Integrating a POS Tagger and a Chunker
Implemented as Weighted Finite State Machines

Alexis Nasr, Alexandra Volanschi*

LATTICE-CNRS (UMR 8094)4, Université Paris 7

alexis.nasr, alexandra.volanschi}@linguist.jussieu.fr

Abstract. This paper presents a method of integrating a part-of-speech
tagger and a chunker. This integration lead to the correction of a number
of errors made by the tagger when used alone. Both tagger and chunker
are implemented as weighted finite state machines. Experiments on a
French corpus showed a decrease of the word error rate of about 12%.
Keywords : Part-of-speech tagging, chunking, weighted finite state ma-
chines. ..

1 Introduction

POS Tagging is often a prerequisite for more elaborate linguistic processing such
as full or partial parsing. Probabilistic taggers implementing Hidden Markov
Models (HMMs) are based on the hypothesis that the tag associated to a word
depends on a local context, usually limited to the category(ies) of the preced-
ing word(s). This hypothesis is generally verified and taggers implementing this
model are known to be efficient and accurate (about 95% precision). The approx-
imation is nevertheless responsible for the majority of tagging errors, which in
turn lead to errors in subsequent processing stages. This situation is particularly
frustrating since, at subsequent syntactic processing stages, the knowledge which
could prevent the errors might be available. The present work is an attempt to
deal with this problem by coupling the tagging and partial parsing stages. In
this configuration, the choice of the tag is dictated by knowledge associated both
to the tagger and shallow parser. The model constitutes an alternative to the
classical sequential model, in which the partial parser input is the most probable
solution of the tagger. In this configuration, choices made by the tagger can no
longer be altered.

The type of error the present work tries to deal with is illustrated by the
French sentence: La démission n’est pas indispensable (the resignation is not
indispensable). Tagging the adjective indispensable might prove difficult as it
may be masculine or feminine and the noun it agrees with (démission) is too
remote from it (at least for an HMM tagger). In exchange, a partial parser would
group the sequences la démission, n’est pas, and indispensable into larger units
called chunks. This would bring the two units agreeing in number and gender,

* This work was partly funded by the Project WATSON of the French government
Technolangue programme.

II

namely (la démission and indispensable) closer to each other, thus making it
possible for an HMM to capture agreement.

This article also aims to point out the advantages of using weighted finite
state machines and operations defined on them for the whole processing. In this
framework, all data (sentences to be analyzed, lexicons, grammars, n-grams)
are represented as finite state automata and (almost) all treatments were im-
plemented as standard operations on automata. This homogeneity has several
advantages, the most significant of which being the possibility to easily combine
different modules using automata combining operations, combinations which
would be more difficult to achieve between modules based on different formal
models. Another advantage of this homogeneity is the simplicity of the imple-
mentation: one no longer has to define specific formats for different types of
data, to implement, adapt or optimize existing algorithms. Software libraries for
automata manipulation are essential for such treatments; in the present work
we have used the utilities FSM and GRM developed by ATT [1]. Our work per-
tains to probabilistic language processing using weighted finite state machines,
an overview of which can be found in [2]. It is distinct from approaches based
non-probabilistic finite state automata such as INTEX [3], in which rules are
manually built to be later used in automatic processing.

The paper is organized as follows: section 2 is a brief reminder of definitions
concerning weighted finite state automata, introducing a number of notations
used in the remainder of the article. Sections 3 and 4 describe respectively the
principles of a probabilistic POS tagger and of a partial parser and their imple-
mentation using weighted finite state machines. The method of integrating the
two modules is presented in the section 4.3.

2 Definitions and notations

In this article two types of finite state machines are manipulated: on the one
hand automata, which recognize words u built on an alphabet X (u € X*),
and on the other transducers, which recognize word pairs built on two alpha-
bets X and X5 ((u,v) € X7 x X3). In addition to standard regular operations
(union, concatenation and iteration) defined on both types of machines, certain
operations are specific for transducers, in particular composition, which plays
an essential role in the present work. Given two transducers, A and B which
recognize respectively the word pairs (u,v) and (v, w), the composition of A and
B (Ao B) is a transducer which recognizes the couple (u,w).

