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Ensemble fondamental

On considère une expérience dont l’issue n’est pas prévisible
mais dont l’ensemble des résultats possibles (on dit aussi
issues ) est connu et appelé ensemble fondamental , noté S.
Exemples :

si le résultat de l’expérience équivaut à la détermination
du sexe d’un nouveau né, alors :

S = {g, f}

si le résultat est l’ordre d’arrivée d’une course entre 7
chevaux numérotées de 1 à 7, alors :

S = {toutes les permutations de 1 ... 7}
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Evénement

Tout sous-ensemble E de S est appelé un événement .
Si le résultat de l’expérience est compris dans E, alors on dit
que E est réalis é.
Exemples :

Dans le premier exemple, si E = {g} alors E est
l’événement l’enfant est un garçon.

Dans le second exemple, si
E = {tous les résultats de S commençant par 3} alors E
correspond à l’événement le cheval 3 remporte la course.
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Opérations sur les événements

Un événement étant un ensemble, on peut combiner des
événements grâce aux opérateurs ensemblistes :

Union

intersection

complémentation
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Union

L’événement E ∪ F est composé des résultats appartenant à
E ou à F . L’événement E ∪ F est réalisé si soit E soit F l’est.
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Exemple :

Dans le cas du premier exemple, si E = {g} et F = {f},
alors E ∪ F = {f, g} = S

Méthodes probabilistes - Probabilités – p. 5/71



intersection

L’événement E ∩ F (noté EF ) est composé des résultats
appartenant à E et à F .
EF est réalisé si E est réalisé et F l’est aussi.
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Exemple :

Si E = {PP, PF, FP} (au moins une pièce est pile)et
F = {PF, FP, FF} (au moins une pièce est face), alors,
l’événement EF = {PF, FP} est l’événement une pièce est
pile et l’autre face.
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complémentation

Pour chaque événement E, l’événement E est composé des
résultats qui sont dans S et qui ne sont pas dans E.
E est appelé le complémentaire de E dans S.
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Exemple :

Si E = {g} alors E = {f}.
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Evénement vide

Si E = {g} et F = {f}, alors l’événement EF ne pourra
jamais être réalisé, on appellera un tel événement l’événement
vide , noté ∅.

Si EF = ∅, on dit que E et F sont mutuellement exclusifs .
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Propriétés des opérations sur les événements

Propriétés algébriques : Les opérations ensemblistes sur les
événements obéissent à certaines règles d’algèbre :

Commutativité :

E ∪ F = F ∪ E

EF = FE

Associativité :

(E ∪ F ) ∪ G = E ∪ (F ∪ G)

(EF )G = E(FG)

Distributivité :

(E ∪ F )G = EG ∪ FG

EF ∪ G = (E ∪ G)(F ∪ G)
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Loi de de Morgan - 1

E et F étant des événements, on a :

E ∪ F = E ∩ F

généralisation, si Ei sont des événements :

n
⋃

i=1

Ei =
n

⋂

i=1

Ei
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démonstration

x ∈
n

⋃

i=1

Ei ⇒ x ∈
n

⋂

i=1

Ei

Supposons que x ∈
⋃n

i=1 Ei. Alors x /∈
⋃n

i=1 Ei, ce qui signifie
que x n’est contenu dans aucun des événements E1 . . . En.
Ceci implique que x est contenu dans tous les événements
E1 . . . En. Il est donc contenu dans

⋂n

i=1 Ei.

x ∈
n

⋂

i=1

Ei ⇒ x ∈
n

⋃

i=1

Ei

si x ∈
⋂n

i=1 Ei, alors x appartient à chaque E1 . . . En et donc

x /∈
⋃n

i=1 Ei, ce qui entraine finalement que x ∈
⋃n

i=1 Ei 2
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Loi de de Morgan - 2

E et F étant des événements, on a :

E ∩ F = E ∪ F

généralisation, si Ei sont des événements :

n
⋂

i=1

Ei =
n

⋃

i=1

Ei
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démonstration

On peut montrer cete loi en utilisant la précédente. On a :

n
⋃

i=1

Ei =
n

⋂

i=1

Ei

ce qui, du fait que E = E nous donne :

n
⋃

i=1

Ei =
n

⋂

i=1

Ei

En prenant le complémentaire des deux membres de cette
équation, on obtient :

n
⋃

i=1

Ei =

n
⋂

i=1

Ei
Méthodes probabilistes - Probabilités – p. 13/71



Probabilités - première définition

définition par la fréquence relative

une expérience d’ensemble fondamental S est exécutée
plusieurs fois sous les mêmes conditions.

