dependency. This dependency is called
the attachment dependency of a particular attachment operation. A schematic
attachment operation is represented in Figure 8, which shows the attachment
dependency before and after the attachment, in the tree as well as in the corre-
sponding string.

40

T1 T2 Attach(T1, T2)

Figure 8: The attachment dependency of an attachment operation

Positional constraints satisfaction. During an attachment, the position
of the dependent d of the attachment dependency towards its governor g and
towards its same-side siblings must be defined. The side feature of d must be
set to left or right or left unspecified. Besides, the separ feature of all the
dependents of g situated on d side should be compatible, i.e. there exists at least
one ordering of these dependents which satisfies all these constraints. If at the
conclusion of the operation Attach(T1, T2), the strings (there might be several)
corresponding to T1 are situated to the left of the strings corresponding to T2,
the attachment will be called a left attachment. If they are situated to the right,
the attachment will be called a right attachment. If their relative positions is
not defined, the attachment will be called a non directed attachment. The first
example of Figure 7 is therefore a left attachment and the second one, a right
attachment.

3.3 The generative procedure

A grammar G is a set of elementary trees. The generative procedure is the
following: choose an elementary tree from G and call it T0. Choose another
elementary tree t and attach T0 in t or t in T0 to form T1. The attachment can
either be a right, a left or a non directed attachment. Then recursively choose
another elementary tree t from G and attach it in Ti or attach Ti in t, to produce
Ti+1. The generation can stop whenever Ti does not contain any white node.
The result of the generation is the tree Ti. This tree represents the syntactic
structure of the different node sequences (or strings) which are compatible with
the positional features of the nodes. A single derivation can therefore produce
several strings.

An example of derivation is represented in Figure 9; it constitutes one of the
several possible derivations leading to the final tree. The attachment depen-
dency of every attachment operation is represented in boldface. The different

41

steps of the generation of the string cbdagef are represented below4:

b⇒ cb⇒ cba⇒ cbda⇒ cbdae⇒ cbdaef ⇒ cbdagef

d

b

c

a

c

b

a

b

c d

e

f

a

b

c d

e

fg

a

b

c d

e

f

g

aa

b b

c d

e

c

Figure 9: An example of derivation

Note that during an attachment, a symbol can be inserted inside one of the
strings being produced (cba⇒ cbda). We will call such an attachment an inser-
tion. Note that an insertion does not correspond to a left nor to a right attach-
ment. A derivation having no insertions will be called a contiguous derivation.
We will therefore be interested only in contiguous derivations. Non contiguous
derivations have been introduced here for the sole purpose of generality.

Let us study further this kind of derivation since it is the only kind of deriva-
tion we can actually perform with our definition of attachment. Contiguous

4The reader should not be fooled by such a string representation of the derivation: it is
only a compact and incomplete way of representing the stages of a derivation and it is by no
means the real derivation. The latter manipulates only trees, as shown in Figure 9.

42

derivation cannot always be performed in a sequential schema. The genera-
tion of the tree of Figure 9, for example, cannot be carried out sequentially. A
detailed description of the derivation will illustrate the problem. The subtree
corresponding to the sequence cbda can be generated contiguously5:

b
l
⇒ cb

l
⇒ cbd

r
⇒ cbda

At this point, g cannot be attached to cbda since it depends on e which has
not been introduced yet. If e is attached at this point, as in the example of
Figure 9, g will have to be inserted. The problem can be avoided by adopting
an asynchronous derivation schema. The idea is to temporarily stop the gen-
eration after cbda has been generated 6 and start a new derivation which will
lead to the string gef . The tree corresponding to this string is then attached
in the cbda tree to constitute the final tree. Such stops in the derivation will be
called breaks. An asynchronous contiguous derivation of our example has been
represented below in which breaks are indicated by vertical lines.

b
l
⇒ cb

l
⇒ cbd

r
⇒ cbda

l
⇒ cbdagef

g
l
⇒ ge

r
⇒ gef

A final type of derivation will be defined now, called left longest contiguous
derivation, or LLC-derivation. It is a contiguous derivation in which the string
is built from left to right and at any moment the leftmost subtree should span the
longest possible part of the string. An LLC-derivation of the preceding example
have been represented below. Note that, contrary to the previous derivation,
the subtree corresponding to ge is integrated in cbda before the attachment of
f in order to satisfy the left longest condition.

c
l
⇒ cb

r
⇒ cbd

l
⇒ cbda

r
⇒ cbdage

l
⇒ cbdagef

g
l
⇒ ge

The complete tree derivation is represented in Figure 10. The square brackets
indicate the beginning and the end of a break.