In addition, we use the notion of semiring, which is defined as a 5-tuple
(K,®,®,0,1) such that K is a set equipped with two operations defined on it,
generally called addition (denoted by @) and multiplication (®), each having its
neutral element denoted respectively by 0 and 1. By associating to every transi-
tion in an automaton a weight from the set K, we obtain a weighted automaton
built over the semiring K. A weighted automaton together with a semiring K
generates a partial function which associates values from K to every word rec-
ognized. Given an automaton R and a word u, the value associated to u by R,

III

denoted by [R](u), is the multiplication (®) of weights on transitions along the
path in R corresponding to u. If several paths in R recognize u, then [R](u)
equals the Addition (@) of weights of the different paths corresponding to u.

In the experiments described in the present work we used the tropical and
the log semirings on IR*: the weights used on transitions are opposites of the
logarithms of probabilities’. With the tropical semiring the operation ® corre-
sponds to arithmetic addition (to compute the weight of a path in the automa-
ton, weights on individual transitions constituting a path are added), while the
@ operation is the minimum (the weight associated by an automaton to a word
recognized is the minimum weight of all paths corresponding to the word, i.e.
the most probable path). Given a weighted automaton R over the tropical semir-
ing, one can define the n-best paths operator, denoted by bp(R,n), which yields
the automaton made of the union of the n most likely paths in R. This semir-
ing allows us to compute products of probabilities by composing automata, and
to select the most probable tag sequence associated to a sentence. With the log
semiring, the operation @y corresponds to —log(e~* +e~¥) while the operation
® corresponds to mathematic addition. When weights correspond to opposites
of probability logarithms, the @ operation amounts to adding probabilities.

3 Standard POS Tagging

In the present work, part of speech tagging follows the principles of Hidden
Markov Models, introduced by [4]. The states in the HMM correspond to parts of
speech and the observable symbols to words in the lexicon. The latter constitute
the alphabet X and categories in the tagset constitute the alphabet Y. POS
tagging in such a framework consists in finding the most probable sequence of
states through which the HMM passes, given a sequence of observable symbols
produced by the model (the sentence).

The parameters of a HMM may be divided into emission probabilities and
transition probabilities. An emission probability is the probability of a word
given a category (P(m|c)) while the transition probability is the probability
that a given category x immediately follow a category y (P(z|y)). The joint
probability of a sequence of categories ¢y, (a sequence of states the model goes
through) and of a sequence of words m ,, (a sequence of observable symbols) is
computed on the basis of the emission and transition probabilities:

P(c1n,min) = P(er)P(maler) [Tiy P(milei) P(eilei1)

Such a model, called a bigram model, relies on the Markov hypothesis, according
to which a category only depends on the the preceding category. This restrain-
ing hypothesis may be rendered more supple without changing the theoretical

! Logarithms of probabilities are preferred to probabilities for reasons of numerical sta-
bility (as probabilities may be very small real numbers, by multiplying probabilities
one may be not able to represent these values on computer).

v

framework by making the hypothesis that a category depends on the two pre-
ceding categories; this type of model (trigram) is the one most commonly used
for the POS assignment task. In a trigram model, a state no longer corresponds
to a category, but to a pair of categories.

a: A/ —log P(alA)

A/ —log P(A)

b\ B/ —log P(bfB)

A/ —log P(A|A)

a: B/ —log P(a|B) 4/ wgpiap) °/TlePBIB)

Fig. 1. The transducers E and T

Such a HMM may be represented by two weighted transducers. The first
one, F, represented on the left-hand side of figure 1 (in this example X =
{a,b} and X = {4, B}), encodes the emission probabilities. Its input alphabet
is X1, and its output alphabet Y. The transducer has a single state and as
many transitions (from this state to itself) as there are pairs (m,c) where m
is a word from the lexicon and ¢ a category (¢ € Y¢) such that the emission
probability P(m/|c) is non-null. The opposite of the logarithm of this probability
(—log P(m|c)) constitutes the weight of the transition tagged (m,c). In figure 1
such a transition is labeled m : ¢/ — log P(m|c).

