
MTT 2003, Paris, 16–18 juin 2003

Factoring Surface Syntactic Structures

Alexis Nasr
LATTICE-CNRS (UMR 8094)

Université Paris 7
alexis.nasr@linguist.jussieu.fr

Mots-clefs – Keywords

Syntaxe de surface, représentation compacte de l’ambiguı̈té syntaxique, analyse syntaxique.
Surface Syntax, ef£cient representation of syntactic ambiguity, parsing.

Résumé - Abstract

Nous décrivons dans cet article une façon de factoriser plusieurs structures syntaxiques de sur-
face en un nouvel objet formel : les structures syntaxiques de surfaces factorisées. Ces derniÁeres
permettent de ne représenter qu’une seule fois les parties communes Áa un ensemble de struc-
tures syntaxiques de surface. L’article décrit aussi un format nouveau de description des rÁegles
d’ordre linéaire de la TST et propose en£n un algorithme ef£cace pour la r éalisation de la tran-
sition Morphologie Profonde→ Syntaxe de surface.

The aim of this paper is threefold. It describes a way of factoring 1 several Surface Syntac-
tic Structures [= SSyntS] into a new formal object that we call a Packed Surface Syntactic
Structure. It also proposes an alternate way of representing the word order rules of the MTT
and, eventually, describe an ef£cient algorithm to perform the Deep Morphological → Surface
Syntax transition.

1 Introduction

The reason to introduce Packed Surface Syntactic Structure [= PSSyntS] in the MTT comes
primarily from the problem of intermediate ambiguity that appears during the Text→Meaning
[= T → M ] transition. The most straightforward way to consider the T → M transition
is to apply to a structure of a given level the rules of the component of the higher level, as
well as information from the lexicon, to give birth to one (or several) structures of the higher
level. The new structures are then themselves used to build one (or several) structures of the

1We shall use here the term factoring quite loosely to denote the idea of representing once common parts of a
collection of objects.



Alexis Nasr

next higher level. Such a view of the T → M process is in accordance with the equative
nature of the MTT in which the T → M process is viewed as a series of sub-processes where
one sub-process (the realisation of one transition) takes as input the output of the preceding
sub-process. This approach suffers a severe drawback from a computational point of view,
which is the phenomenon of intermediate ambiguity. We will illustrate it on the DMorphS →
SSyntS transition. Suppose we have the DMorphS S corresponding to the following string2

n0 v1 n2 p3 n4 p5 n6, where n, v and p stand respectively for the morpho-syntactic categories
noun, verb and preposition while the subscript indicates the position in the string. From a strict
surface syntactic point of view, this DMorphS is ambiguous and can correspond to 5 different
SSyntS, represented in £gure 1. In other words, the application of the SSynt component rules to
S gives rise to the £ve SSyntS of £gure 1. Some of these SSyntS might be spurious and might
therefore be discarded later during the T →M transition. This is the reason why this ambiguity
is called intermediate ambiguity: it only appears at intermediate stages of the process. The fact
that some SSyntS will be discarded at a later stage is actually an important hypothesis of the
work presented here and we will say more about it in section 5.

OBJ

v
1

n
0

n
4

p
5

n
6

n
2

p
3

v
1

n
0

n
4

n
6

n
2

p
5

p
3

n
4

n
0

v
1

n
2

p
3

p
5

T0

T2

v
1

n
0

n
2

p
3

p
5

n
6

n
4

T1

T3v
1

n
0

p
3

n
4

p
5

n
6

n
2

T4

n
6

COMP

COMP

COMP

SUBJ OBJ COMP

COMP

COMP

COMP

COMP

SUBJ OBJ

COMP

COMP

COMP

COMP

SUBJ OBJ SUBJ OBJ COMP

COMP

COMP

COMP

COMP COMP

COMP
SUBJ

COMP

Figure 1: Five Surface Syntactic Structures

The simple solution to this effect of intermediate ambiguity is to continue the T → M pro-
cess independently on each SSyntS produced. Such a solution is not very convincing from an
economical point of view since, as one can see on £gure 1, some structures share important sub-
parts which will be treated independently in each of the SSyntS, the same work will be therefore
carried out several times. The problem is actually not only a problem of ef£ciency, since the
intermediate ambiguity grows exponentially(Nasr et al., 2002) with respect to the length of the
sentence, in the worst case. Processing independently every SSyntS is therefore not realistic
from a computational point of view.