5The letters l and r appearing above the arrows indicate whether a left or a right attachment
is performed.

6Strictly speaking, we should have written “after the tree corresponding to cbda has been
generated”.

43

c dc

b

c

b

d

b
l r

b

c d

l
a a

r r

a

b

c d

e

fg

a

b

c d

e

f

g

e

g

g

a

b

c d

eeg l

Figure 10: A Left Longest Contiguous derivation

4 Parsing

Having described a generative formalism, we can now define parsing: parsing
a symbol sequence (or sentence) S amounts to find all valid derivations of de-
pendency trees corresponding to S7. The parser described in this section will
build only left longest contiguous derivations. A first, simple, algorithm is de-
scribed in Subsection 4.1. Some improvements to this algorithm are described
in Subsections 4.2 and 4.3 in order to take into account non determinism in the
parsing process.

4.1 The parsing algorithm

The parsing algorithm makes use of a stack which will determine the attachment
operations to test as well as the order in which to test them. The stack will
also keep track of intermediate results when breaks occur. In order to simplify
the description of the algorithm, we make the hypothesis of the non ambiguity
of the sentence to parse as well as the non ambiguity of the words compos-
ing the sentence. As a result, the sentence under analysis will receive a single

7This definition of parsing is slightly different from the definition of parsing in a string
rewriting framework since in the latter, the result of the derivations which are determined
during parsing is the actual string, whereas in our case, as already mentioned, the result
of the derivations are dependency trees which are the syntactic representation of the parsed
string.

44

SSyntS and every word of the sentence will be associated to a unique elemen-
tary tree. Moreover, during parsing, the algorithm will never be exposed to
local ambiguity. Due to these hypothesis, the algorithm will exhibit a determin-
istic behavior: at any moment of parsing, a single operation can be performed.
These restrictions are, of course, absurd, and we will lift them in Subsection 4.2.

Two stack manipulation operations are defined: the standard push operation
consisting in adding an elementary tree on the top of the stack and a reduce
operation which consist in trying the attachment of the two trees located at
the top of the stack. Two attachment are performed, an attachment of the top
element of the stack (TTOP) in its predecessor (TPRED) and the attachment of
TPRED in TTOP . The first operation (Attach(TTOP , TPRED)) must be a right
or a non directed attachment since the string corresponding to TTOP is situated
to the right of the string corresponding to TPRED. For the same reason, the
second operation (Attach(TPRED, TTOP)) must be a left or a non directed at-
tachment. If one attachment is successful, the two trees are removed from the
stack and the resulting tree is pushed on the stack. At the end of the operation,
the height of the stack is reduced by one. The push and reduce operations are
represented graphically in Figure 118.

Reduce

T

T

T

T

T

T

T

T

1,1

3,3

1,1

2,2

1,1

2,3

1,1

2,2

2,2Push(T)

Figure 11: The push and reduce operations

The parsing algorithm consists in reading the sentence from left to right. For
every word read, its9 elementary tree is pushed on the stack and a reduce op-
eration is performed. If the latter is successful, a new tree is created and a new
reduce operation is attempted; the process continues until the first unsuccessful
reduce operation happens or only one tree remains in the stack. A new word
is then read and its elementary tree pushed on the stack, until the last word is
reached. If at the end of the process the stack contains a single tree, the parsing

8The tree subscripts indicate the segment of the sentence corresponding to the tree. If
the elements of the sentence are numbered from 1 to n, tree Ti,j corresponds to the segment
spanning from symbol i to symbol j, inclusive. Trees of the form Ti,i correspond to elementary
trees.

9recall that we are working under the hypothesis that a word is associated to a single
elementary tree

45

is successful and the tree constitutes the SSyntS of the sentence. The algorithm
is represented in Figure 12 and an example of parsing in Figure 13.