Pour chaque événement E de S, n(E) est le nombre de
fois où l’événement E survient lors des n premières
répétitions de l’expérience.

P (E), la probabilité de l’événement E est définie de la
manière suivante :

P (E) = lim
n→∞

n(E)

n
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Probabilités - première définition

Inconvénients :

On ne sait pas si n(E) va converger vers une limite
constante qui sera la même pour chaque séquence de
répétitions de l’expérience.

Dans le cas du jet d’une pièce par exemple, peut-on être
sûr que la proportion de piles sur les n premiers jets va
tendre vers une limite donnée lorsque n grandit à l’infini ?

Même si elle converge vers une certaine valeur, peut-on
être sûr que nous obtiendrons de nouveau la même
proportion limite de piles si l’expérience est entièrement
répétée une deuxième fois ?
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Probabilité - approche axiomatique

On considère que pour chaque événement E de l’ensemble
fondamental S, il existe une valeur P (E) appelée probabilit é de
E qui vérifie les trois axiomes suivants :

1.
0 ≤ P (E) ≤ 1

2.
P (S) = 1

3. Pour chaque séquence d’événements mutuellement
exclusif E1, E2 . . . En (EiEj = ∅ si i 6= j),

P (

n
⋃

i=1

Ei) =

n
∑

i=1

P (Ei)
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Approche axiomatique

Exemple : En supposant qu’à l’issue du lancer d’un dé les six
faces ont les mêmes chances d’apparaître, on aura :

P ({1}) = P ({2}) = P ({3}) = P ({4}) = P ({5}) = P ({6}) =
1

6

Du troisième axiome, il resulte que la probabilité de tirer un
nombre pair est :

P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) =
3

6
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Quelques théorèmes élémentaires

P (E) = 1 − P (E)

Si E ⊂ F , alors P (E) ≤ P (F )

P (E ∪ F ) = P (E) + P (F ) − P (EF )
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P (E) = 1 − P (E)

Démonstration :

1 = P (S)

= P (E ∪ E)

= P (E) + P (E) (Axiome 2)
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Si E ⊂ F , alors P (E) ≤ P (F )

Démonstration :
Du fait que E ⊂ F , on peut écrire :

F = E ∪ EF

E et EF étant mutuelement exclusifs, par l’axiome 3, on tire :

P (F ) = P (E) + P (EF )

or, d’après l’axiome 1 P (EF ) ≥ 0, d’où :

P (E) ≤ P (F )
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P (E ∪ F ) = P (E) + P (F ) − P (EF )

Démonstration :

E F

I II III

I = EF

II = EF

III = EF

E ∪ F = I ∪ II ∪ III

E = I ∪ II

F = II ∪ III
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Démonstration (suite)

E F

I II III

I, II et III étant disjoints, on a d’après l’axiome 2 :

P (E ∪ F ) = P (I) + P (II) + P (III)

P (E) = P (I) + P (II)

P (F ) = P (II) + P (III)

On a donc :

P (E ∪ F ) = P (E) + P (F ) − P (II)

P (E ∪ F ) = P (E) + P (F ) − P (EF )
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Ens. fond. à événements élémentaires équiprobables

Pour de nombreuses expériences, il est naturel d’admettre
que chaque événement élémentaire a la même probabilité
d’apparaître.
Si S = {1, 2 . . . N}, on a :

P ({1}) = P ({2}) = . . . = P ({N})

Ce qui implique du fait des axiomes 2 et 3 :

∀i1 ≤ i ≤ N,P ({i}) =
1

N

De ceci et de l’axiome 3, il résulte que pour tout événement
E :

P (E) =
nombre d’éléments dans E

nombre d’éléments dans S
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Exemple 1

Si deux dés sont jetés, quelle est la probabilité que la somme
des faces soit 7 ?

