
Tagging with Hidden Markov Models Using Ambiguous Tags

Alexis Nasr
LaTTice - Université Paris 7
anasr@linguist.jussieu.fr

Frédéric Béchet
Laboratoire d’Informatique

d’Avignon
frederic.bechet@lia.univ-avignon.fr

Alexandra Volanschi
LaTTice - Université Paris 7

avolansk@linguist.jussieu.fr

Abstract

Part of speech taggers based on Hidden
Markov Models rely on a series of hypothe-
ses which make certain errors inevitable.
The idea developed in this paper consists
in allowing a limited, controlled ambiguity
in the output of the tagger in order to avoid
a number of errors. The ambiguity takes
the form of ambiguous tags which denote
subsets of the tagset. These tags are used
when the tagger hesitates between the dif-
ferent components of the ambiguous tags.
They are introduced in an existing lexicon
and 3-gram database. Their lexical and
syntactic counts are computed on the basis
of the lexical and syntactic counts of their
constituents, using impurity functions. The
tagging process itself, based on the Viterbi
algorithm, is unchanged. Experiments con-
ducted on the Brown corpus show a recall of
0.982, for an ambiguity rate of 1.233 which
is to be compared with a baseline recall of
0.978 for an ambiguity rate of 1.414 using
the same ambiguous tags and with a recall
of 0.955 corresponding to the one best solu-
tion of standard tagging (without ambigu-
ous tags).

1 Introduction

Taggers are commonly used as pre-processors
for more sophisticated treatments like full syn-
tactic parsing or chunking. Although taggers
achieve high accuracy, they still make some
mistakes that quite often impede the following
stages. There are at least two solutions to this
problem. The first consists in devising more so-
phisticated taggers either by providing the tag-
ger with more linguistic knowldge or by refining
the tagging process, through better probability
estimation, for example. The second strategy
consists in allowing some ambiguity in the out-
put of the tagger. It is the second solution that
was chosen in this paper. We believe that this
is an instance of a more general problem in se-
quential natural language processing chains, in

which a module takes as input the output of
the preceding module. Since we cannot, in most
cases, expect a module to produce only correct
solutions, modules should be able to deal with
ambiguous input and ambiguous output. In our
case, the input is non ambiguous while the out-
put is ambiguous. From this perspective, the
quality of the tagger is evaluated by the trade-
off it achieves between accuracy and ambiguity.

The introduction of ambiguous tags in the
tagger output raises the question of the process-
ing of these ambiguous tags in the post-tagging
stages of the application. Leaving some ambigu-
ity in the output of the tagger only makes sense
if these other processes can handle it. In the
case of a chunker, ambiguous tags can be taken
into account through the use of weighted finite
state machines, as proposed in (Nasr and Volan-
schi, 2004). In the case of a syntactic parser,
such a device can usually deal with some ambi-
guity and discard the incorrect elements of an
ambiguous tag when they do not lead to a com-
plete analysis of the sentence. The parser itself
acts, in a sense, as a tagger since, while pars-
ing the sentence, it chooses the right tag among
a set of possible tags for each word. The rea-
son why we still need a tagger and don’t let the
parser do the job is time and space complexity.
Parsers are usually more time and space con-
suming than taggers and highly ambiguous tags
assignments can lead to prohibitive processing
time and memory requirements.

The tagger described in this paper is based
on the standard Hidden Markov Model archi-
tecture (Charniak et al., 1993; Brants, 2000).
Such taggers assign to a sequence of words
W = w1 . . . wn , the part of speech tag sequence
T̂ = t̂1 . . . t̂n which maximizes the joint prob-
ability P (T,W) where T ranges over all possi-
ble tag sequences of length n. The probability
P (T,W) is itself decomposed into a product of
2n probabilities, n lexical probabilities P (wi|ti)
(emission probabilities of the HMM) and n syn-

tactic probabilites (transition probabilities of the
HMM). Syntactic probabilities model the prob-
ability of the occurrence of tag ti given a history
which is the knowledge of the h preceding tags
(ti−1 . . . ti−h). Increasing the length of the his-
tory increases the predictive power of the tag-
ger but also the number of parameters to esti-
mate and therefore the amount of training data
needed. Histories of length 2 constitute a com-
mon trade-off for part of speech tagging.