Input: A list of N elementary trees: ET1 . . . ETN

A stack S

1) For i = 1 to N
do

2) push(ETi)
3) h ←− height(S)
4) Reduce(S)
5) If height(S) < h Then 3

end do
6) If height(S) = 1 Then Success

Else Failure

Figure 12: The parsing algorithm

The derivation built during parsing is represented in the linear format below:

the
l
⇒ the tall man

l
⇒ the tall man ran

tall
l
⇒ tall man

Note that the break appearing in this derivation is not due to the contiguity
condition, as it was the case for the example of Subsection 3.3. It is due to the
connectivity condition of the attachment operation. The tree corresponding to
the segment the tall cannot be created because it would violate the connectivity
condition, hence the break.

4.2 Ambiguity and non determinism

As a result of the two hypotheses introduced in 4.1, the parsing algorithm con-
sidered is deterministic. After a push operation is performed, a reduce operation
is attempted. If the latter succeeds, a new reduce operation is performed and
if it fails a push operation is carried out. Taking ambiguity into account will
introduce non determinism in the behavior of the parser. Two kinds of ambi-
guity can occur: lexical ambiguity, when a word corresponds to more than one
elementary tree (the problem is then to decide which elementary tree is the right
one and should be pushed on the stack); and attachment ambiguity, when more
than one tree are produced after an attachment operation (the problem is then
to decide which tree to keep). It must be emphasized that these cases of non
determinism cannot be solved locally. It is after the whole sentence or a suffi-
cient part of it has been parsed that we can say whether the chosen hypothesis
was the right one. Furthermore, some sentences are ambiguous, in which case,

46

the

tall

the

the tall man

PUSH

the

tall

the

tall

man

tall man

the

the tall man

REDUCE

the

tall

the

the tall man

the tall man ran

tall man

ran

Figure 13: An example of parsing

all the corresponding SSyntS must be built.

4.2.1 Stack duplication

The simplest solution to the two non deterministic situations discussed above
consists in the duplication of the stack when the parser is faced with non deter-
minism: each of the new stacks created corresponds to one choice. In the case
of a lexical ambiguity where several elementary trees correspond to one word,
the stack is duplicated as many times as there are elementary trees and each
elementary tree is pushed on one stack. In the case of attachment ambiguity,
when an attachment gives rise to more than one tree, the stack is duplicated as
many times as there are trees produced and each tree is pushed on one stack.
These two cases have been represented in Figure 14.

With a few adjustments of the push and reduce operations in order to take into
account several stacks, the rest of the algorithm remains unchanged.

It is easy to see that the time complexity of this algorithm is exponential with
respect to the number of words processed since after a word w is read, the
number of stacks is multiplied by the number of elementary trees associated
to w and a stack is never destroyed during parsing. If N is the mean number
of elementary trees associated to a word in the grammar, the mean number of

47

Reduce

T

T

T

T

T

T

1,1

3,3

2,2

1,1

2,2 2,2

1,11,1

2,3T

T

T’ 2,3

Push(T , T’ , T’’) T’
2,2 2,2 2,2

1,1 1,1

2,2

1,1

T’’

TTT

Figure 14: Stack duplication

stacks after n words are read is equal to Nn.10

This way of handling ambiguity is not satisfactory since a same attachment can
be tested independently several times. Such a configuration is illustrated in Fig-
ure 15. In this example, two elementary trees, T1,1 and T ′

1,1 are pushed on an
empty stack, leading to the duplication of the stack. Another elementary tree,
T2,2, is then pushed on the two stacks. A reduction (not represented graphi-
cally) is then tested on each stack and both fail. Eventually, another elementary
tree, T3,3, is pushed. At this point, both stacks have the same second and third
elements, which means that the next reduction in both stacks will be performed
on the same trees.

T 1,1

T’1,1

T 1,1

T 2,2

T

T’

2,2

1,1

T 1,1

T 2,2

T 3,3

T

T

T’

3,3

2,2

1,1

T

T 1,1

2,3

T

T’

2,3

1,1

Reduce

Reduce

Push(T)1,1

Push(T)2,2 Push(T)3,3

Push(T)3,3Push(T)2,2Push(T’)1,1

Figure 15: Same operations repeated twice

This problem is due to the fact that the same trees are represented several times
in separate stacks and, during reduction, each stack is reduced independently,

10Actually, the number of stacks can be higher since the reduction of a stack can also
increase the number of stacks.

48

without considering what has been done in the other stacks. In practice this
duplication of the same reduce operations is quite common since, usually, when
several elementary trees are associated to a word of the sentence to be parsed,
a few number of them will successfully be attached, the other will be stacked
without being attached, leading to the duplication of the same configurations
in several stacks. We will introduce in the following section a way of partially
solving this problem.

