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Ensemble fondamental

On considere une expérience dont I'issue n’est pas previsible
mais dont 'ensemble des résultats possibles (on dit aussi

issues ) est connu et appelé ensemble fondamental , noté S.
Exemples :

® sile résultat de I'expéerience équivaut a la détermination
du sexe d’'un nouveau né, alors :

S=19,f}

® sSile résultat est I'ordre d’arrivée d’'une course entre 7
chevaux numeérotées de 1 a 7, alors :

S = {toutes les permutations de 1 ... 7}
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Evénement

Tout sous-ensemble E de S est appelé un événement.

Si le résultat de I'expérience est compris dans FE, alors on dit
que L est réalisé.

Exemples :

# Dans le premier exemple, si E = {g¢} alors E est
I’événement I'enfant est un garcon.

#® Dans le second exemple, si
FE = {tous les résultats de S commengant par 3} alors £
correspond a I'’événement le cheval 3 remporte la course.
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Opéerations sur les événements

Un événement étant un ensemble, on peut combiner des
évenements grace aux opeérateurs ensemblistes :

#® Union
® [ntersection
® complémentation

Méthodes probabilistes - Probabilités — p. 4/71



Union

L'événement £ U F' est composeé des résultats appartenant a
F oua F. Levenement £ U F est realisé si soit E soit I I'est.

Exemple :

# Dans le cas du premier exemple, si £ = {g} et ' ={f},
alors FUF ={f,g} =S5
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Intersection

L'événement £ N F' (notée E'F) est compose des résultats

appartenanta F et a F'.

EF estréalisé si I est réalisé et F' I'est aussi.
S

Exemple :

® SiF={PP,PF, FP} (au moins une piéce est pile)et
F ={PF,FP, FF} (au moins une piéce est face), alors,
I'evénement K = { PF, F P} est 'événement une piéce est
pile et I'autre face.
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complémentation

Pour chaque événement E, 'événement E est composé des
resultats qui sont dans S et qui ne sont pas dans E.

E est appelé le complémentaire de £ dans S.

Exemple :

® SiE={g}alors & ={f}.
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Evénement vide

Si E={g}etF ={f}, alorsI'événement EF' ne pourra
jamais étre réalisé, on appellera un tel événement I'événement

vide , noté ().

Si EF = (, on dit que FE et I’ sont mutuellement exclusifs
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Propriétés des opérations sur les evénements

Propriétés algébriques : Les opérations ensemblistes sur les
évenements obéissent a certaines regles d’algebre :

& Commutativité :

s FUF=FUL
s FF=FF

® Associativité :
s (FUF)UG=FEU(FUG)
s (FF)G = E(FG)
® Distributivite :
s (FUF)G=FEGUFG
s FFUG=(FUG)(FUG)
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Lol de de Morgan - 1

F et F' étant des événements, on a :

FUF=FENF
genéralisation, si £; sont des événements :
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démonstration

$60E22>$€ﬁE
1=1 1=1

Supposons que x € | J;_, E;. Alors = ¢ |J;_, E;, ce qui signifie
gue x n'est contenu dans aucun des évenements F; ... E,,.
Ceci impligue gue z est contenu dans tous les évenements

E; ... E,. Il est donc contenu dans ., E;.

T € ﬁEjiUE OEZ
1=1 1=1

siz € (., E;, alors z appartient a chaque E; ... E,, et donc
z ¢ |J;_, F;, ce qui entraine finalement que z € | J;_, E; O
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Lol de de Morgan - 2

F et F' étant des événements, on a :

ENF=FUF
genéralisation, si £; sont des événements :
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démonstration

On peut montrer cete loi en utilisant la précédente. On a :

E-NT

-
.

&
I
[EY
&
1
—

ce qui, du fait que E = E nous donne :

L;

C_ =
]

|
IDE

&
I
[EY
&
1
—

En prenant le complémentaire des deux membres de cette
équation, on obtient :

E=(E

—-
.

&
I
[EY
&
1
—
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Probabilités - premiere définition

définition par la fréguence relative

#® une experience d’ensemble fondamental S est exécutée
plusieurs fois sous les mémes conditions.

# Pour chaque événement £ de S, n(FE) est le nombre de
fois ou I'événement E survient lors des n premieres
repétitions de I'expérience.