We define an ambiguous tag as a tag that de-
notes a subset of the original tagset. In the re-
mainder of the paper, tags will be represented
as subscripted capitals T : T1, T2 Ambigu-
ous tags will be noted with multiple subscripts.
T1,3,5 for example, denotes the set {T1, T3, T5}.
We define the ambiguity of an ambiguous tag as
the cardinality of the set it denotes. This notion
is extended to non ambiguous tags, which can
be seen as singletons, their ambiguity is there-
fore equal to 1.

Ambiguous tags are actually new tags whose
lexical and syntactic probability distributions
are computed on the basis of lexical and syn-
tactic distributions of their constituents. The
lexical and syntactic probability distributions of
Ti1,...,in should be computed in such a way that,
when a word in certain context can be tagged
as Ti1 , . . . , Tin with probabilities that are close
enough, the tagger should choose the ambiguous
tag Ti1,...,in .

The idea of changing the tagset in order to im-
prove tagging accuracy has already been tested
by several researchers. (Tufiş et al., 2000) re-
ports experiments of POS tagging of Hungarian
with a large tagset (about one thousand differ-
ent tags). In order to reduce data sparseness
problems, they devise a reduced tagset which is
used for tagging. The same kind of idea is de-
veloped in (Brants, 1995). The major difference
between these approaches and ours, is that they
devise the reduced tagset in such a way that, af-
ter tagging, a unique tag of the extended tagset
can be recovered for each word. Our perspective
is significantly different since we allow unrecov-
erable ambiguity in the output of the tagger and
leave to the other processing stages the task of
reducing it. In the HMM based taggers frame-
work, our work bears a certain resemblance with
(Brants, 2000) who distinguishes between reli-
able and unreliable tag assignments using prob-
abilities computed by the tagger. Unreliable
tag assignments are those for which the prob-
ability is below a given threshold. He shows

that taking into account only reliable assign-
ments can significantly improve the accuracy,
from 96.6% to 99.4%. In the latter case, only
64.5% of the words are reliably tagged. For the
remaining 35.5%, the accuracy is 91.6%. These
figures show that taking into account probabil-
ities computed by the tagger discriminates well
these two situations. The main difference be-
tween his work and ours is that he does not
propose a way to deal with unreliable assign-
ments, which we treat using ambiguous tags.

The paper is structured as follows: section 2
describes how the probability distributions of
the ambiguous tags are estimated. Section 3
presents an iterative method to automatically
discover good ambiguous tags as well as an ex-
periment on the Brown corpus. Section 4 con-
cludes the paper.

2 Computing probability
distributions for ambiguous tags

Probabilistic models for part of speech taggers
are built in two stages. In a first stage, counts
are collected from a tagged training corpus
while in the second, probabilities are computed
on the basis of these counts. Two type of counts
are collected: lexical counts, noted Cl(w, T)
indicating how many times word w has been
tagged T in the training corpus and syntactic
counts Cs(T1, T2, T3) indicating how many
times the tag sequence T1, T2, T3 occurred in
the training corpus. Lexical counts are stored
in a lexicon and syntactic counts in a 3-gram
database.

These real counts will be used to compute
fictitious counts for ambiguous tags on the basis
of which probability distributions will be esti-
mated. The rationale behind the computation
of the counts (lexical as well as syntactic) of an
ambiguous tag T1...j is that they must reflect
the homogeneity of the counts of {T1 . . . Tj}. If
they are all equal, the count of T1...j should be
maximal.

Impurity functions (Breiman et al., 1984) per-
fectly model this behavior1: an impurity func-
tion Φ is a function defined on the set of all N-
tuples of numbers (p1, . . . , pN) satisfying ∀j ∈

[1, . . . , N], pj ≥ 0 and
∑N

j=1 pj = 1 with the fol-
lowing properties:

1Entropy would be another candidate for such compu-
tation. The same experiments have also been conducted
using entropy and lead to almost the same results.