Solution : On fait l’hypothèse que les 36 issues possibles sont
équiprobables.

Puisqu’il y a 6 issues qui donnent une somme de 7 :
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

la probabilité est 6/36 = 1/6.
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Exemple 2

Si deux boules sont tirées au hasard d’un bol en contenant 6
blanches et 5 noires, quelle est la probabilité qu’une des
boules tirées soit blanche et l’autre noire ?

Solution : On considère que l’ordre dans lequel les boules
sont choisies est significatif
l’ensemble fondamental comprend 11 × 10 = 110 points.
Il y a 6 × 5 = 30 manières de tirer pour lesquelles la première
boule est blanche et l’autre noire.
et 5 × 6 = 30 manières de tirer pour lesquelles la première
boule est noire et la seconde blanche.
Si les 110 points de l’ensemble fondamental ont la même
probabilité, la probabilité cherchée est :

30 + 30

110
=

6

11
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Probabilités conditionnelles

Un des concepts les plus importants de la théorie des
probabilités.
L’importance de ce concept est de deux ordres :

On s’intéresse souvent à calculer des probabilités
lorsqu’une partie de l’information concernant le résultat
de l’expérience est disponible dans une telle situation, les
probabilités cherchées sont justement des probabilités
conditionnelles.

Même lorsqu’aucune information partielle n’est
disponible, il est souvent avantageux d’utiliser un détour
par certaines probabilités conditionelles pour réussir le
calcul des probabilités cherchées.
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Présentation intuitive

On jette deux dés, chacun des 36 événements
élémentaires a la même probabilité de survenir, soit 1

36
.

Si l’on sait que le premier dé donne un 3, quelle est la
probabilité que la somme des deux dés donne 8 ?

le dé initial étant un 3, il ne peut plus y avoir que 6
événements dans notre expérience, à savoir :
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6).

Puisque chacun de ces événements a originellement la
même probabilité d’apparaître, ils auront encore des
probabilités égales : 1

6
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Présentation intuitive (suite)

Si nous désignons respectivement par E et F les
événements la somme des dés est 8 et le premier dé donne 3, la
probabilité précédente est appelée probabilité
conditionnelle que E apparaisse sachant que F est
réalisée, elle est notée P (E|F ) (probabilité de E sachant F ).

E F

(1,2)

(1,4) (2,4) (6,6)

(6,5)

(5,5)
(6,4)(5,4)

(5,2)
(1,5)

(4,3)

(4,5)(6,3)

(3,1)

(5,3)
(6,2)

(4,4)

(2,6)

(3,3)
(3,2)

(3,4)
(3,6)

(3,5)

(5,1)

(5,6)

(4,6)

(1,1)

(2,1) (2,3)(2,2)
(4,2)

(6,1)

(2,5) (1,6)

(1,4)

(1,3)
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Généralisation

On s’inspire de la même démarche pour dériver une formule
générale donnant P (E|F ) pour tout événement E et F :

Si F est réalisé, alors E apparaîtra chaque fois que l’on
aura affaire à un événement de E et de F à la fois, en
d’autres termes, ce sera un élément de EF .

Par ailleurs, comme nous savons que F est réalisé, cet
ensemble devient le nouvel ensemble fondamental,
appelé ensemble fondamental réduit.

La probabilité conditionnelle de l’événement E sera
donnée par comparaison de la probabilité non
conditionelle de EF avec la probabilité non conditionnelle
de F .
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Généralisation - 2

On débouche ainsi sur la définition suivante : Si
P (F ) > 0, la probabilité conditionnelle de E sera :

P (E|F ) =
P (EF )

P (F )

En multipliant par P (F ) les deux membres de l’équation,
on obtient :

P (EF ) = P (F )P (E|F )

Cette équation signifie que la probabilité que E et F
apparaissent à la fois est égale à la probabilité que F
apparaisse multipliée par la probabilité conditionnelle de
E si l’on sait que F est survenu.
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Exemple 1