® P(F), la probabilité de I'évenement E est définie de la
maniere suivante :
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Probabilités - premiere définition

Inconvénients :

# On ne sait pas si n(FE) va converger vers une limite
constante qui sera la méme pour chaque séquence de
repétitions de I'expérience.

#® Dans le cas du jet d’'une piece par exemple, peut-on étre
sdr que la proportion de piles sur les n premiers jets va
tendre vers une limite donnée lorsque n grandit a I'infini ?

# Meéme si elle converge vers une certaine valeur, peut-on
étre slr que nous obtiendrons de nouveau la méme
proportion limite de piles si I'expérience est entierement
repetee une deuxieme fois ?
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Probabilité - approche axiomatique

On considere que pour chague événement £ de I'ensemble
fondamental S, il existe une valeur P(E) appelée probabilit & de
FE qui vérifie les trois axiomes suivants :

1.
0<PE)<L1

P(S) =1

3. Pour chaque séquence d’évenements mutuellement
exclusif El; Es.. . E, (EWZEW‘7 = () Si g # ]),

n

P(U E;) = ZP(EZ>

1=1
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Approche axiomatique

Exemple : En supposant qu’a I'issue du lancer d’un dé les six
faces ont les mémes chances d’apparaitre, on aura :

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =

Du troisieme axiome, il resulte que la probabilité de tirer un
nombre pair est :

P({2,4,6}) = P({2)) + P({4}) + P({6}) =
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Quelques theoremes elementaires

® P(E)=1-P(F)
® SiFE C F,alors P(F) < P(F)
® P(EUF)=P(E)+ P(F)— P(EF)
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Démonstration :

= P(F)+ P(EF) (Axiome 2)
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SI EFc F,alors P(E) < P(F)

Démonstration :
Du fait que £ C F', on peut éecrire :

F=FEUEF
E et EF étant mutuelement exclusifs, par 'axiome 3, on tire :

P(F) = P(E) + P(EF)

or, d’apres I'axiome 1 P(E'F) > 0, dou :

P(E) < P(F)
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P(EUF) = P(E)+ P(F) — P(EF)

Démonstration :

I = EF FUF = 1TUIIUIII
11 EF E U1l
1l = EF F = 11JUlll
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Démonstration (suite)

l, Il et 1l étant disjoints, on a d’apres I'axiome 2 :

P(EUF)
P(E)
P(F)

On a donc:

P(I) + P(IT) + P(III)
P(I) + P(IT)
P(II)+ P(IIT)
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Ens. fond. a événements elémentaires equiprobables

Pour de nombreuses expeériences, il est naturel d’admettre
gue chague évenement élémentaire a la méme probabilité
d’apparaitre.

Sis={1,2...N},ona:

P({1}) = P({2}) = ... = P(IN})

Ce qui iImpligue du fait des axiomes 2 et 3 :

1
Vil <i < N,P({i}) = —
N
De ceci et de I'axiome 3, il résulte que pour tout évenement

E

nombre d’'éléments dans E

P(E) =

nombre d’'éléments dans S
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Exemple 1

Si deux dés sont jetés, quelle est la probabilité que la somme
des faces soit 7 ?

Solution :  On fait I'hypothese que les 36 issues possibles sont
équiprobables.

Puisqu’il y a 6 Issues qui donnent une somme de 7 :
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)

la probabilité est 6/36 = 1/6.
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Exemple 2

Si deux boules sont tirées au hasard d’un bol en contenant 6
blanches et 5 noires, quelle est la probabilité qu’'une des

boules tirées soit blanche et I'autre noire ?

Solution : On considere que I'ordre dans lequel les boules
sont choisies est significatif

I'’ensemble fondamental comprend 11 x 10 = 110 points.

Ily a6 x 5= 30 manieres de tirer pour lesquelles la premiere
boule est blanche et I'autre noire.

et 5 x 6 = 30 manieres de tirer pour lesquelles la premiere
boule est noire et la seconde blanche.