• Φ reaches its maximum at the point
(1

N
, . . . , 1

N
)

• Φ achieves its minimum at the points
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1)

Given an impurity function Φ, we define the
impurity measure of a N-tuple of counts C =
(c1, . . . , cN) as follows :

I(c1, . . . , cN) = Φ(f1, . . . , fN) (1)

where fi is the relative frequency of ci in C:

fi =
ci

∑N
k=1 ck

The impurity function we have used is the
Gini impurity criteria:

Φ(f1, . . . , fN) =
∑

i6=j

fifj

whose maximal value is equal to N−1

N
.

The impurity measure will be used to com-
pute both lexical and syntactic fictitious counts
as described in the two following sections.

2.1 Lexical counts

Lexical counts for an ambiguous tag T1,...,n are
computed using lexical impurity Il(w, T1,...,n)
which measures the impurity of the n-tuple
(Cl(w, T1), . . . , Cl(w, Tn)):

Il(w, T1,...,n) = I(Cl(w, T1), . . . , Cl(w, Tn))

A high lexical impurity Il(w, T1,...,n) means
that w is ambiguous with respect to the differ-
ent classes T1, . . . , Tn. It reaches its maximum
when w has the same probability to belong to
any of them. The lexical count Cl(w, T1,...,n) is
computed using the following formula:

Cl(w, T1,...,n) = Il(w, T1,...,n)
n

∑

i=1

Cl(w, Ti)

This formula is used to update a lexicon, for
each lexical entry, the counts of the ambiguous
tags are computed and added to the entry. The
two entries daily and deals whose original counts
are represented below2:

daily RB 32 JJ 41

deals NNS 1 VBZ 13

2
RB, JJ, NNS and VBZ stand respectively for adverb,

adjective, plural noun and verb (3rd person singular,
present).

are updated to3:

daily RB 32 JJ 41 JJ_RB 36

deals NNS 1 VBZ 13 NNS_VBZ 2

2.2 Syntactic counts

Syntactic counts of the form Cs(X,Y, T1,...,n)
are computed using syntactic impurity
Is(X,Y, T1,...,n) which measures the impurity of
the n-tuple I(Cs(X,Y, T1), . . . , Cs(X,Y, Tn)) :

Is(X, Y, T1,...,n) = I(Cs(X, Y, T1), . . . , Cs(X, Y, Tn))

A maximum syntactic impurity means that
all the tags T1, . . . , Tn have the same probabil-
ity of occurrence after the tag sequence X Y .
If any of them has a probability of occurrence
equal to zero after such a tag sequence, the im-
purity is also equal to zero. The syntactic count
Cs(X,Y, T1,...,n) is computed using the following
formula:

Cs(X, Y, T1,...,n) = Is(X, Y, T1,...,n)

n
∑

i=1

Cs(X, Y, Ti)

Such a formula is used to update the 3-
gram database in three steps. First, syntac-
tic counts of the form Cs(X,Y, T1,...,n) (with
X and Y unambiguous) are computed, then
syntactic counts of the form Cs(X,T1,...,n, Y)
(with X unambiguous and Y possibly ambigu-
ous) and eventually, syntactic counts of the form
Cs(T1,...,n, X, Y) (for X and Y possibly ambigu-
ous). The following four real 3-grams:

A A A 100 A A B 100

A B A 10 A B B 1000

will give rise to following five fictitious ones:

A A A_B 100 A A_B A 18

A A_B A_B 31 A A_B B 181

A B A_B 19

which will be added to the 3-gram database.
Note that the real 3-grams are not modified dur-
ing this operation.

Once the lexicon and the 3-gram database
have been updated, both real and fictitious
counts are used to estimate lexical and syntactic
probability distribution. These probability dis-
tributions constitute the model. The tagging
process itself, based on the Viterbi search algo-
rithm, is unchanged.

3The fictitious counts were rounded to the nearest
integer.