Une urne contient 10 billes blanches, 5 jaunes et 10 noires.
Une bille est tirée au hasard de l’urne et l’on constate qu’elle
n’est pas noire. Quelle est la probabilité qu’elle soit jaune ?
Solution : Soit J l’événement la bille tirée est jaune et soit N elle
n’est pas noire. De la définition des probabilités cond. on tire :

P (J |N) =
P (JN)

P (N)

Cependant, JN = J puisque la bille sera à la fois jaune et
non noire si et seulement si elle est jaune. Nous obtenons
ainsi, en supposant que chacune des 25 billes a la même
chance d’être choisie :

P (J |N) =
5
25
15
25

=
1
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Exemple 2

Une urne contient 8 boules rouges et 4 blanches. On tire
sans remise 2 boules de l’urne et on admet qu’à chaque
étape tous les tirages possibles sont équiprobables. Quelle
est la probabilité que les 2 boules tirées soient rouges ?
Solution :

R1 = la première boule est rouge

R2 = la seconde est rouge

Si la première boule sélectionnée est rouge, il reste 7 boules
rouges et 4 boules blanches.
Donc P (R2|R1) = 7/11; comme P (R1) vaut 8/12, la
probabilitée recherchée est :

P (R2R1) = P (R2|R1)P (R1) = 2/3 × 7/11 = 14/33
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Evénements indépendants

En général P (E|F ) 6= P (E)

Le fait de savoir que F est survenu influence la
probabilité de E.

Dans les cas où P (E|F ) est bien égal à P (E), E est dit
ind épendant de F .

Du fait que P (E|F ) = P (EF )
P (F )

, l’indépendance de E et F

équivaut à :

P (EF ) = P (E)P (F )

Cette équation est symétrique en E et F , il en résulte que
lorsque E est indépendant de F , F l’est aussi de E.
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Exemple - 1

On tire au hasard une carte d’un paquet de 52 cartes à jouer
ordinaires.

E = la carte tirée est un as

F = c’est un pique

E et F sont indépendants. En effet :

P (EF ) = 1/52

P (E) = 4/52

P (F ) = 13/52.

On a bien :

P (EF ) = P (E)P (F )
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Exemple - 2

On jette deux pièces et on suppose que les 4 résultats
possibles sont équiprobables.

A = la première pièce est pile

B = la seconde est face.

A et B sont indépendants. En effet :

P (AB) = P ({(P, F )}) = 1/4

P (A) = P ({(P, P ), (P, F )}) = 1/2

P (B) = P ({(P, F ), (F, F}) = 1/2

On a bien :

P (AB) = P (A)P (B)
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Evénements indépendants

Il est important de ne pas confondre les deux notions
d’événements mutuellement exclusifs et d’événements
indépendants

Des événements mutuellement exclusifs ne sont pas
indépendants.

En effet, si l’on sait que E et F sont mutuellement
exclusifs alors on sait que si E est réalisé, F ne peut pas
l’être, et vice versa.

Par conséquent, la connaissance de E va modifier la
connaissance de F , les deux événements ne sont donc
pas indépendants.
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La règle de multiplication

On peut généraliser la règle des probabilités conditionnelles à
l’intersection d’un nombre arbitraire d’événements. Cette
règle est appelée règle de multiplication.

P (E1E2 . . . En) = P (E1)P (E2|E1)P (E3|E1E2) . . . P (En|E1 . . . En−1)

On démontre cette loi en appliquant la définition des
probabilités conditionnelles au membre de droite :

P (E1)
P (E2E1)

P (E1)

P (E3E1E2)

P (E2E1)
. . .

P (E1 . . . En)

P (E1 . . . En−1)
= P (E1E2 . . . En)
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Formule des probabilités totales - 1

Soient E et F deux événements quelconques. Nous pouvons
écrire E sous la forme E = EF ∪ EF .
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EF EF

EF et EF étant mutuellement exclusifs, on peut écrire :

P (E) = P (EF ) + P (EF )

= P (E|F )P (F ) + P (E|F )P (F )

= P (E|F )P (F ) + P (E|F )[1 − P (F )]
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Formule des probabilités totales - 2

P (E) = P (E|F )P (F ) + P (E|F )[1 − P (F )]

La probabilité de l’événement E est une moyenne pondérée

de la probabilité conditionnelle de E lorsque F est apparu

et de la probabilité de E lorsque F n’est pas apparu

les poids étant les probabilités des événements
conditionnants.