Si les 110 points de I'ensemble fondamental ont la méme
probabilite, la probabilité cherchée est :

30+30 6

110 11
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Probabilités conditionnelles

Un des concepts les plus importants de la théorie des
probabilités.
Limportance de ce concept est de deux ordres :

# On s’interesse souvent a calculer des probabilités
lorsqu’une partie de I'information concernant le résultat
de I'expérience est disponible dans une telle situation, les
probabilités cherchées sont justement des probabilités
conditionnelles.

# Méme lorsqu’aucune information partielle n’est
disponible, il est souvent avantageux d’utiliser un détour
par certaines probabilités conditionelles pour réussir le
calcul des probabilités cherchées.
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Présentation intuitive

On jette deux deés, chacun des 36 événements
élémentaires a la méme probabilité de survenir, soit %

Si I'on sait que le premier dé donne un 3, quelle est la
probabilité que la somme des deux dés donne 8 ?

le dé initial étant un 3, il ne peut plus y avoir que 6
évenements dans notre experience, a savoir :
(3,1),(3,2),(3,3),(3,4),(3,5), (3,6).

Puisque chacun de ces événements a originellement la
méme probabilité d’apparaitre, ils auront encore des

R o
probabilites egales :
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Presentation intuitive (suite)

#® Sinous désignons respectivement par E et F' les
evénements la somme des dés est 8 et le premier dé donne 3, la
probabilité précedente est appelée probabilité
conditionnelle que E apparaisse sachant que F' est
realisée, elle est notée P(E|F) (probabilité de E sachant F).

E F

(1.3) (2’5\ 16 63>V (4,5/(6’4)(5,5)
(1.4 (4.3 (3,1) (4.6)

(1,2)
21) 22 @3 14 (@249 66
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Geéneéralisation

On s’inspire de la méme démarche pour dériver une formule
géneérale donnant P(E|F') pour tout évenement E et [ :

® Si I est realise, alors E apparaitra chaque fois que I'on

aura affaire a un événement de F et de F' a la fois, en
d'autres termes, ce sera un élément de EF'.

#® Par ailleurs, comme nous savons que F' est realise, cet
ensemble devient le nouvel ensemble fondamental,
appelé ensemble fondamental réduit.

# L|a probabilité conditionnelle de I'evénement E sera
donnée par comparaison de la probabilité non
conditionelle de EF avec la probabilité non conditionnelle
de F.
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Généralisation - 2

#® On débouche ainsi sur la définition suivante : Si
P(F') > 0, la probabilité conditionnelle de £ sera:

P(EF)
P(F)

# En multipliant par P(F') les deux membres de I'équation,
on obtient :

P(E|F) =

P(EF) = P(F)P(E|F)

# Cette équation signifie que la probabilité que E et F
apparaissent a la fois est eégale a la probabilité que F
apparaisse multipliée par la probabilité conditionnelle de
FE' sil'on sait que F' est survenu.
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Exemple 1

Une urne contient 10 billes blanches, 5 jaunes et 10 noires.
Une bille est tirée au hasard de I'urne et I'on constate qu’elle
n'est pas noire. Quelle est la probabilité gu’elle soit jaune ?

Solution : Soit J 'événement la bille tirée est jaune et soit N elle
n'est pas noire. De la définition des probabilités cond. on tire :

Hmﬂ:i%?

Cependant, JN = .J puisque la bille sera a la fois jaune et
non noire si et seulement si elle est jaune. Nous obtenons
ainsi, en supposant que chacune des 25 billes a la méme
chance d’étre choisie :

5

— oF 1
PUIN) =% =3
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Exemple 2

Une urne contient 8 boules rouges et 4 blanches. On tire
sans remise 2 boules de 'urne et on admet gqu’a chaque
étape tous les tirages possibles sont equiprobables. Quelle

est la probabilité que les 2 boules tirees soient rouges ?
Solution :

® [}, = la premiére boule est rouge
® [ = la seconde est rouge

Si la premiere boule sélectionnée est rouge, il reste 7 boules
rouges et 4 boules blanches.

Donc P(R,|R;) = 7/11; comme P(R;) vaut 8/12, la
probabilitée recherchée est :
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°

Evénements indépendants

En général P(E|F) # P(F)

Le fait de savoir que [’ est survenu influence la
probabilite de E.

Dans les cas ou P(E|F) est bien égal a P(E), E est dit
ind épendant de F'.