2.3 Data sparseness

The introduction of new tags in the tagset in-
creases the number of states in the HMM and
therefore the number of parameters to be esti-
mated. It is important to notice that even if the
number of parameters increases, the model does
not become more sensitive to data sparseness
problems than the original model was. The rea-
son is that fictitious counts are computed based
on actual counts. The occurrence, in the train-
ing corpus, of an event (as the occurrence of
a sequence of tags or the occurrence of a word
with a given tag) is used for estimating both the
probability of the event associated to the sim-
ple tag and the probabilities of the events asso-
ciated with the ambiguous tags which contain
the simple tag. For example, the occurrence of
the word w with tag T , in the training corpus,
will be used to estimate the lexical probabil-
ity P (w|T) as well as the lexical probabilities
P (w|T ′) for every ambiguous tag T ′ of which T
may be a component.

3 Learning ambiguous tags from
errors

Since ambiguous tags are not given a priori,
candidates can be selected based on the errors
made by the tagger. The idea developed in this
section consists in learning iteratively ambigu-
ous tags on the basis of the errors made by a
tagger. When a word w tagged T1 in a refer-
ence corpus has been wrongly tagged T2 by the
tagger, that means that T1 and T2 are lexically
and syntactically ambiguous, with respect to w
and a given context. Consequently, T1,2 is a po-
tential candidate for an ambiguous tag.

The process of discovering ambiguous tags
starts with a tagged training corpus whose
tagset is called T0. A standard tagger, M0,
is trained on this corpus. M0 is used to tag
the training corpus. A confusion matrix is then
computed and the most frequent error is se-
lected to form an ambiguous tag which is added
to T0 to constitute T1. M0 is then updated
with the new ambiguous tag to constitue M1,
as described in section 2. The process is iter-
ated : the training corpus is tagged with Mi,
the most frequent error is used to constitue Ti+1

and a new tagger Mi+1 is built, based on Mi.
The process continues until the result of the tag-
ging on the development corpus converges or the
number of iterations has reached a given thresh-
old.

3.1 Experiments

The model described in section 2 has been
tested on the Brown corpus (Francis and
Kučera, 1982), tagged with the 45 tags of the
Penn treebank tagset (Marcus et al., 1993),
which constitute the initial tagset T0. The cor-
pus has been divided in a training corpus of
961, 3 K words, a development corpus of 118, 6
K words and a test corpus of 115, 6 K words.
The development corpus was used to detect the
convergence and the final model was evaluated
on the test corpus. The iterative tag learning
algorithm converged after 50 iterations.

A standard trigram model (without ambigu-
ous tags) M0 was trained on the training cor-
pus using the CMU-Cambridge statistical lan-
guage modeling toolkit (Clarkson and Rosen-
feld, 1997). Smoothing was done through back-
off on bigrams and unigrams using linear dis-
counting (Ney et al., 1994).

The lexical probabilities were estimated on
the training corpus. Unknown words (words of
the development and test corpus not present in
the lexicon) were taken into account by a sim-
ple technique: the words of the development
corpus not present in the training corpus were
used to estimate the lexical counts of unknown
words Cl(UNK, t). During tagging, if a word is
unknown, the probability distribution of word
UNK is used. The development corpus contains
4097 unknown words (3.4% of the corpus) and
the test corpus 3991 (3.3%).

3.1.1 Evaluation measures

The result of the tagging process consists in a
sequence of ambiguous and non ambiguous tags.
This result can no longer be evaluated using ac-
curacy alone (or word error rate), as it is usu-
ally the case in part of speech tagging, since the
introduction of ambiguous tags allows the tag-
ger to assign multiple tags to a word. This is
why two measures have been used to evaluate
the output of the tagger with respect to a gold
standard: the recall and the ambiguity rate.

Given an output of the tagger T = t1 . . . tn,
where ti is the tag associated to word i by the
tagger, and a gold reference R = r1 . . . rn where
r1 is the correct tag for word wi, the recall of T
is computed as follows :

REC(T) =

∑n
i=1 δ(ri ∈ ti)

n

where δ(p) equals to 1 if predicate p is true
and 0 otherwise. A recall of 1 means that for

every word occurrence, the correct tag is an el-
ement of the tag given by the tagger.