4.2.2 Using a Graph-structured Stack

In order to prevent the same work from being done several times in some cases,
we use the graph-structured stack introduced in [Tom88]. A graph-structured
stack can be seen as a factoring of several stacks having some elements in com-
mon, as shown in Figure 16.

T 3,3

T

T

T

T

T

T T

T’T’1,1

3,3

2,2

3,3

1,1

2,2

1,1

1,1

2,2

Figure 16: Factoring two stacks into a graph-structured stack

With such a device, any tree is represented once and the attachment of identi-
cal pairs of trees is tried once. The introduction of the graph-structured stack
does not change the overall schema of the algorithm. Changes affect only the
push and the reduction operations. Pushing N elementary trees on a graph-
structured stack does not duplicate anymore the stack but adds to it N new
extremities and creates a link between every former extremity and every new
one, as shown in Figure 17.

T’

T

T’’

1,1

 2,2
1,1

1,1

T 1,1

T’1,1

T’’1,1

T 2,2

T’2,2

 push (T , T’)2,2

Figure 17: Pushing two elementary trees on a graph-structured stack

The reduction operation amounts to trying to combine each extremity of the
stack with all its predecessors. When an attachment operation between an ex-
tremity of the stack and one of its predecessors succeeds, new extremities are
created and the number of extremities of the stack is therefore increased. In the
example of Figure 18 the attachment of extremity Tj+1,j+1 and its predecessor

49

Ti,j produces two trees: Ti,j+1 and T ′

i,j+1, increasing by one the number of ex-
tremities.

T i,j+1

T’i,j+1

T i,j T’i+1,j+1

T i,j

T j+1,j+1

T’j+1,j+1

j+1,j+1Reduce(T)

Figure 18: Reducing an extremity of the graph-based stack

The repetition of the same attachment operations that occurred in Figure 15
will not happen with the graph-structured stack, since T2,2 and T3,3 are repre-
sented only once, as shown in Figure 19.

T 1,1

2,2T

T 1,1

T’1,1

2,2T T 3,3

Push(T)3,3

T’ 1,1

T 1,1

T 2,2
Reduce

T 1,1

T’1,1

2,2T T 3,3

1,1T’

Figure 19: Avoiding repetition of similar operations

The graph-structured stack prevents the attachment of identical trees in differ-
ent stacks but it does not prevent some work duplication in different branches
of the stack. Such a case happens in ambiguous prepositional phrase attach-
ment. Consider the syntactically ambiguous sentence John saw the man with
the telescope that was offered to him last Christmas. The two syntactic trees
corresponding to this sentence differ only in one dependency: the dependency
linking with to saw in one interpretation and to man in the other. When parsing
such a sentence, the parser will build two different trees after the preposition
has been read and the attachment ambiguity has been recognized (John saw
the man with). Although the analysis of the noun phrase the telescope that was
offered to him last Christmas is the same in the two cases, it will be done al-
most11 twice. There are two ways in which this problem could be solved: the
first is to delay the attachment of the noun phrase until it has been completely
parsed. The second is to represent in a same structure the two analyses of the
sentence.

11The attachments corresponding to left dependencies (the ← telescope, last ← Christmas)
are performed only once.

50

The adoption of a graph-structured stack improves the mean complexity of
the parser without changing its worst case complexity. This improvement is
mainly due to the fact that, in average, the number of extremities of the graph-
structured stack does not grow exponentially with the number of words pro-
cessed, and hence the number of attachment operations carried out. The worst
case complexity remains exponential. It corresponds to the highly improbable
case where at each reduction of the graph-structured stack, all the attachment
operations performed succeed. In such a case, the number of extremities of the
graph-structured stack grows exponentially with the number of word processed.

4.3 Bi-directional parsing

The way non determinism has been handled, either through stack duplication
or through the introduction of a graph-structured stack does not always allow
to build all the analyses of a given string. In some cases, where several analyses
are possible, one solution only will be discovered. Such a case arise, for exam-
ple, when parsing a sequence g1wg2 where the word w can be governed in one
hypothesis by g1 and in another by g2. In this case, the first hypothesis only, in
which g1 governs w will be built.

A detailed description of the parsing process will help us understand the prob-
lem: after g1 and w have been introduced in the stack, the attachment of w in g1

is performed 12, leading to the establishment of the right dependency g1 → w,
preventing the establishment of the left dependency w ← g2 when g2 is read
and introduced in the stack, since w already has a governor.