Du fait que P(E|F) = 5iZ, lindépendance de F et F
équivaut a :

P(EF) = P(E)P(F)

Cette equation est symetrigue en E et F, il en résulte que
lorsque £ est indépendant de F, F' I'est aussi de F.
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Exemple - 1

On tire au hasard une carte d’'un paquet de 52 cartes a jouer
ordinaires.

® [ — lacarte tirée est un as
® [’ = c’estun pique
FE et I' sont independants. En effet :

® P(EF)=1/52
® P(E)=4/52
® P(F)=13/52.

On a bien :
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Exemple - 2

On jette deux pieces et on suppose que les 4 resultats
possibles sont équiprobables.

® A — la premiére piéce est pile
® B = |la seconde est face.

A et B sont independants. En effet :

® P(AB)=P{(P,F)})=1/4

® P(A)=P{(P,P),(P,F)})=1/2
® P(B)=P{(PF),(FF})=1/2
On a bien:

P(AB) = P(A)P(B)
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Evénements indépendants

Il est important de ne pas confondre les deux notions
d’évéenements mutuellement exclusifs et d’événements
independants

Des évenements mutuellement exclusifs ne sont pas
indépendants.

En effet, si 'on sait que E et I’ sont mutuellement
exclusifs alors on sait que si £ est realisé, F' ne peut pas
I'étre, et vice versa.

Par conséguent, la connaissance de £ va modifier la
connaissance de F', les deux évenements ne sont donc
pas indépendants.
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La regle de multiplication

On peut géneraliser la regle des probabilités conditionnelles a

I'intersection d’'un nombre arbitraire d’événements. Cette
regle est appelée regle de multiplication.

P(E\Bs...E,) = P(E\)P(Ey|Ey)P(E3|E1Es) ... P(Ey|E ... En_t)

On demontre cette loi en appliquant la définition des
probabilités conditionnelles au membre de droite :

P(EsE,) P(EsE\Ey,)  P(E,...E,)
P(E\) P(E.E\) ~~ P(Ey...E,_1)

P(E))
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Formule des probabilités totales - 1

Soient E et F deux événements quelconques. Nous pouvons
écrire £ sous la forme £ = EF U EF.

EF et EF étant mutuellement exclusifs, on peut écrire

P(E) = P(EF)+ P(ETF)
— P(E|F)P(F) + P(E|F)P(F)

= P(E|F)P(F) + P(E|F)[1 - P(F)]
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Formule des probabilités totales - 2

P(F)= P(E|F)P(F)+ P(E|F)[1 — P(F)]

La probabilite de 'evénement E est une moyenne pondeérée

#® de la probabilité conditionnelle de £ lorsque F' est apparu

® et de la probabilité de E lorsque F n’est pas apparu

® les poids étant les probabilites des évenements
conditionnants.

Linterét de cette formule est qu’elle permet de déterminer la
probabilité d’'un evénement en commencant par le
conditionner selon I'apparition ou non d’un autre événement.
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Exemple

Une compagnie d’assurance estime que les gens peuvent
étre repartis en deux classes :

#® ceux gui sont enclins aux accidents
$ ceux gui ne le sont pas.

Les statistiques montrent gu’un individu enclin aux accidents
a une probabilité de 0,4 d’en avoir un dans I'espace d’'un an;
cette probabilité vaut 0, 2 pour les gens a risque modeére.

On suppose que 30% de la population appartient a la classe a
haut risque. Quelle est alors la probabilité gu’'un nouvel
assure soit victime d’un accident durant 'année qui suit la
sighature de son contrat ?
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Solution

Nous obtiendrons la probabilité de I'evénement cité en le
conditionnant selon gue le signataire de la police est ou n’est
pas enclin aux accidents.

® X = le signataire aura un accident dans 'année qui suit
I'’établissement du contrat

® A = le signataire est enclin aux accidents.

La formule des probabilités totales nous donne :

P(X) = P(X|A)P(A)+ P(XM)P(Z)
= 04x03+0.2x0.7=0.26
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Exemple (suite)

Un nouveau signataire a un accident dans I'année

qui suit

I'établissement de son contrat. Quelle est la probabilite gu’il

fasse partie de la classe a haut risque ?