The ambiguity rate of T is computed as fol-
lows :

AMB(T) =

∑n
i=1 AMB(ti)

n

where AMB(ti) is the ambiguity of tag ti. An
ambiguity rate of 1 means that no ambiguous
tag has been introduced. The maximum ambi-
guity rate for the development corpus (when all
the possible tags of a word are kept) is equal to
2.4.

3.1.2 Baseline models

The successive modelsMi are based on the dif-
ferent tagsets Ti. Their output is evaluated with
the two measures described above. But these
figures by themselves are difficult to interpret if
we cannot compare them with the output of an-
other tagging process based on the same tagset.
The only point of comparision at hand is model
M0 but it is based on tagset T0, which does not
contain ambiguous tags. In order to create such
a point of comparison, a baseline model Bi is
built at every iteration. The general idea is to
replace in the training corpus, all occurrences of
tags that appear as an element of an ambigu-
ous tag of Ti by the ambiguous tag itself. After
the replacement stage, a model Bi is computed
and used to tag the development corpus. The
output of the tagging is evaluated using recall
and ambiguity rate and can be compared to the
output of model Mi.

The replacement stage described above is ac-
tually too simplistic and gives rise to very poor
baseline models. There are two problems with
this approach. The first is that a tag Ti can ap-
pear as a member of several ambiguous tags and
we must therefore decide which one to choose.
The second, is that a word tagged Ti in the ref-
erence corpus might be unambiguous, it would
therefore be “unfair” to associate to it an am-
biguous tag. This is the reason why the replace-
ment step is more elaborate. At iteration i, for
each couple (wj , Tj) of the training corpus, a
lookup is done in the lexicon, which gives access
to all the possible non ambiguous tags word wj

can have. If there is an ambiguous tag T in
Ti such that all its elements are possible tags of
wj then, couple (wj , Tj) is replaced with (wj , T)
in the corpus. If several ambiguous tags fulfill
this condition, the ambiguous tag which has the
highest lexical count for wj is chosen.

Another simple way to build a baseline would
be to produce the n best solutions of the tag-
ger, then take for each word of the input the
tags associated to it in the different solutions
and make an ambiguous tag out of these tags.
This solution was not adopted for two reasons.
The first is that this method mixes tags from
different solutions of the tagger and can lead
to completely incoherent tags sequences. It is
difficult to measure the influence of this inco-
herence on the post-tagging stages of the ap-
plication and we didn’t try to measure it em-
pirically. But the idea of potentially producing
solutions which are given very poor probabili-
ties by the model is unappealing. The second
reason is that we cannot control anymore which
ambiguous tags will be created (although this
feature might be desirable in some cases). It
will be therefore difficult to compare the result
with our models (the tagsets will be different).4

3.1.3 Results

The results of the successive models have been
plotted in figure 1 and summarized in table 1,
which also shows the results on the test corpus.
For each iteration i, recall and ambiguity rates
of modelsMi and Bi on the development corpus
were computed. The results show, as expected,
that recall and ambiguity rate increase with the
increase of the number of ambiguous tags added
to the tagset. This is true for both models Mi

and Bi. The figure also shows that recall of Bi,
for a given i, is generally a bit lower than Mi

while its ambiguity is higher. Figure 2 shows
that for the same recall Bi introduces more am-
biguous tags than Mi.

The list of the 20 first ambiguous tags created
during the process is represented below :

1 IN_RB 11 IN_WDT_WP

2 DT_IN_WDT_WP 12 VBD_VBN

3 JJ_VBN 13 JJ_NN_NNP_NNS_RB_VBG

4 NN_VB 14 JJ_NN_NNP

5 JJ_NN 15 JJ_NN_NNP_NNS_RB

6 IN_RB_RP 16 JJR_RBR

4As a point of comparison we will nevertheless give a
few figures here. For low values of n, the n best solutions
have better recall for a given value of the ambiguity rate.
For instance, the 4 best tagger output yields a recall of
0.9767 for an ambiguity rate of 1.12, while, for the same
ambiguity rate, the iterative method obtains a 0.9604 re-
call. However, the 0.982 recall value which we attained
at the end of the iterative ambiguous tag learning pro-
cedure, corresponding to an ambiguity rate of 1.23, was
also reached by keeping the 7 best solutions of the tag-
ger, with an ambiguity rate of 1.20 (only slightly better
than ours).