L’intérêt de cette formule est qu’elle permet de déterminer la
probabilité d’un événement en commençant par le
conditionner selon l’apparition ou non d’un autre événement.
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Exemple

Une compagnie d’assurance estime que les gens peuvent
être répartis en deux classes :

ceux qui sont enclins aux accidents

ceux qui ne le sont pas.

Les statistiques montrent qu’un individu enclin aux accidents
a une probabilité de 0, 4 d’en avoir un dans l’espace d’un an;
cette probabilité vaut 0, 2 pour les gens à risque modéré.
On suppose que 30% de la population appartient à la classe à
haut risque. Quelle est alors la probabilité qu’un nouvel
assuré soit victime d’un accident durant l’année qui suit la
signature de son contrat ?
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Solution

Nous obtiendrons la probabilité de l’événement cité en le
conditionnant selon que le signataire de la police est ou n’est
pas enclin aux accidents.

X = le signataire aura un accident dans l’année qui suit
l’établissement du contrat

A = le signataire est enclin aux accidents.

La formule des probabilités totales nous donne :

P (X) = P (X|A)P (A) + P (X|A)P (A)

= 0.4 × 0.3 + 0.2 × 0.7 = 0.26
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Exemple (suite)

Un nouveau signataire a un accident dans l’année qui suit
l’établissement de son contrat. Quelle est la probabilité qu’il
fasse partie de la classe à haut risque ?
Solution : Cette probabilité est P (A|X), donnée par :

P (A|X) =
P (AX)

P (X)

=
P (A)P (X|A)

P (X)

=
0.3 × 0.4

0.26
= 0.46
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Formule des probabilités totales - Généralisation

Si F1 . . . Fn sont des événements s’excluant mutuellement,
tels que :

n
⋃

i=1

Fi = S

Fn

F1

E

On peut écrire :

E =
n

⋃

i=1

EFi
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Formule des probabilités totales - Généralisation

En utilisant le fait que les événements EFi s’excluent
mutuellement, on peut écrire :

P (E) =
n

∑

i=1

P (EFi)

=

n
∑

i=1

P (E|Fi)P (Fi)

Cette équation montre qu’étant donné un jeu d’événements
F1 . . . Fn desquels un et un seul surviendra, on peut calculer
P (E) en commençant par conditionner selon les Fi.
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Théorème de Bayes

Supposons que E se soit réalisé et que nous cherchions à
déterminer la probabilité que l’un des Fj se soit aussi réalisé.
On déduit de l’équation ci-dessus le théorème suivant, appelé
théorème de Bayes :

P (Fj|E) =
P (EFj)

P (E)

=
P (E|Fj)P (Fj)

P (E)

=
P (E|Fj)P (Fj)

∑n

i=1 P (E|Fi)P (Fi)
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Exemple 1

On considère deux urnes, l’une contient une bille noire et une
blanche, et l’autre deux noires et une blanche. On désigne
une urne au hasard, de laquelle on tire une bille.

Quelle est la probabilité qu’elle soit noire ?

Si l’on sait que la bille est blanche, quelle est la
probabilité que ce soit la première urne qui ait été
désignée ?
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Solution

N = la bille choisie est noire

B = la bille choisie est blanche

U1 = l’urne choisie est l’urne 1

U2 = l’urne choisie est l’urne 2

Loi des probabilités totales :
P (N) = P (N |U1)P (U1) + P (N |U2)P (U2) = 1

2
× 1

2
+ 2

3
× 1

2
= 7

12

Loi de Bayes
P (U1|B) = P (U1B)

P (B)
= P (B|U1)P (U1)

P (N)
= 12

20
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Exemple 2

Un laboratoire d’analyse du sang assure avec une fiabilité
de 95% la détection d’une certaine maladie lorsqu’elle est
effectivement présente.