The second transducer, T, the input and output alphabet of which is consti-
tuted by Y (on the right-hand side of figure 1), encodes transition probabilities.
Its structure is isomorphic to that of the HMM: as many states as there are state
pairs (x,y) (oriented from z to y) such that P(y|z) is non null. Weights on transi-
tions equal — log P(y|z)?. With a trigram model the structure of the automaton
T is more complex: a state corresponds to a sequence of two categories and the
transition weights equal — log P(z|xy).

The composition of E and T (E o T) allows to combine the emission and
transition probabilities; the input alphabet of the transducer obtained is Xp,
and the output alphabet is Y. Such a transducer associates to every couple
(1.0 c1n) the weight [E 0 T](¢1,0,m10) = — Y21 log P(mile;) — log P(cr) —

2 Strictly speaking, the machine described is an automaton, but it can be viewed as
a transducer whose transitions output the same symbol as the one they read in the
input. Such a transducer represents the identity relation restricted to the language
recognized by the automaton.

\%

Yo, log P(cile;—1) which is in fact the opposite of the logarithm of the proba-
bility P(c1,n,m1.5), such as defined above.

Tagging a given sequence of words M is achieved by representing M as a
linear automaton also called M (with one transition for every word in M) and
subsequently composing M with EoT'. The most probable sequence of categories
given M is identified by looking for the best path of the transducer M o EoT.
The POS tagger could then be formally defined as : bp(M o Eo T, 1)

The trigram probabilities encoded in the automaton 7' are not, as a rule,
estimated by maximum likelihood on a training corpus, as trigrams appearing
in the texts to be tagged may never have occurred in the training corpus. It
is therefore essential to use a probability smoothing technique, such as back-
off [5]; the method consists in backing-off on the probability of bigram b ¢ when
trigram a b c is not observed in the training corpus, and on to the probability
of the unigram c when bigram b c is never encountered. A back-off model may
be directly represented by using failure transitions as described in [6]. Given a
symbol «, a failure transition coming out of a state ¢ is taken when there is
no transition labeled by «. In the case of a back-off model, a failure or default
transition is taken when a trigram or bigram was never observed. For more
details, the reader is referred to the article cited above.

Several approaches in the literature [7-9] use finite state machines in order to
simulate the functioning of HMMs. In all approaches, n-grams are represented by
finite-state automata in a manner similar to ours. They are nevertheless different
from our work in that they don’t directly manipulate emission probabilities
(P(m]c)) estimated on a training corpus, but resort to ambiguity classes, which
are sets of categories associated to a word.

Preliminary Results All the experiments described in the present work are
conducted on the tagged and hand-validated corpus produced at the University
of Paris 7[10]. The corpus consists of 900K words tagged with 222 tags indicating
the category and morphological features. 760K words were used for training
(Train). Tests are done on a 66K words fragment (Test). All experiments are
achieved using the libraries FSM and GRM made available by AT&T. The error
rate of the trigram model (denoted by M;) such as described above on Test is
of 2,18% This figure is our reference.

4 Language Models Derived from Probabilistic Partial
Parsing

The models of finite-state-based POS Tagging mentioned in section 3, agree
on the necessity of integrating syntactic constraints. Kempe [8] anticipates the
possibility of composing the tagger output with transducers encoding correction
rules for the most frequent errors, Tzoukerman [7] uses negative constraints in
order to drastically diminish the weight of paths containing unlikely sequences of
tags (such as a determiner immediately followed by a verb). Basically, our work

VI

is different from the others in that it integrates two distinct, complete modules
(a tagger and a chunker) within a single module which accomplishes both tasks
at the same time. The approach does not consist in integrating a number of
local grammars to the tagger, but in combining statistical information with
the linguistic knowledge encoded by the chunker with a view to improving the
quality of the tagger and, additionally producing a likely sequence of chunks.
Before going into the details of the various integration models we conceived, let
us briefly remind the principles of partial parsing, present a way of implementing
a partial parser as a finite state machine and explain the necessity of converting
it into a probabilistic partial parser which is also represented as a finite state
machine.