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20 25 30 35 40 45 50
 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5
re

ca
ll

am
bi

gu
ity

iterations

recall
ambiguity

recall (baseline)
ambiguity (baseline)

Figure 1: Recall and ambiguity rate of the suc-
cessive models on development corpus

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0.955 0.96 0.965 0.97 0.975

am
bi

gu
ity

recall

Model Mi
Baseline

Figure 2: Comparing ambiguity rates for a fixed
value of recall

7 NNPS_NNS 17 NN_VBG

8 VB_VBP 18 CD_NN

9 JJ_RB 19 WDT_WP

10 DT_RB 20 JJ_NN_NNP_NNS

Model DEV TEST
REC AMB REC AMB

M0 = B0 0.955 1 0.955 1
B40 0.978 1.414 0.979 1.418
M40 0.980 1.232 0.982 1.232

Table 1: Results on development and test cor-
pus

3.1.4 Model efficiency

The original idea of our method consists in cor-
recting errors that were made by M0, through
the introduction of ambiguous tags. Ideally, we
would like models Mi with i > 0 to introduce
an ambiguous tag only where M0 made a mis-
take. Unfortunately, it is not always the case.
We have classified the use of ambiguous tags
into four situations function of their influence

on both recall and ambiguity rate as indicated
in table 2, where G stands for the gold standard.
In situations 1 and 2 model M0 made a mis-
take. In situation 1, the mistake was corrected
by the introduction of the ambiguous tag while
in situation 2 it was not. In situations 3 and 4,
modelM0 did not make a mistake. In situation
3 the introduction of the ambiguous tag did not
create a mistake while it did in situation 4.

Situation G M0 Mi REC AMB
1 T1 T2 T1,2 + +
2 T3 T4 T1,2 0 +
3 T1 T1 T1,2 0 +
4 T3 T3 T1,2 − +

Table 2: Influence of the introduction of an am-
biguous tag on recall and ambiguity rates

The frequency of each situation for some of
the 20 first ambiguous tags has been reported
in table 3. The last column of the table indicates
the frequency of the ambiguous tag (number of
occurrences of this tag divided by the sum of
occurrences of all ambiguous tags). The figures
show that ambiguous tags are not very efficient:
only a moderate proportion of their occurrences
(24% on average) actually corrected an error.
While we are very rarely confronted with sit-
uation 4 which decreases recall and increases
ambiguity (0.5% on average), in the vast ma-
jority of cases ambiguous tags simply increase
the ambiguity without correcting any mistakes.

Ambiguous tags behave quite differently with
respect to the four situations described above.
In the best cases (tag 6), 46% of the occurrences
corrected an error, and the tag is used one out of
ten times the tagger selects an ambiguous tag,
as opposed to tag 19 , which corrected errors in
48% of the cases but is not frequently used. The
worst configuration is tag 9, which, although
not chosen very often, corrects an error in 13%
of the occurrences and increases the ambiguity
in 85% of its occurrences.