Several solutions can be considered to solve this problem, one of them, which has been explored

2We have only kept the morpho-syntactic categories of the words which make up the sentence and got rid of
words, like determiners, that are not relevant for the point discussed.



Factoring Surface Syntactic Structures

in (Nasr, 1996) was to take into account during the DMorphS → SSyntS information that are
represented elsewhere in the MTM (like the governent pattern of lexemes and possibly some
semantic features of lexemes) in order to give rise only to the “correct” DSyntS. The solution
which is explored in this paper is different, it consists in factoring the common parts of the
different SSyntS. The result of this factoring is a new kind of structure called a PSSyntS which
will be the input of the next transition process, here, the SSynt → DSynt transition. The idea
of representing, in case of ambiguity, several structures in a single one of a new kind and then
process this structure is not new in computational linguistics, it has been used, in particular, in
Machine Translation (Dymetman & Tendeau, 2000; C.Emele & Dorna, 1998).

The idea of factoring which was introduced above to solve the problem of intermediate am-
biguity can also be justi£ed from the point of view of parsing (realization of the DMorphS
→ SSyntS transition). This fact has been acknowledged a long time ago by researches in the
domain of parsing with ambiguous context free grammars. Ef£cient parsing algorithms for am-
biguous grammars as (Younger, 1967) or (Earley, 1970) propose some kind of factoring of the
syntactic trees that they build. This factoring is the key to the ef£ciency of such parsers since
it allows the parser to build analyses of sub-parts of a sentence, store them and then combine
them to constitute analyses of larger sub-parts of the sentence. When two analyses share a
common sub-analysis, this common part is not built twice, it is built once for all and might be
used several times during the parsing process. Factoring is therefore not a post-parsing process
which takes as input several analyses and factor out their common parts, it lies at the heart of
the parsing process which builds a factored representation of the analyses of a sentence.

The structure of the paper is straightforward, in section 2, we describe how several SSyntS
can be factored in a single PSSyntS. Section 3 introduces a new formalism for representing
word order rules, section 4 describes a parsing algorithm that produces PSSyntS and section 5
concludes the paper.

2 Packed Surface Syntactic Structures

We will illustrate the ideas behind the factoring of several SSyntS on the example introduced
above: the £ve SSyntS corresponding to the sequence S . As one can see on £gure 1, the
£ve trees share some sub-parts. SSyntS T0 and T1, for example, share the subtree rooted by
p3, all SSyntS share the subject dependency while T0 and T5 share the subtree of depth one
rooted with v1. The key to the factoring process is to view each of these SSyntS as a set of
dependencies. Two SSyntS (sets of dependencies) X and Y sharing some sub-parts will have a
non-empty intersection which will be represented once and shared by bothX and Y . A PSSyntS
corresponding to the £ve SSyntS of £gure 1 have been represented in £gure 2. The PSSyntS is
made of three elements, a dependency graph, which appears on the top left position of £gure 2, a
function that maps the edges of the dependency graph to the vertices of the third element, which
we call the inclusion graph and which appears at the top right position of £gure 2. The mapping
is represented as a table in the bottom part of the £gure. The dependency graph corresponds
to the union of the £ve SSyntS. This new structure, which is not a tree anymore, does not
keep the information of which subsets of dependencies correspond to an actual SSyntS. This
information is represented in the inclusion graph. Each vertex of this graph corresponds to a set



Alexis Nasr

of dependencies. The leaves3 (labelled with integers) correspond to singletons (sets made of a
single dependency) while the other vertices correspond to the union of the sets denoted by their
daughters. The vertex labelled A, for example, corresponds to the set {1, 2}, i.e. the set made
of the subject and the object dependencies. The vertex S0 corresponds to the set {1, 2, 5, 7, 8, 9}
which is exactly the SSyntS T0 of £gure 1. The directed edge which relates vertices S0 and A
indicates that A is a subset of S0. The function which associates to a vertex of the inclusion
graph, a subset of the dependency graph edges will be called the extension of the vertex, noted
EXT (·). Therefore EXT (A) = {1, 2} and EXT (S0) = {1, 2, 5, 7, 8, 9}. The vertices of the
inclusion graph that correspond to actual SSyntS will be called the £nal vertices of the PSSyntS.
Their labels are of the form Si in order to distinguish them from the non £nal vertices: A, B
and C. The choice of non £nite vertices is, for the moment, arbitrary: we could have chosen
to de£ne any one of the possible subsets of dependencies that make up the dependency graph.
More will be said about such subsets in section 4.