4.1 Partial Parsing as Finite State Machines Manipulation

Partial parsing designates a series of techniques whose purpose is to uncover the
syntactic structure of a sentence, or more precisely the structure associated to the
fragments which may only have one analysis. For instance, even if for a traditional
grammar a sequence like maison des sciences de I’homme (house of the science
of the man (center for human sciences)) constitutes a noun phrase, having a
complex structure with several intermediate levels, a partial parser would split
it into 3 units called chunks : [maison|y¢ [des sciences] po [de 'homme] p¢ as the
prepositional attachment is potentially ambiguous. The technique, also known as
chunking, was introduced by [11] in answer to the difficulties that robust analysis
of raw text encountered.

Several approaches among which [12] have implemented partial parsing by
finite state machines, or more precisely as cascaded finite state transducers. A
cascade of finite state transducers is a sequence of transducers, each recognizing
a type of chunk. The input of every transducer is constituted by the output of
the previous one. Our solution consists in the simultaneous, rather than sequen-
tial, application of all the chunk automata which are integrated into a single
transducer.

A chunk is the non-recursive core of a phrase, irrespective of its category.
As opposed to Abney[13], chunking embedding is not allowed in the present
approach; in exchange, the longest string matching the definition of a chunk is
selected: we prefer an analysis like [le nouveau batiment]yc (the new building)
rather than [le [nouveau] sc batimentyc].

Given their non-recursive character, chunks may be represented by finite state
automata built on the alphabet Y'¢. 28 chunk grammars corresponding to nom-
inal, adjectival, adverbial and prepositional chunks are constructed manually.
These grammars belong to a class of context-free grammars ([14]) which repre-
sent regular languages and which may, consequently, be compiled as finite-state
machines and integrated to the chunker. For every type of chunk K, an automa-
ton also called K is built to recognize well-formed chunks of type K. Moreover,
two symbols marking the chunk beginning (<K>), and the end (</K>) are asso-
ciated to every chunk of type K. The whole set of chunk beginning and chunk
end marks constitute a new alphabet called Y'x. Chunk automata are grouped

VII

within a single transducer called A, i.e. the shallow parser, whose structure is
represented in figure 2.

e/ <Ki >

Fig. 2. Partial parser structure

A’s input alphabet is Y- and its output alphabet is Yo U Yk. It accepts
sequences of categories and outputs sequences of categories and chunk beginning
or end marks. Given a sequence of categories C', A outputs the same sequence
in which every occurrence of a K chunk is delimited by the two symbols <K>
and </K>. As represented in figure 2, A is composed of two parts: the upper
side is the union of the different chunk automata, K;, while the lower side is
made of as many transitions as there are POS categories in the input alphabet.
Transitions linking A’s initial state to the initial states of the chunk automata K;
introduce the chunk beginning marks, while transitions linking chunk automata
K; acceptance state to the state F of automaton A insert chunk ending symbols.
Finally, an ¢ transition linking F to I builds a loop, thus making it possible to
recognize several chunk occurrences in the same sequence of categories.

The automaton A recognizes any word C built on Y. The analysis of C
is achieved by representing it as a linear automaton, C', and then making the
composition C' o A. The product of this composition is most likely ambiguous,
since for every sub-string s of C' corresponding to a chunk K;, two results are
produced: one recognizes s as a chunk (passage through the automaton K;), the
other doesn’t (passage through the lower part of A). Of these results the only one
which is of interest to us is the one in which all chunk occurrences are marked
by beginning and end tags. It is easy to limit the composition product to this
result alone by associating a weight of 0 to intra-chunk transitions and a weight
of 1 to extra-chunk transitions and selecting from the resulting transducer the
minimal weight path. An additional penalty score is associated to transitions
introducing chunk boundaries marks to ensure that the longest match would be
chosen (i.e. the preferred analysis of a sentence would be one containing chunks,

VIII

but as few boundaries marks as possible). This ensures that an analysis like [le
livre rougelnc (the red book) would be preferred to [le livre|yo [rouge]lac The
analysis may thus be expressed by: bp(C o A, 1).