A more detailed evaluation of the basic tag-
ging mistakes has suggested a better adapted
and more subtle method of using the ambiguous
tags which may at the same time constitute a di-
rection for future work. While the vast majority
of mistakes are due to mixing up word classes,
such as the -ing forms used as adjectives, as
nouns or as verbs, about one third of the mis-
takes concern only 25 common words such as
that, out, there, on, off, etc. Using the ambigu-

Tag 1 2 3 4 freq
1 0.220 0.026 0.746 0.006 0.126
5 0.129 0.014 0.852 0.002 0.165
6 0.461 0.000 0.538 0.000 0.107
9 0.133 0.012 0.850 0.003 0.082
19 0.483 0.064 0.419 0.032 0.012
AVG 0.241 0.029 0.722 0.005

Table 3: Error analysis of some ambiguous tags

ous tags for these words alone has yielded a re-
call of 0.965 on the test corpus (25% errors less
than model M0) while keeping the ambiguity
rate very low (1.04). With this procedure, 35%
of the ambiguous tags occurrences corrected an
error made byM0 and 59% increased the ambi-
guity. The result can be improved by designing
two sets of ambiguous tags: one to be used for
this set of words, and one for the word-classes
most often mistaken.

4 Conclusions and Future Work

We have presented a method for computing the
probability distributions associated to ambigu-
ous tags, denoting subsets of the tagset, in an
HMM based part of speech tagger. An iterative
method for discovering ambiguous tags, based
on the mistakes made by the tagger allowed to
reach a recall of 0.982 for an ambiguity rate of
1.232. These figures can be compared to the
baseline model which achieves a recall of 0.979
and an ambiguity rate of 1.418 using the same
ambiguous tags. An analysis of ambiguous tags
showed that they do not always behave in the
way expected; some of them introduce a lot of
ambiguity without correcting many mistakes.

This work will be developed in two directions.
The first one concerns the study of the differ-
ent behaviour of ambiguous tags which could
be influenced by computing differently the ficti-
tious counts of each ambiguous tag, based on its
behaviour on a development corpus in order to
force or prevent its introduction during tagging.
The second direction concerns experiments on
supertagging (Bangalore and Joshi, 1999) fol-
lowed by a parsing stage the tagging stage asso-
ciates to each word a supertag. The supertags
are then combined by the parser to yield a parse
of the sentence. Errors of the supertagger (al-
most one out of 5 words is attributed the wrong
supertag) often impede the parsing stage. The
idea is therefore to allow some ambiguity during
the supertagging stage, leaving to the parser the

task of selecting the right supertag using syntac-
tic constraints that are not available to the tag-
ger. Such experiments will constitute one way
of testing the viability of our approach.

References

Srinivas Bangalore and Aravind K. Joshi. 1999.
Supertagging: An approach to almost pars-
ing. Computational Linguistics, 25(2):237–
265.

Thorsten Brants. 1995. Tagset reduction with-
out information loss. In ACL’95, Cambridge,
USA.

Thorsten Brants. 2000. Tnt - a statistical
part-of-speech tagger. In Sixth Applied Natu-
ral Language Processing Conference, Seattle,
USA.

L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. 1984. Classification and Re-
gression Trees. Wadsworth & Brooks, Pacific
Grove, California.

Eugene Charniak, Curtis Hendrickson, Neil Ja-
cobson, and Mike Perkowitz. 1993. Equa-
tions for part-of-speech tagging. In 11th Na-
tional Conference on Artificial Intelligence,
pages 784–789.

Philip Clarkson and Ronald Rosenfeld. 1997.
Statistical language modeling using the cmu-
cambridge toolkit. In Eurospeech.

Nelson Francis and Henry Kučera. 1982. Fre-
quency Analysis of English Usage: Lexicon
and Grammar. Houghton Mifflin, Boston.

Mitchell Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of english: The
penn treebank. Computational Linguistics,
9(2):313–330, june. Special Issue on Using
Large Corpora.

Alexis Nasr and Alexandra Volanschi. 2004.
Couplage d’un étiqueteur morpho-syntaxique
et d’un analyseur partiel représentés sous
la forme d’automates finis pondérés. In
TALN’2004, pages 329–338, Fez, Morocco.

H. Ney, U. Essen, and R. Kneser. 1994.
On structuring probabilistic dependencies in
stochastic language modelling. Computer
Speech and Language, 8:1–38.

Dan Tufiş, Péter Dienes, Csaba Oravecz, and
Tamás Váradi. 2000. Principled hidden
tagset design for tiered tagging of hungarian.
In LREC, Athens, Greece.