p
3

p
5

n
0

v
1

n
4

n
6

n
2

S4S3S2S1S0

1 2 3 4 5 6 978

A B C

v
1

n
0

v
1

n
2

p
3

v
1

v
1

p
5

n
2

p
3

n
2

p
5

p
3

n
4

n
4

p
5

p
5

n
6

1

2

3

4

5

6

7

8

9

COMP

COMP COMP

COMP COMP

SUBJ

COMP OBJ

COMP

SUBJ

OBJ

COMP

COMP

COMP

COMP

COMP

COMP

COMP

Figure 2: A Packed Surface Syntactic Structure

More formally, a PSSyntS is a 4-tuple 〈D, δ, I,F〉 where D is the dependency graph, I is the
inclusion graph, δ maps the edges of D to vertices of I and F is the set of £nal vertices of I. D
itself is a labelled directed graph, de£ned as a 5-tuple 〈VG,ΣS, EG,ΣL, µ〉 where VG is the set
of G’s vertices, ΣS is the set of edge labels, which corresponds to surface syntactic labels, EG

is the set of labelled directed edges (EG ⊆ VG ×ΣS × VG), ΣL is the set of lexical labels and µ
is a function that associates a lexical label to the vertices of D. I is a directed graph de£ned as
a 5-tuple 〈VI ,ΣI , EI , η, θ〉 where VI is the set of vertices, ΣI is the set of subsets labels, EI is
a set of directed edges (EI ⊆ VI × VI), η maps the elements of VI on the elements of ΣI . The
function θ : VI → {AND ,OR} maps the vertices of I either to the value AND or to the value
OR. We will ignore for the moment this function, its role will become apparent at the end of
section 4. F ⊆ VI is the set of £nal vertices. The function EXT is de£ned recursively:

EXT : VI → 2EG

EXT (X) =

{

{δ−1(X)} if daughters(X) = ∅
⋃

i∈daughters(X) EXT (i) otherwise

3We will use the terminology of trees. When A → B, we will say that B is a daughter of A. We will call a
vertex without daughters a leaf, and a vertex which is the daughter of no one a root.



Factoring Surface Syntactic Structures

3 Ordering rules

The Meaning Text Theory distinguishes three kinds of rules (Mel’³cuk, 1988) in the Surface
Syntactic component. These rules describe the relation between word order, in the Deep Mor-
phological Structure and the surface syntactic dependencies in the corresponding Surface Syn-
tactic Structures. Three kinds of rules are distinguished: Surface Syntactic rules or Syntagm,
which are basically responsible for the ordering of a dependent with respect to its governor,
Pattern for elementary phrases and Global word order rules.

In this work we will only consider word order which is driven by pure surface syntactic con-
sideration, ignoring the in¤uence of the communicative structure of the utterance as well as
speci£c properties of some lexemes, on word order. Furthermore we will only take into account
the syntactic constraints that order a word with respect to its governor and its siblings (other
dependents of the same governor), which means that we will not be able to take into account
non projective structures.

Ordering rules are represented as triplets 〈C,A, h〉 where C is a morpho-syntactic category, A
is an £nite state automaton and h is the lexical head of the rule. The automaton describes all the
dependents a word h of categoryC can have. The triplet 〈V, (SUBJ, N) (HEAD, v1)(OBJ, N)?
(COMP, P )∗, v1〉 is an example of such a rule (here the automaton has been represented as an
equivalent regular expression). Such a rule says that verb v1 must have as a dependent a subject4,
of category noun, an optional object also of category noun (the optionality is represented by
the ? sign) and any number of prepositional complements (the multiplicity is represented by the
Kleene star). The pair (HEAD, v1) does not describe a dependency, it only indicates the position
of the head with respect to its dependents5. The order between the dependents appearing on the
same side of the head corresponds to the linear order of the (function, category) couples in
the regular expression. The object, for example, must appear to the left of the prepositional
complements.