The tagger and chunker integration could now be accomplished by a simple
composition of the two models previously described, which may be expressed by:
bp(bp(M o EoT,1) 0 A, 1). However, this model is an instance of the sequential
architecture which was introduced and criticized in section 1 : the selection
of a particular POS tag is done independently of the partial parsing stage (in
the present work, this stage being a mere chunk segmentation), and may not be
altered to take into account the information available to the chunker. It is possible
to provide the chunker not only with the best tagging solution but with the set
of all tagging solutions represented by the automaton: bp(M o EoT o A, 1). This
goes to prove the flexibility of finite state processing. Nevertheless, such a model
is not very interesting either since the chunker has no discriminating power: it
cannot favor any of the tagger solutions. Indeed, unlike a CFG parser, which
only associates structure to sequences belonging to the grammar language, our
parser accepts any sequence of categories in the tagger output, its role being
limited to identifying certain sub-strings as chunks.

This is the reason which led us to build a probabilistic version of the chunker,
that not only recognizes chunks, but associates them a probability according to
a Markov model, the parameters of which are estimated on a corpus. Before
going into the details of the ways in which such a probabilistic chunking model
could be integrated with a part-of-speech tagger (section 4.3), we describe the
construction of the Probabilistic Parser.

4.2 The Construction of a Probabilistic Chunker

The purpose of this model is not to favor a particular segmentation of a sequence
of categories into chunks, but to provide a way to rank the different possible se-
quences of categories corresponding to the same sentence. To this effect, the
chunker associates every sequence of categories a probability which increases
function of the following factors:

- the sequence of categories corresponds to a sequence of well formed chunks

- appearing in a linear order that has frequently been observed in a training
corpus. In this respect, the chunker is (functionally) very similar to an ngram of
categories.

This approach has a lot in common with [15] which also employs weighted
finite state transducers in order to build a probabilistic partial parser. Neverthe-
less, in their work there are several ways of segmenting a sentence into chunks
and their parser is meant to find the most probable one among them. Moreover,
the input of their parser is a linear sequence of part-of-speech tags.

The probability of a sequence of categories segmented into chunks is com-
puted function of two types of probabilities: intra- and extra-chunk probabilities.
An intra-chunk probability is the probability of a sequence of categories c; , mak-
ing up a chunk of type K;, probability denoted by Pr(cy x|K;). An inter-chunk

IX

probability is the conditional probability of the occurrence of a particular type
of chunk given the n — 1 preceding chunks or categories (as this is a partial
parse, certain categories in the sequence being analyzed are not integrated into
chunks). The probability associated by the chunker to a sequence of categories
is the product of internal probabilities of the chunks composing it and of the
external probabilities of the sequence of chunks recognized.

Given the sequence of categories <s> D N VD N P D A N </s>3, the segmen-
tation proposed by the parser is:

C = <s> <NC> D N </NC> V <NC> D N </NC> <PC> P D A N </PC> </s>

The probability associated to this sequence is the product of the external
probabilities of the chunks recognized (Pg(+)), and of internal probabilities of all
chunks in the sequence:

P(C) = Pr(<s> <NC> V <NC> <PC> </s>) x P;(D NI<NC>)?> x Pr(P D A N| <PC>)

Internal probabilities are estimated by maximum likelihood on a training
corpus, as will be shown in section 4.2. The probability of a sequence of chunks
and categories is estimated using an n-gram model learned on a training corpus,
called external model, which encodes the probability of a chunk given the n — 1
preceding chunks. In the case of a bigram model the external, inter-chunk prob-
ability of C is computed as follows:

Pg(C) = Pg(<NC>|<s>) x Pg(VIKNC>) X Pg(<NC>|V) x Pg(<PC>|<NC>) X Pg(</s>[<PC>)

Model Construction and Parameter Estimation The parameters of the
external model and of the internal chunk models are estimated in two stages on a
tagged corpus as illustrated in figure 3. First the corpus is analyzed using the non-
probabilistic version of the chunker, A. The result of this analysis is a new corpus
in which chunk beginning and end symbols are inserted. Two objects are derived
from this corpus: on the one hand, all sequences of categories corresponding to
a type of chunk K; (which we call patterns) and on the other hand a hybrid
corpus in which every chunk occurrence is replaced by a symbol representing
the chunk. This corpus is made of sequences of categories and chunk symbols
replacing sequences of categories grouped into chunks. The first object is used to
compute intra-chunk probabilities (by converting the chunk grammars written
for the non-probabilistic version of the chunker described in section 4.1 into
probabilistic context-free grammars) while the second one is used for estimating
inter-chunks probabilities.