This problem does not arise when both possible governors are situated to the left
of w, as in the case of prepositional attachment. In such cases, both solutions
are built. The problem arise in the cases where w is situated between its possible
governors or where the governors are situated to the right of w. Three different
types of ambiguity can therefore be distinguished:

• Left ambiguity: the possible governors of w are situated to its left. In this
case all the analyses are built.

• Right ambiguity: the possible governors of w are situated to its right. In
this case, the analysis in which w is linked to its closest potential governor
is built. The other analyses are missed.

• Bilateral ambiguity: the possible governors of w are situated on both sides.
In this case, the analyses in which w is linked to its left possible governors
are built. The other analyses are missed.

This problem of missed analyses is due to the impatient behavior of the parser
which tries to perform an attachment as soon as possible. When the attach-
ment succeeds, the situation that prevailed before the attachment is forgotten,

12Strictly speaking, the objects that are actually manipulated are the trees corresponding
to w and g1

51

possibly preventing the construction of other analyses. It is difficult to predict
if a given grammar will give rise to this kind of ambiguities since they might
correspond to local ambiguities that appear at a certain stage of the parsing
and are ruled out at a later stage. In practice, we have observed such cases with
coordinate structures.

Note that the parser exhibit an asymmetrical behavior. When a word w has
several possible governors, the parser systematically favors right attachments
(where w is linked to its left governors). This behavior is a consequence of the
left-to-right direction of parsing: when an elementary tree corresponding to a
word w is introduced in the stack, the parser tries to attach it with a right
attachment in the part of the sentence which has already been parsed i.e. the
part of the sentence situated to the left of w. If the attachment fails, a new
elementary tree is introduced and a left attachment of the elementary tree of
w in the new elementary tree is performed. The latter is therefore carried out
only if the former (the right attachment) fails.

Symmetrically, if the parser processes the sentence from right to left, priority
will be given to left attachment: when an elementary tree corresponding to a
word w is introduced in the stack, the parser tries to attach it with a left attach-
ment in the part of the sentence which has already been parsed i.e. the part of
the sentence situated to the right of w. If the attachment fails, a new elementary
tree is introduced and a right attachment is performed. The right attachment
is therefore carried out only if the the left attachment fails. Hence, when the
parsing is carried out from right to left, in the case of right ambiguity, all hy-
potheses are detected, in the case of left ambiguity, one hypothesis is detected
and in the case of bilateral ambiguities, only hypotheses corresponding to left
attachment of w are detected. The situation is summarized in Figure 20 which
shows the analyses that are detected for a given type of ambiguity depending
on the direction of parsing.

This asymmetrical behavior shows the way to an ad-hoc solution to the missed
analyses problem, through a two stages bilateral parsing: in a first stage the
sentence is parsed from left to right and in the second stage, it is parsed from
right to left. At the end of parsing, some trees are created twice, once during
the first stage and then during the second stage. One of them must therefore be
discarded. As shown in Figure 20, this case concerns right and left ambiguities.

Changing the parser to process the sentence from right to left is straightfor-
ward: it consists in changing the attachments in the reduction operations. The
attachment of the tree situated at the top of the stack (TTOP) in its predecessor
(TPRED) had to be a right or a non directed attachment. It will now have to be
a left or a non directed attachment. Symmetrically the attachment of TPRED

in TTOP will now have to be a right or a non directed attachment. Eventually,
the sentence has to be traversed from right to left.

52

L

Left ambiguity Right ambiguity

Parsing dir.

L

of ambiguity
Type

Bilateral ambiguity

g1 g2 w

g1 g2 w

R

g1 g2 w

g1 g2 w

g1 g2 w

g1 g2w

g1 g2w

g1 g2w

g1 g2w
w g1 g2

w g1 g2

w g1 g2

w g1 g2

w g1 g2

R

Figure 20: Types of ambiguities detected with respect to the direction of parsing

5 Conclusion

We have proposed in this paper a generative approach to parsing in the frame-
work of the MTT. More precisely, the paper describes a generative formalism
and a parser based on this formalism. The reason for proposing an alternate
representation of the linguistic knowledge lies in the procedural problems en-
countered when parsing with a standard MTM.