Cependant, le test indique aussi un résultat faussement
positif pour 1% des personnes réellement saines à qui on
le fait subir (une personne saine testée sera déclarée
malade une fois sur cent).

Si 0, 5% de la population porte effectivement la maladie,
quelle est la probabilité qu’une personne soit vraiment
malade lorsqu’on la déclare telle sur la base du test ?
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Solution

D = la personne soumise au test est porteuse de la maladie

E = le résultat du test est positif

La formule des probabilités totales nous donne :

P (D|E) =
P (DE)

P (E)

=
P (E|D)P (D)

P (E|D)P (D) + P (E|D)P (D)

=
.95 × .005

.95 × .005 + .01 × .995
≃ .323

Ainsi 32% seulement des personnes dont le résultat au test
est positif ont vraiment la maladie !
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Variables aléatoires

Une variable aléatoire est une fonction qui associe un nombre
réel à tous les éléments de S
Les variables aléatoires permettent ainsi de passer
d’événements, qui peuvent être de natures très diverse, à des
nombres, et d’effectuer des calculs sur ces derniers.

a
b

c

d
e

f

X(a) X(b) X(c) X(d) X(e) X(f)

R

S
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Variables aléatoires

Une variable aléatoire permet aussi de n’associer qu’une
valeur à un ensemble d’issues élémentaires, dans le cas
où, à l’issue d’une expérience, on s’intéresse plus à une
fonction du résultat qu’au résultat lui-même.

Lors d’un jeu de dés, par exemple, certains jeux
accordent de l’importance à la somme obtenue avec
deux dés, 7 par exemple, plutôt qu’à la question de savoir
si c’est la paire (1, 6) qui est apparue, ou (2, 5) . . . . On
peut alors définir une variable aléatoire X qui représente
la somme des deux dés.
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Variables aléatoires

(1,1) (1,2)
(2,1)

(1,3)
(2,2)
(3,1)

(1,4)
(2,3)
(3,2)
(3,1)

(1,5)
(2,4)
(3,3)
(4,2)
(5,1)

(1,6)
(2,5)
(3,4)
(4,3)
(5,2)
(6,1)

X

2 3 4 5 6 7

R

S

8 10 119 12

(5,3)

(3,6)

(5,4)
(5,6)

(2,6)
(3,5)
(4,4)

(6,2)

(4,5)

(6,3)

(4,6)
(5,6)
(6,4) (6,5)

(6,6)
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Variables aléatoires

La valeur d’une variable aléatoire est déterminée par le
résultat de l’expérience,

il est possible d’attribuer une probabilité aux différentes
valeurs que la variable aléatoire peut prendre.

On note la probabilité que la variable aléatoire X prenne
la valeur i par : P (X = i).
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Exemple

Notre expérience consiste à jeter 3 pièces équilibrées. Si l’on
désigne le nombre de faces par Y , Y est une variable
aléatoire et peut prendre les valeurs 0, 1, 2, 3 avec pour
probabilité respectivement :

P (Y = 0) = P ((P, P, P )) =
1

8

P (Y = 1) = P ((P, P, F ), (P, F, P ), (F, P, P )) =
3

8

P (Y = 2) = P ((P, F, F ), (F, P, F ), (F,F, P )) =
3

8

P (Y = 3) = P ((P, P, P )) =
1

8
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variables aléatoires discrètes

Une variable aléatoire ne pouvant prendre qu’une
quantité dénombrable de valeurs est dite discr ète.

Pour une telle variable aléatoire X, on définit sa loi de
probabilit é pX (p lorsque ce n’est pas ambigü)

p(a) = P (X = a) = P (E) avec E = {i ∈ S|X(i) = a}
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variables aléatoires discrètes

Une loi de probabilité ne peut être positive que pour un
ensemble dénombrable d’arguments. Si X peut prendre
les valeurs x1, x2, . . ., alors :
p(xi) ≥ 0 i = 1, 2, . . .
p(x) = 0 pour toutes les autres valeurs de x

Du fait que X doit bien prendre l’une de ces valeurs xi,
on aura :

∑∞
i=1 p(xi) = 1

Si une variable aléatoire X suit une loi de distribution p on
notera X ∼ p
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Histogramme