The estimation of inter-chunk probabilities starting from the hybrid corpus
is identical to the estimation of m-gram probabilities described in section 3.

3 Where D, N, V, P and A are the tags corresponding to the categories determiner, noun,
verb, preposition and adjective respectively.

tagged corpus
partial parse

parsed corpus

(chunk e)‘(traction] (chunk rel‘)lacement]

‘ chunk patterns ‘ hybrid corpus
[
(intra chunk probability estimation] (n-gram training]

[
‘ intra chunk models ‘ inter chunk model

C replace o‘peration)

final model (PP)

Fig. 3. The model construction stages

These probabilities are represented by a transducer (the external model) whose
structure is similar to that of 7" in figure 1 and whose transitions are labeled
with categories or chunk symbols. The estimation of intra-chunk probabilities
is done by maximum-likelihood. Given a chunk C} and n different sequences
of categories (s1, $2, --.Sn) representing all possible patterns for this type of
chunk, observed in a training corpus, n; denotes the number of occurrences of
the sequence ¢;. The probability of the sequence s; equals its relative frequency:
P(s;) = 22’2 ot This probability is that of the path corresponding to s; in the
automaton ;.

Intra-chunk models and the external model are combined within a single
transducer using the replacement operation described in [16]. This substitutes
the automaton K; for each transition <Ki> in the external model. The result-
ing transducer is called PP (for probabilistic parser) and has about 10 times
more states and transitions than 7', the transducer encoding trigram probabili-
ties, however, we assumed that it encodes longer-distance dependencies for the
estimation of which our training data would have been sparse. Therefore we con-
ducted a series of experiments in which we replaced the transducer 7" with PP,
using the tagging model bp(M o E o PP, 1).

Probabilistic Parser Performance Intra- and inter-chunk probabilities are
estimated on Train and the new tagging model bp(M o E o PP,1) (Ms) was
applied to Test. Disappointingly, we found that (Mj) performs only slightly
better than M;(2.05%). Nevertheless, the model is interesting in that it functions
as a tagger and a chunker at the same time.

More interestingly, the two models don’t make the same mistakes. My cor-
rects 30% of the errors made by M; but makes almost as many of its own.

XI

The new type of errors have various causes, most of which are related to the
hypothesis we made that the form of a chunk (the sequence of categories which
constitute a chunk) is independent of the context in which the given chunk oc-
curs. This hypothesis is an approximation just like the Markov hypothesis. The
sentence la discussion a été ouverte par Uarticle ...” (the discussion was initiated
by the paper ...) is a good case in point. In this case, ouverte is rightly tagged
past participle by model M, while M, tags it adjective. The reason is that
My grouped a été ouverte as a verb chunk, but chose the category of ouverte
without taking into account the context where the chunk occurred. On the other
hand the model M; takes advantage of the fact that ouwverte is followed by a
preposition and attributes it the right category.

4.3 Integration of the POS Tagger and the Probabilistic Chunker

In order to deal with the limitations of models M and M5 we have combined the
two within a single complex model: bp(bp((MoEoPP),n)U(bp(MoFEoT),n),1),
denoted by Msj. This automaton is the union of the n-best solutions common
to M; et My to which it associates the sum of weights attributed by M; and
Ms ([Ms](z) = [Mi](z) & [Ma] (z)).

Technically, this is achieved in several stages : first the n-best solutions of
M, and My are computed (using the tropical semiring) then the two resulting
automata are normalized and converted to the log semiring. Then the union
of the two resulting automata is performed, during which an averaged sum of
the common solutions is done. Finally the reconversion to the tropical semiring
allows us to select the best path.