The proposed formalism is designed to make processing, and parsing in particu-
lar, easier. The price to pay for this is an important redundancy of the grammar
in the new format. As a consequence, writing a grammar in this format is time
consuming and non satisfactory for a single phenomena is described many times
in the grammar. Besides, and for the same reason of redundancy, the task of
maintaining a grammar is tedious.

The situation could be informally summarized in the following way: “what is
good for the linguist is not good for the machine and vice versa”. Two paths
can be followed to solve this problem. The first is tradeoff: designing a formal-
ism which is reasonably good (or reasonably bad) for the linguist and for the
machine. The second solution is to devise a compiler which takes as input a
standard MTM and outputs a grammar in the compiled format. The second
solution is to our eyes much more satisfactory. But the compiling process is still
unknown to us.

Automating the compiling of a standard MTM has another interesting conse-
quence: it will clarify the relation existing between the piece of work described
in this paper and the MTT. Such a relation is, at this point, unclear and the pro-
posed formalism might appear closer to Tree Adjoining Grammars, for example,
than to the MTT.

53

References

[ART93] Margarita Alonso Ramos and Agnès Tutin. Les fonctions lexicales
du dictionnaire explicatif combinatoire pour l’étude de la cohésion
lexicale. Linguisticae Investigationes, XVII(1):161–188, 1993.

[Cho57] Noam Chomsky. Syntactic Structures. Mouton & Co, La Haye, 1957.

[Gai65] Haim Gaifman. Dependency systems and phrase-structure systems.
Information and Control, 8:304–337, 1965.

[GM75] A Gladkij and Igor A. Mel’čuk. Tree grammars i. a formalism for
syntactic transformations in natural languages. Linguistics, 150:47–
82, 1975.

[Hay64] David G Hays. Dependency theory: A formalism and some observa-
tions. Language, 40:511–525, 1964.

[Hel85] Peter Hellwig. plain: Program for language analysis and inference.
Technical report, Computing Unit and Linguistics and International
Studies Department, University of Surrey, Guilford, Angleterre, 1985.

[Hel86] Peter Hellwig. Dependency unification grammar. In Proceedings of the
11th International Conference on Computational Linguistics (COL-
ING’86), Bonn, 1986.

[IM99] Lidija Iordanskaja and Igor Mel’čuk. Towards establishing an inven-
tory of surface-syntactic relations. in this volume, 1999.

[JLT75] Aravind Joshi, Leon Levy, and M Takahashi. Tree adjunct grammars.
J. Comput. Syst. Sci., 10:136–163, 1975.

[Jos87] Aravind K. Joshi. An introduction to tree adjoining grammars. In
A. Manaster-Ramer, editor, Mathematics of Language, pages 87–115.
John Benjamins, Amsterdam, 1987.

[Kar95] Fred Karlsson. Constraint Grammar : a language Independent system
for Parsing Unrestricted text. Mouton de Gruyter, 1995.

[KNR98] Sylvain Kahane, Alexis Nasr, and Owen Rambow. Pseudo projectiv-
ity: A polynomially parsable non-projective dependency grammar.
In 33rd Meeting of the Association for Computational Linguistics
(ACL’98), Montréal Canada, 1998.

[Lec60] Yves Lecerf. Programme des conflits, modèle des conflits. Bulletin
bimestriel de l’atala, 4,5, 1960.

[Mel88] Igor A. Mel’čuk. Dependency Syntax: Theory and Practice. State
University of New York Press, New York, 1988.

54

[MP87a] Igor A. Mel’čuk and Nikolaj V. Pertsov. Surface Syntax of English.
John Benjamins, Amsterdam/Philadelphia, 1987.

[MP87b] Igor A. Mel’čuk and Alain Polguère. A formal lexicon in the meaning-
text theory. Computational Linguistics, 13(3-4):13–54, 1987.

[Nas96] Alexis Nasr. Un modèle de reformulation automatique fondé sur la
Théorie Sens Texte: Application aux langues contrôlées. PhD thesis,
Université Paris 7, 1996.

[Rob70] Jane J. Robinson. Dependency structures and transformational rules.
Language, 46(2):259–285, 1970.

[Shi86] Stuart Shieber. An introduction to unification based approaches to
grammars. CSLI Series. Chicago Press, 1986.

[Tom88] Masaru Tomita. Graph structured stack and natural language pars-
ing. In 26th Meeting of the Association for Computational Linguistics
(ACL’88), Buffalo, NY, 1988.

55