Solution : Cette probabilité est P(A|X), donnée par :

P(AX)

P(X)

P(A)P(X]A)
P(X)

0.3 x 0.4

= = 0.46
0.26

P(A|X) =
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Formule des probabilités totales - Généralisation

Si I ... F, sont des événements s’excluant mutuellement,
tels que :

On peut écrire :
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Formule des probabilités totales - Généralisation

En utilisant le fait que les evénements EF; s’excluent
mutuellement, on peut écrire :

P(E) = Y P(EF)

— ZP(E‘Fz)P(Fz)

Cette équation montre qu’etant donné un jeu d’événements
Fy ... F, desquels un et un seul surviendra, on peut calculer
P(F) en commencgant par conditionner selon les F;.
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Théoreme de Bayes

Supposons que E se soit réalisé et que nous cherchions a
déterminer la probabilité que I'un des F}; se soit aussi réalise.

On déduit de I'équation ci-dessus le théoreme suivant, appelé
théoreme de Bayes :

P(EL})
P(E)
P(E|F;)P(F})
P(E)
P(E|F;)P(F})
> i1 P(E|F;) P(F;)

P(F;|E)
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Exemple 1

On considere deux urnes, I'une contient une bille noire et une
blanche, et I'autre deux noires et une blanche. On désigne
une urne au hasard, de laquelle on tire une bille.

® Quelle est la probabilité qu’elle soit noire ?

# Sil'on sait que la bille est blanche, quelle est |a
probabilité que ce soit la premiere urne qui ait été
designee ?
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Solution

N = la bille choisie est noire
B = la bille choisie est blanche

U, = l'urne choisie est l'urne 1

e o o 0

Us = I'urne choisie est l'urne 2

Loi des probabilités totales :

Lol de Bayes

__ P(UiB) _ P(B|U)P(U1) _ 12
P(U1|B) = P(lB) — p(lﬁ) S =%
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Exemple 2

# Un laboratoire d’analyse du sang assure avec une fiabilite
de 95% la détection d’'une certaine maladie lorsqu’elle est
effectivement présente.

# Cependant, le test indigue aussi un resultat faussement
positif pour 1% des personnes réellement saines a qui on
le fait subir (une personne saine testée sera déclarée
malade une fois sur cent).

#® Si0,5% de la population porte effectivement la maladie,
guelle est la probabilité gu’'une personne soit vraiment
malade lorsqu’on la déclare telle sur la base du test ?
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Solution

® [ = la personne soumise au test est porteuse de la maladie

® [/ = le résultat du test est positif

La formule des probabilités totales nous donne :

P(DE)
P(E)

P(D|E) =

P(E|D)P(D)

P(E|D)P(D) + P(E|D)P(D)

95 x .
_ X005 ~ 393
95 % .005 + .01 x .995

Ainsi 32% seulement des personnes dont le résultat au test
est positif ont vraiment la maladie !
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Variables aléatoires

Une variable aléatoire est une fonction qui associe un nombre

reel a tous les eléments de S
Les variables aleatoires permettent ainsi de passer

d’évenements, qui peuvent étre de natures tres diverse, a des
nombres, et d’effectuer des calculs sur ces derniers.

X@ X X(©  X(d)  X(g X(f)
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Variables aléatoires

#® Une variable aléatoire permet aussi de n’associer gu’'une
valeur a un ensemble d’issues elémentaires, dans le cas
ou, a l'issue d’une experience, on s’interesse plus a une
fonction du résultat gu’au résultat lui-méme.

#® Lors d'un jeu de dés, par exemple, certains jeux
accordent de I'importance a la somme obtenue avec
deux des, 7 par exemple, plutdt gu’a la question de savoir
si c’est la paire (1,6) qui est apparue, ou (2,5) .... On
peut alors définir une variable aléatoire X qui représente
la somme des deux dés.
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Variables aléatoires
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Variables aléatoires

# La valeur d’'une variable aléatoire est déterminée par le
réesultat de I'expérience,

® il est possible d’attribuer une probabilité aux différentes
valeurs que la variable aléatoire peut prendre.