Ordering rules indicate the possible dependents of a word of a given category. They further
indicate which dependents are mandatory, which are optional and which can be repeated. They
eventually de£ne a linear order between them. This way of representing the relation between
word order and the surface syntactic structure of an utterance is not meant to replace the different
rules of the surface syntactic component which have been mentionned above. They should
rather be seen as the result of an automatic transformation of these rules in a format which is
more suitable to an automatization of the DMorph→ SSynt transition.

The automata corresponding to the verb (Av1
), to the noun (An2

) and to the preposition (Ap5
)

rules have been represented graphically in £gure 3. Each transition of the automata is labelled
by a couple 〈F,C〉 where F is a Surface Syntactic Function label (or the special label HEAD)
and C is a morpho-syntactic category. These automata are acceptors/generators of languages,
in accordance with standard automata theory (Hopcroft & Ullman, 1979). The languages are,
as usual, sets of words and each word is a string of couples 〈F,C〉. Each of these words will be
interpreted in our framework as a Surface Syntactic tree of depth one, as shown on the bottom
of £gure 3. Each couple 〈F,C〉 represents a dependency, apart from the couple 〈HEAD, X〉,
which indicates the lexical item that labels the root. Such automata can therefore be seen as tree
generating automata.

4Surface syntactic funtions are inspired by (Mel’³cuk & Pertsov, 1987).
5One can notice that the lexical head of a rule is represented twice, once as the third element of the triplet and

once as a transition of the automaton. This redundancy was introduced for notational convenience.



Alexis Nasr

A
n2

(COMP,P)
(SUBJ,N)

10

(OBJ,N)

ε

3
(HEAD,v1)

2

A
v1

A
p5

210
(COMP,N)(HEAD,p5)

COMP

v1

SUBJ

N P

COMP

v1

SUBJ

N PN

v1

SUBJ OBJ

N N
10 (COMP,P)

(HEAD,n2)
OBJ

Figure 3: Three ordering rules and some generated trees

4 Parsing

The parsing algorithm is a simple adaptation of the well known CYK algorithm (Younger,
1967). The key idea of this algorithm is to analyse the sub-part [wi, wj] of a sentence by com-
bining the analyses of sub-part [wi, wk]with the analysis of sub-part [wk+1, wj] (with i ≤ k < j).
The ef£ciency of the algorithm comes from the fact that the sub-analyses are computed once
for all and stored in a two dimensional table. The order in which sub-parts of a sentence are
analysed is therefore important: before analysing sub-part [wi, wj] the two sub-parts [wi, wk]
and [wk+1, wj] must have been analysed for all possible values of k.

Two parsing algorithms will be described, in section 4.1 and 4.2. Both build PSSyntS but the
£rst one is exponential in the worst case, while the second is polynomial. The two algorithms
have a lot in common, this is why this section will split into two sub-sections near the end.
Everything that will be said before is true of both parsers.

The input of the parser is a couple 〈W,R〉 where W = [w1, wn] is the sequence of words that
make up the sentence to be parsed and R = [r1, rn] is a sequence of rules such that ri is the
rule corresponding to wi, or, in other words, wi is the head of ri. The output of the parser is a
PSSyntS 〈D, δ, I,F〉. The SSyntS of sentence W are the extensions of the elements of F .

i j

w, C

D

Central to the parsing algorithm is the notion of sub-analysis. A sub-analysis
is a SSyntS which corresponds to a given sub-part of the sentence and which
is rooted by a given word. A sub-analysis made of the dependency set D,
rooted with word w of category C and corresponding to the sub-part [wi, wj]
of the sentence is depicted on the left.

More formally, a sub-analysis is a 5-tuple 〈〈C,A,wl〉, s, i, j, S〉 where 〈C,A,wl〉 is the rule rl

(the rule that has wl as head), s is a state of automaton A. Such a state is called the current
state of the sub-analysis. i, j are two integers indicating that the sub-analysis corresponds to the
part of the sentence [wi, wj], S is a vertex of the inclusion graph of the PSSyntS. This vertex
denotes the set of dependencies that make up the sub-analysis, in other words, the SSyntS
which corresponds to the sub-analysis is EXT (S). The root the SSyntS is the word wl. If s is
an accepting state of A, we will say that the sub-analysis is saturated, which means that all its
mandatory dependents have been identi£ed.