Représentation d’une loi de probabilité sur un graphique en
reportant p(xi) sur l’axe des y et xi sur l’axe des x.
Histogramme de la loi de probabilité d’une variable aléatoire
comptant la somme des nombres obtenus lors du jet de deux
dés équilibrés :

1 2 3 4 5 6 7 8 9 10 11 12

x

p(x)

1/36

2/36

3/36

4/36

5/36

6/36

0

0
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Caractéristiques d’une variable aléatoire

La loi d’une variable aléatoire est constituée par
l’ensemble des probabilités des valeurs que peut prendre
cette variable.

Dans certains cas, le nombre de valeurs possibles de la
variable est extrêmement élevé ou même infini.

Il est intéressant, dans ces cas, de dégager certaines
caractéristiques qui permettent d’esquisser l’allure
générale de ces lois.

On définit deux caractéristiques des lois de probabilités :

l’espérance permet de situer la variable.
la variance permet d’estimer la dispersion de la variable
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Espérance

Pour une variable aléatoire discrète X de loi p(·), on
définit l’espérance de X, notée E[X], par l’expression :

E[X] =
∑

x|p(x)>0

xp(x)

En termes concrets, l’espérance de X est la moyenne
pondérée des valeurs que X peut prendre, les poids
étant les probabilités que ces valeurs soient prises.
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Espérance - 2

Interprétation en recourant à la définition des probabilités
comme mesures de fréquences relatives :
La probabilité d’un événement E est la proportion du nombre de
réalisation de E dans une séquence infiniment longue d’expériences
identiques

Supposons que l’on se livre à jeu d’argent pour lequel on
connaît la probabilité de chaque gain. On représente par
X la variable aléatoire représentant le gain.

Cette v.a. peut prendre les valeurs x1, . . . , xn avec les
probabilités p(x1), . . . p(xn).

La proportion de jeux pour laquelle la somme xi aura été
gagnée va se rapprocher de p(xi).

L’espérance de la v.a. X est alors le gain moyen par jeu :
∑n

i=1 xip(xi)
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Variance

E[X] nous donne une moyenne pondérée des valeurs
possibles d’une variable aléatoire X.

Mais elle ne nous dit rien des variations de X autour de
l’espérance.

Soit les variables aléatoires suivantes :
X avec pX(0) = 1

Y avec pY (−1) = 1
2
, pY (1) = 1

2

Z avec pZ(−100) = 1
2
, pZ(100) = 1

2

E[X] = E[Y ] = E[Z] = 0

Mais il y a de bien plus grands écarts entre les différentes
valeur de Y qu’entre celles de X (qui est constante) et de
plus grands écarts entre celles de Z qu’entre celles de Y .
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Variance - 2

On mesure les variations d’une v.a. X par l’espérance du
carré de l’écart entre X et son espérance, que l’on
appelle variance de X, notée V ar(X) :

V ar(X) = E[(X − E[X])2]

Qui peut aussi être calculée de la façon suivante :

V ar(X) = E[X2] − (E[X])2

Si X est le résultat du lancer d’un dé équilibré, alors
E[X] = 7

2
comme nous l’avons vu ci-dessus. De plus :

E[X2] = 12× 1
6
+22× 1

6
+32× 1

6
+42× 1

6
+52× 1

6
+62× 1

6
= 91× 1

6

et donc :

V ar(X) =
91

6
− (

7

2
)2 =

35

12

La racine carrée de est appelée l’ de ,
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Variables binomiales

On réalise n épreuves indépendantes, chacune ayant une
probabilité de succès de p et une probabilité d’échec de
1 − p.