# On note la probabilite que la variable aléatoire X prenne
la valeur i par : P(X =1).
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Exemple

Notre expérience consiste a jeter 3 pieces equilibrées. Sil'on
désigne le nombre de faces par Y, Y est une variable
aléatoire et peut prendre les valeurs 0, 1, 2, 3 avec pour
probabilité respectivement :

P(Y=0) = P((P,P,P)=1
P(Y =1) = P((P,P,F),(P,F,P),(F,P,P)):g
P(Y =2) = P((P,F,F),(F,P,F),(F,F,P)):%
P(Y=3) = P(P.PP)=
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variables aléatoires discretes

#® Une variable aléatoire ne pouvant prendre qu’une
guantité dénombrable de valeurs est dite discr éte.

® Pour une telle variable aléatoire X, on définit sa loi de
probabilit &€ px (p lorsque ce n’est pas ambigu)

pla) = P(X =a) = P(E) avec E = {1 € S|X(i) = a}
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variables aléatoires discretes

# Une loi de probabilité ne peut étre positive que pour un
ensemble dénombrable d’arguments. Si X peut prendre

les valeurs x¢, 2o, ..., alors :
plr;)) >0i=1,2,...
p(x) = 0 pour toutes les autres valeurs de x

# Du fait que X doit bien prendre 'une de ces valeurs z;,
onaura: > = p(z;) =1

#® Siune variable aléatoire X suit une loi de distribution p on
notera X ~ p
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Histogramme

Représentation d’une loi de probabilité sur un graphique en
reportant p(x;) sur I'axe des y et z; sur 'axe des z.
Histogramme de la loi de probabilité d’'une variable aléatoire
comptant la somme des nombres obtenus lors du jet de deux
dés equilibres :

p(x)

6/36
5/36
4/36 |
3/36 |
2/36

1/36
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Caracteristiques d’une variable aleatoire

La loi d’'une variable aléatoire est constituée par
I'ensemble des probabilités des valeurs que peut prendre
cette variable.

Dans certains cas, le nombre de valeurs possibles de la
variable est extremement élevé ou méme infini.

Il est intéressant, dans ces cas, de degager certaines
caractéristigues qui permettent d’esquisser 'allure
generale de ces lois.

On definit deux caractéristiqgues des lois de probabilites :

» l'espérance permet de situer la variable.
» lavariance permet d’estimer la dispersion de la variable
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Espérance

# Pour une variable aléatoire discréte X de loi p(-), on
définit 'espérance de X, notée E|X]|, par I'expression :

EX]= Y ap(a)

z|p(z)>0

#® En termes concrets, I'espérance de X est la moyenne
pondéree des valeurs que X peut prendre, les poids
étant les probabilités que ces valeurs soient prises.
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Espérance - 2

Interprétation en recourant a la définition des probabilités
comme mesures de frequences relatives

La probabilité d’'un événement E est la proportion du nombre de
réalisation de £ dans une séquence infiniment longue d’expériences
identiques

Supposons que I'on se livre a jeu d'argent pour lequel on
connait la probabilité de chague gain. On représente par
X la variable aléatoire représentant le gain.

Cette v.a. peut prendre les valeurs z4, ..., x, avec les
probabilités p(x1), ...p(x,).

La proportion de jeux pour laquelle la somme z; aura été
gagnee va se rapprocher de p(x;).

'espérance de la v.a. X est alors le gain moyen par jeu :

Z?’Zl rip(T;)
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Variance

F[X] nous donne une moyenne pondérée des valeurs
possibles d’une variable aléatoire X.

Mais elle ne nous dit rien des variations de X autour de
I'espérance.

Soit les variables aléatoires suivantes :
X avec px(0) =1

Y avec py(—1) = %,py(l) — %
Z avec pz(—100) = 1, pz(100) = %
EX]|=FY|=FE[Z] =0

Mais il y a de bien plus grands écarts entre les differentes
valeur de Y gu’entre celles de X (qui est constante) et de
plus grands écarts entre celles de Z qu’entre celles de Y.
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Variance - 2

#® On mesure les variations d’une v.a. X par I'espérance du
carré de I'écart entre X et son espérance, que I'on
appelle variance de X, notée Var(X) :

Var(X) = B[(X — E[X])?

Qui peut aussi étre calculée de la facon suivante :

Var(X) = E[X?] — (E[X])?