The algorithm is based on three operations that construct sub-analyses :

• The operation of merging combines the two sub-analysis X1 = 〈〈C1, A1, wl〉, s1, i, k, S1〉
andX2 = 〈〈C2, A2, wm〉, s2, k+1, j, S2〉 to form the new sub-analysisX3 = 〈〈C1, A1, wl〉,



Factoring Surface Syntactic Structures

s3, i, j, S3〉. This operation can be paraphrased in the following way: X1 corresponds to a
sub-analysis of the sequence [wi, wk] and X2 corresponds to a sub-analysis of [wk+1, wj],
X2 is saturated or, in other words, s2 is an accepting state of A2 and X1 is waiting for
a dependent of category C2 (there is a transition in A1 from state s1 to state s3 labelled
with category C2), which is also the category of the root of S2. During this operation, the
dependency graph D and the inclusion graph I are updated in the following way :

– A new edge wl → wm is added (if not already present) to D. In the case the depen-
dency wl → wm did not exist in D, a new vertex x is added to I and the value of
δ(wl → wm) is set to x.

– A new vertex S3 is added to I as well as the three edges S3 → S1, S3 → S1 and
S3 → x which means that EXT (S3) = EXT (S1) ∪ EXT (S2) ∪ EXT (x). If S3

corresponds to a sub-analysis of the entire sentence (i = 1 and j = n) then S3 is
added to the set F of the £nal vertices of I.

• The operation of leftmost attachment combines a sub-analysisX1 = 〈〈C1, A1, wl〉, s1, i, j,

S1〉 and a rule 〈C2, A2, wm〉 to create a sub-analysis X2 = 〈〈C2, A2, wm〉, s2, i, j, S2〉. X1

must be saturated (s1 is an accepting state of A1) and A2 is such that there is a transi-
tion from its initial state to state s2 labelled with category C1. During this operation, the
dependency graph D and the inclusion graph I are modi£ed in the following way :

– As in the case of merging, a new edge wl → wm is added (if not already present) to
D and a new vertex x is potentially added to I.

– A new vertex S2 is added to I as well as the two edges S2 → S1 and S2 → x

(EXT (S2) = EXT (S1) ∪ EXT (x)).

This operation corresponds to the creation of the leftmost dependency of word wm.

• The operation of head recognition combines a sub-analysis X = 〈〈C,A,wl〉, s, i, j, S〉
and the word wl. This operation corresponds to the recognition of the head of rule
〈C,A,wl〉. This operation happens when X’s current state (s) is such that there is a
transition labelled (HEAD, wl) going out of it. This operation does not modify the de-
pendency graph, nor the inclusion graph.

4.1 The exponential parser

The parsing algorithm consists in iteratively building sub-analyses corresponding to larger and
larger sub-parts of the sentence using the three operations described above. For the sake of
clarity, we will note Si,j a sub-analysis corresponding to the sub-part [wi, wj] of the sentence.
Each time a sub-anlysis Si,j is built, it is stored in the cell Ti,j of a two dimensional table T . T is
£lled in such a way that Ti,j is £lled after both Ti,k and Tk+1,j (with i ≤ k < j) have been £lled.
Filling cell Ti,j amounts to combining the sub-analyses of Ti,k and Tk+1,j with the merging
operation and then possibly adding new sub-analyses to Ti,j with the leftmost attachment and
the head recognition operation. When all the cells of T have been £lled, if the set F of £nal
nodes of the PSSyntS is not empty, the extension of each of its elements corresponds to a SSyntS
of the sentence. The process is initiated by adding in every cell Ti,i the wordwi which will cause
the £rst head detection operations.



Alexis Nasr

The result of parsing sequence s1 = [n0 v1 n2 p3 n4 p5 n6] using rules [〈N,An0
, n0〉, 〈V,Av1

, v1〉,
〈N,An2

, n2〉, 〈P,Ap3
, p3〉, 〈N,An4

, n4〉, 〈P,Ap5
, p5〉, 〈N,An6

, n6〉] is shown in the table of £g-
ure 4. Each entry of cell (i, j) of the table shows one operation that lead to a sub-analysis of
[wi, wj]. The type of operation (M for merging, H for head recognition and L for leftmost
attachment) is represented between square brackets and the effect of the operation on the inclu-
sion graph is represented as an equation of the form W = X ∪Y ∪Z which is to be interpreted
as: vertex W have been added to I as well as the three edges W → X , W → Y and W → Z.