This combination is a way of partially attenuating the effect of the inde-
pendence hypothesis mentioned above. The dependency between the form of a
chunk and the context where it occurs is partially modelled by M. The error
rate obtained by the model M3 on Test is of 1,92%, which is 11,9% less than
our reference model M. Error analysis showed that M3 corrects 15,5% of the
errors M makes but makes 7, 9% new errors. The errors specific to M3 may be
explained by a number of causes: some are still due to the independence hypoth-
esis mentioned above, others (about 10%) are due to the method of estimating
intra-chunk probabilities (the probability that a given sequence of categories con-
stitutes a chunk). These probabilities are estimated by maximum likelihood and
therefore attribute a null probability chunk patterns which, although envisaged
by the chunk grammar, have never been seen in Train. A technique for smoothing
these probabilities is necessary for the method to be more robust. Other errors
are due to the theoretical limitations of the model and would probably only be
corrected by using full syntactic analysis.

5 Conclusion

The work presented in this paper has shown that taking into account the syn-
tactic knowledge encoded in a partial parser may improve the result of a part-
of-speech tagger. It also proved that the different processes involved in this

XII

treatment may be implemented as weighted finite-state machines. The model
described could be improved in a number of ways, such as by a better method
of estimating intra-chunk probabilities as well as a better modeling of the in-
fluence the context has on the form of a chunk. An evaluation of the chunker
performances could also be performed.

References

1. (http://www.research.att.com/sw/tools/{fsm,grm})

2. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23 (1997)

3. (http://www.nyu.edu/pages/linguistics/intex/)

4. Bahl, L.R., Mercer, R.L.: Part of speech assignment by a statistical decision al-
gorithm. In: Proceedings IEEE International Symposium on Information Theory.
(1976) 88-89

5. Katz, S.M.: Estimation of probabilities from sparse data for the language model
component of a speech recogniser. IEEE Transactions on Acoustics, Speech, and
Signal Processing 35 (1987) 400-401

6. Allauzen, C., Mohri, M., Roark, B.: Generalized algorithms for constructing sta-
tistical language models. In: 41st Meeting of the Association for Computational
Linguistics, Sapporo, Japon (2003) 40-47

7. Tzoukermann, E., Radev, D.R.: Use of weighted finite state trasducers in part of
speech tagging. Natural Language Engineering (1997)

8. Kempe, A.: Finite state transducers approximating hidden markov models. In:
35th Meeting of the Association for Computational Linguistics (ACL’97), Madrid,
Spain (1997) 460-467

9. Jurish, B.: A hybrid approach to part-of-speech tagging. Technical report, Berlin-
Brandenburgishe Akademie der Wissenschaften (2003)

10. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for french. In Abeillé,
A, ed.: Treebanks. Kluwer, Dordrecht (2003)

11. Abney, S.P.: Parsing by chunks. In Berwick, R.C., Abney, S.P., Tenny, C., eds.:
Principle-Based Parsing: Computation and Psycholinguistics. Kluwer, Dordrecht
(1991) 257278

12. Abney, S.: Partial parsing via finite-state cascades. In Workshop on Robust Pars-
ing, 8th European Summer School in Logic, Language and Information, Prague,
Czech Republic, pages 8-15. (1996)

13. Abney, S.: Chunk stylebook. http://www.vinartus.com/spa/publications.html
(1996)

14. Mohri, M., Pereira, F.C.N.: Dynamic compilation of weighted context-free gram-
mars. In: 36th Meeting of the Association for Computational Linguistics (ACL’98).
(1998)

15. Chen, K.H., Chen, HH.: Extracting noun phrases from large-scale texts: A hy-
brid approach and its automatic evaluation. In: Meeting of the Association for
Computational Linguistics. (1994) 234-241

16. Mohri, M.: Weighted Grammars Tools: the GRM Library. In: Robustness in
Language and Speech Technology. Jean-Claude Junqua and Gertjan Van Noord
(eds) Kluwer Academic Publishers (2000) 19-40