#® Si X estle resultat du lancer d’'un dé équilibre, alors
E[X] = £ comme nous I'avons vu ci-dessus. De plus :
21 12 1 2o 1 2o 1 2o 1 2o 1 2o 1 1
E[X ] =1 X5+2 Xg—l—S X5+4 X5+5 X6—|—6 X6—91><6
et donc :

35
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Variables binomiales

On realise n épreuves indépendantes, chacune ayant une
probabilité de succes de p et une probabilité d’échec de

1 —»p.
La variable aléatoire X qui compte le nombre de succes

sur 'ensemble des n épreuves est dite variable aleatoire
binomiale de parametres (n,p).

toute séquence comportant : succes et n — ¢ échecs a
pour probabilité p* x (1 —p)™ .

ily a (') séquences vérifiant cette propriété

p(i) = C) p' (1 —p)"

on a donc:
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Espérance d’une variable binomiale

(1)

(2)

3)

(4)

(5)

(6)
(7)
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Variables aléatoires conjointes

Il est souvent nécessaire de considérer des événements

relatifs a deux variables simultanément.

On définit la loi de probabilit & conjointe de deux V.

p(z,y) = P(X =z,Y =y)

a. xety :

On peut deduire de la loi de probabilité conjointe de deux
variables X et Y la loi de probabilit é marginale de X de la

facon suivante :

px(z)=P(X =2)= Y  pla,y)

y|lp(z,y)>0
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Exemple

® Ontire au hasard 3 boules d’'une urne contenant 3

rouges, 4 blanches et 5 bleues.

#® X etY désignent respectivement le nombre de boules
rouges et celui de boules blanches tirées.

# Laloi de probabilité conjointe p(i,j) = P(X =14,Y = j) de
X etY estreprésentée dans un tableau a deux entrées :

J

0 1 2 3
0| 10 [ 40 [ 30 1
220 | 220 | 220 | 220
130 60 [ 1871
220 | 230 | 230
]2 220 | 220 0 0
3|55 | 0 0 0
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Exemple (suite)

|
0123 ][PX=9
0 10 | 40 | 30 | 4 84
220 220 220 220 220
1 30 760 [ 18 [ 108
21250 21220 220 22270
S
LA - A N L
P(Y =j) 220 | 220 | 220 | 220

# La loi marginale de X est calculée en faisant les totaux
par ligne, tandis que celle de Y 'est en faisant les totaux

par colonne.

#® Cest le fait que les lois de X et Y individuellement
puissent étre lues dans les marges du tableau qui leur

vaut leur nom de lois marginales.
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Variables aléatoires indépendantes

Deux variables aléatoires X et Y sont dites ind épendantes
si, pour tout choix d’'une paire d’'ensembles A et B de
nombres réels, on a :

P(Xe AYeB)=P(X € A) x P(Y € B)

En d’autres termes, X et Y sont independantes si, quels
que soient A et B, les événements £, = (X € A) et
Eg = (X € B) sont indéependants.

Cela revient a dire que :

p(z,y) = px(2)py(y) Yo,y

D’un point de vue intuitif, X et Y sont indépendantes si le

fait de connaitre la valeur de I'une n’influe pas sur la
distribution de I'autre. Des variables qui ne sont pas
iIndependantes sont dites déependantes.



Exemple

On réalise n + m épreuves independantes ayant chacune
p pour probabilité de succes.

La variable X est le nombre de succes lors des n
premieres épreuves et Y est le nombre de succes lors
des m dernieres.

X et Y sont independantes car le fait de connaitre le
nombre de succes lors des n premieres épreuves n’influe
en rien sur celui des succes lors des m dernieres (c’est la
la traduction de I'indépendance des épreuves).

En revanche, X et Z sont dependantes si Z represente le
nombre total de succes au cours des n + m epreuves.
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Lois de probabilité conditionnelles

Etant donné deux variables aléatoires X et Y, on définit la loi
de probabilité de X sous la condition Y =y :

pxy(zly) = P(X =z|Y =y)
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Lois de probabilité conditionnelles - 2

Lorsque X et Y sont indépendantes, les lois conditionnelles
et non conditionnelles sont identiques :

pxp(zly) = P(X =z|Y =y)
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