0 1 2 3 4 5 6
A = ∅ ∪ 1[L] A[H] P = A ∪ 2 ∪ ∅[M ] G = A ∪ 2 ∪ D [M ] S0 = A ∪ 2 ∪ I [M ]
∅ [H] H = P ∪ 3 ∪ B[M ] S3 = A ∪ 2 ∪ J [M ]
n0 S1 = P ∪ 3 ∪ F [M ] 0

S2 = G ∪ 4 ∪ C [M ]
S4 = H ∪ 4 ∪ C[M ]

v1 1
∅ [H] D = ∅ ∪ 5 ∪ B [M ] I = ∅ ∪ 5 ∪ F [M ] 2
n2 J = D ∪ 6 ∪ C [M ]

∅[H] B = ∅ ∪ 7 ∪ ∅ [M ] F = ∅ ∪ 7 ∪ E [M ] 3
p3

∅ [H] E = ∅ ∪ 8 ∪ C [M ] 4
n4

∅[H] C = ∅ ∪ 9 ∪ ∅ [M ] 5
p5

∅ [H] 6
n6

Figure 4: The parsing table at the end of the process

4.2 The polynomial parser

The parsing process described above builds a PSSyntS which corresponds to a set of SSyntS
in such a way that every dependency is represented exactly once in the dependency graph. But
one can notice that the cell T0,6 of the table contains £ve entries, each one corresponding to one
of the £ve SSyntS of £gure 1. This is due to the fact that, by de£nition of the algorithm, when
parsing a sentence S of length n, there will be as many entries in cell T0,n−1 as there are SSyntS
corresponding to sentence S . This situation is not satisfactory since, as we already said, the
number of SSyntS is, in the worst case, an exponential function of n, so will be the number of
entries in T0,n−1, the algorithm will therefore be exponential. Fortunately, we can avoid such
an exponential growth by restricting the number of sub-analyses in each cell of the table. The
restriction stems from the following remark: when two sub-analyses share the same rule and the
same current state, they are interchangeable: one can be replaced by the other in any larger sub-
analysis. We can therefore represent these two sub-analyses as a single object which denotes the
two sub-analyses. Let’s illustrate this on an example. The two sub-analyses of T2,6 are rooted
with word n2 and both are saturated (their current state is an accepting state of automaton AN ).
They correspond to the two subtrees of T0 and T3 (in £gure 1) which have n2 as a root. These
two sub-analyses differ only in the node they correspond to in the inclusion graph: I in one
case and J in the other. Instead of representing both sub-analyses as separate objects, we will
represent them as one object which corresponds to two vertices of the inclusion graph. Instead
of having the two sub-analyses 〈〈N,AN , n2〉, 1, 2, 6, I〉 and 〈〈N,AN , n2〉, 1, 2, 6, J〉, we will
have the single sub-analysis 〈〈N,AN , n2〉, 1, 2, 6, {I, J}〉. As a consequence, the two entries of



Factoring Surface Syntactic Structures

T0,6, S0 and S3, corresponding to SSynsS T0 and T3 of £gure 1 will now be represented as a
single entry.

A sub-analysis can now denote more than one SSyntS or, to say in another way, can correspond
to more than one vertex in the inclusion graph. We will therefore have to manipulate sets of
vertices and introduce some formal means to represent them in the inclusion graph. This means
is function θ, introduced as a component of the inclusion graph in section 2, and unused since.
This function maps the vertices of the inclusion graph either to the value AND or to the value
OR. In the £rst case, we will call the vertex an AND-vertex and, in the second, an OR-vertex.
The difference between these two types of vertices lies in the semantics of the relation which
exists between a vertex and its daughters. An AND-vertex denotes a set which is the union of
the sets denoted by its daughters. It is this semantics that we have used until now and which
was materialized by the EXT function (EXT (X) =

⋃

i∈daughters(X) EXT (i)). An OR-vertex
denotes a set of sets which is the set composed with the sets denoted by the daughters of the
vertex. The binary operation which makes a set out of two elements is represented by symbol
t (a t b = {a, b}). The EXT function is now de£ned as follows:

EXT : VI → 22EG

EXT (X) =











{δ−1(X)} if daughters(X) = ∅
⋃

i∈daughters(X) EXT (i) if θ(X) = AND
⊔

i∈daughters(X) EXT (i) if θ(X) = OR

The modi£cations that need to be done in the parsing algorithm to take into account this change
in the inclusion graph are minimal. Whenever a sub-analysis S = 〈R, s, i, j, I〉 is to be added
to the cell Ti,j of the parsing table, before adding it, a lookup is done through the entries of the
cell. If a sub-analysis S ′ = 〈R, s, i, j, I ′〉 having the same rule as S and the same current state
is found, then S is not added to the cell. Two situations can occur, either I ′ is an OR-vertex of
the inclusion graph or I ′ is an AND-vertex. In the £rst case, I is added as a daughter of I ′. In
the second case, a new OR-vertex I ′′ is added to the inclusion graph, I and I ′ are added as I ′′

daughters and S ′ is changed to 〈R, s, i, j, I ′′〉 (I ′ is replaced by I ′′). The rest of the algorithm is
unchanged.

5 Conclusion

The main point of this paper was to introduce Packed Surface Syntactic Structures, a new formal
object in the MTT. A PSSyntS represents the different SSyntS of a sentence. The key idea
behind PSSyntS is to represent only once dependencies that are shared in the SSyntS. This
factoring allows the de£nition of a parsing algorithm that performs in polynomial time even if
the number of parses is exponential. This result couldn’t have been obtained without a ef£cient
representation of ambiguity. But for this advantage not to be lost, the PSSyntS which has
been produced should not be unpacked (opening Pandora’s box), the other transitions of the
MTT, (SSyntS → DSyntS and DSyntS → SemS) should therefore be performed on packed
structure, using, for example, formal tools introduced in (Rozenberg, 1997) and already used in
the framework of the MTT in (Bohnet & Wanner, 2001). The hypothesis which is made here is
that some of the SSyntS represented in the PSSyntS produced the parser are ill-formed and that
this ill formedness will be revealed at later stages of the T → M and at the end of the process,
few SemS will have survived. This hypothesis is, as its name suggests, only a hypothesis.
We do not know at the moment to which extent the ambiguity will decrease at later stages of



Alexis Nasr

the T → M process. Some obvious examples come immediately to mind, as the government
patterns of lexemes which, when applied to the PSSyntS will rule out certain SSyntS6. In the
sentence S , the actual lexeme v1 for example might not licence prepositional complements,
which will rule out structures T1, T2 and T4. But it is unclear for the moment where, in an
MTM, are the other constraints that will rule out other (syntactically, lexically, semantically,
communicatively . . . ) ill-formed analyses and how they can be used in the T →M transition.

References

BOHNET B. & WANNER L. (2001). On using a parallel graph rewriting grammar formalism in
generation. In 8th European Natural Language Generation Workshop at the Annual Meeting
of the Association for Computational Linguistic, Toulouse.

C.EMELE M. & DORNA M. (1998). Ambiguity preserving machine translation using packed
representation. In COLING-ACL 1998, Montreal.

DYMETMAN M. & TENDEAU F. (2000). Context-free grammar rewriting and the transfer
of packed linguistic representation. In Proceedings of the 19th International Conference on
Computational Linguistics (COLING’00), p. 1016–1020, Saarbrücken.

EARLEY J. (1970). An ef£cient context-free parsing algorithm. Communcations of the ACM,
8(6), 451–455.

HOPCROFT J. & ULLMAN J. (1979). Introduction to Automata Theory, Languages and Com-
putation. Reading, Massachussetts: Addison-Wesley.

MEL’ ³CUK I. A. (1988). Dependency Syntax: Theory and Practice. New York: State Univer-
sity of New York Press.

MEL’ ³CUK I. A. & PERTSOV N. V. (1987). Surface Syntax of English. Amster-
dam/Philadelphia: John Benjamins.

NASR A. (1996). Un modÁele de reformulation automatique fondé sur la Théorie Sens Texte:
Application aux langues contrôlées. PhD thesis, Université Paris 7.

NASR A., RAMBOW O., CHEN J. & BANGALORE S. (2002). Context-free parsing of a tree
adjoining grammar using £nite-state machines. In Proceedings the Sixth Workshop on Tree
Adjoining Grammars (TAG+ 6), Venise, Italie.

G. ROZENBERG, Ed. (1997). Handbook of Graph Grammars and Computing by Graph Trans-
formation Volume 1: Foundations. World Scienti£c.

YOUNGER D. (1967). Recognition and parsing of context-free grammar in time n3. Informa-
tion and Control, (10), 189–208.

6One could argue that this piece of information should be taken into account in the ordering rules.