La variable aléatoire X qui compte le nombre de succès
sur l’ensemble des n épreuves est dite variable aléatoire
binomiale de paramètres (n, p).

toute séquence comportant i succès et n − i échecs a
pour probabilité pi × (1 − p)n−i.

il y a
(

n

i

)

séquences vérifiant cette propriété

on a donc :

p(i) =

(

n

i

)

pi (1 − p)n−i
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Espérance d’une variable binomiale

E[X ] =
n

∑

i=1

i p(i) (1)

=
n

∑

i=1

i

(

n

i

)

pi (1 − p)n−i (2)

=
n

∑

i=1

n

(

n − 1

i − 1

)

pi (1 − p)n−i (3)

= np

n
∑

i=1

(

n − 1

i − 1

)

pi−1 (1 − p)n−i (4)

= np

n−1
∑

j=0

(

n − 1

j

)

pj (1 − p)n−(j+1) (5)

= np(p + 1 − p)n−1 (6)

= np (7)
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Variables aléatoires conjointes

Il est souvent nécessaire de considérer des événements
relatifs à deux variables simultanément.

On définit la loi de probabilit é conjointe de deux v.a. X et Y :

p(x, y) = P (X = x, Y = y)

On peut déduire de la loi de probabilité conjointe de deux
variables X et Y la loi de probabilit é marginale de X de la
façon suivante :

pX(x) = P (X = x) =
∑

y|p(x,y)>0

p(x, y)

De façon similaire :

pY (y) = P (Y = y) =
∑

x|p(x,y)>0

p(x, y)
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Exemple

On tire au hasard 3 boules d’une urne contenant 3
rouges, 4 blanches et 5 bleues.

X et Y désignent respectivement le nombre de boules
rouges et celui de boules blanches tirées.

La loi de probabilité conjointe p(i, j) = P (X = i, Y = j) de
X et Y est représentée dans un tableau à deux entrées :

j
0 1 2 3

0 10
220

40
220

30
220

4
220

1 30
220

60
220

18
220

0

i 2 15
220

12
220

0 0

3 1
220

0 0 0
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Exemple (suite)

j
0 1 2 3 P (X = i)

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220

0 108
220

i 2 15
220

12
220

0 0 27
220

3 1
220

0 0 0 1
220

P (Y = j) 56
220

112
220

48
220

4
220

La loi marginale de X est calculée en faisant les totaux
par ligne, tandis que celle de Y l’est en faisant les totaux
par colonne.

C’est le fait que les lois de X et Y individuellement
puissent être lues dans les marges du tableau qui leur
vaut leur nom de lois marginales.
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Variables aléatoires indépendantes

Deux variables aléatoires X et Y sont dites ind épendantes
si, pour tout choix d’une paire d’ensembles A et B de
nombres réels, on a :

P (X ∈ A, Y ∈ B) = P (X ∈ A) × P (Y ∈ B)

En d’autres termes, X et Y sont indépendantes si, quels
que soient A et B, les événements EA = (X ∈ A) et
EB = (X ∈ B) sont indépendants.

Cela revient à dire que :

p(x, y) = pX(x)pY (y) ∀x, y

D’un point de vue intuitif, X et Y sont indépendantes si le
fait de connaître la valeur de l’une n’influe pas sur la
distribution de l’autre. Des variables qui ne sont pas
indépendantes sont dites dépendantes. Méthodes probabilistes - Probabilités – p. 68/71



Exemple

On réalise n + m épreuves indépendantes ayant chacune
p pour probabilité de succès.

La variable X est le nombre de succès lors des n
premières épreuves et Y est le nombre de succès lors
des m dernières.

X et Y sont indépendantes car le fait de connaître le
nombre de succès lors des n premières épreuves n’influe
en rien sur celui des succès lors des m dernières (c’est là
la traduction de l’indépendance des épreuves).

En revanche, X et Z sont dépendantes si Z représente le
nombre total de succès au cours des n + m épreuves.
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Lois de probabilité conditionnelles

Etant donné deux variables aléatoires X et Y , on définit la loi
de probabilité de X sous la condition Y = y :

pX|Y (x|y) = P (X = x|Y = y)

=
P (X = x, Y = y)

P (Y = y)

=
p(x, y)

pY (y)
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Lois de probabilité conditionnelles - 2

Lorsque X et Y sont indépendantes, les lois conditionnelles
et non conditionnelles sont identiques :

pX|Y (x|y) = P (X = x|Y = y)

=
P (X = x, Y = y)

P (Y = y)

=
P (X = x)P (Y = y)

P (Y = y)

= P (X = x)
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