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Abstract

In most works on negotiation dialogues, agents are sup-
posed to be ideally honest. However, there are many
situations where such a behaviour cannot always be ex-
pected from the agents (e.g. advertising, political ne-
gotiation, etc.). The aim of this paper is to reconsider
the role of deceitful arguments in argumentation frame-
works. We propose a logical tool for representing and
handling deceitful arguments in a dialogue between two
formal agents having to face their respective knowledge
and trying to convince each other.X-logics, a non-
monotonic extension of classical propositional logics, is
used as the background formalism for representing the
reasoning of the agents on arguments. Starting from a
previous work dedicated to the generation of new argu-
ments, we propose to define the notion of lie as a new
kind of possible agent’s answer. Finally we describe the
way an agent may trick and how the other agent may
detect it.

Introduction
Logics has been historically assigned by philosophy the task
of defining the rules of correct reasoning. As such, it was
first considered as a tool in argumentation and rhetoric, be-
fore its formal developments in the foundation of mathemat-
ics meant to “delimit” it (in a large sense) to proof theory.
A major distinction then arised from this situation: whereas
the inner nature of arguments makes them questionable, the-
orems are held to be beyond dispute. A definitive break
seemed to be set between logics and argumentation, lead-
ing a philosopher like Perelman to regard human argumen-
tation as being beyond the reach of formal logics. New
developments in logics however have conducted to recon-
sider partly this pessimistic view. In recent years the rep-
resentation and the simulation of simplified models of ar-
gumentation with logical tools has been the object of im-
portant progresses (Prakken & Vreeswijk 2002). Obviously,
all these models initially assume a form of exchange of ar-
guments. In addition they address and characterize many
distinct fundamental notions such as (for instance) accept-
ability (Dung 1995), preference among arguments (Amgoud
& Cayrol 1998), argumentation trees (Besnard & Hunter
2001), relative strenght of arguments (Bench-Capon 2003),
or dialectic proofs (Dung, Kowalski, & Toni 2006). An-

other important feature of these models is also that they as-
sume some kind of rational behaviour in the exchange of
arguments, that is that the agents (implicitly or explicitly)
involved can be fully trusted. However, there are many con-
texts in which this assumption seems much too strong, typi-
cally situations in which the object of the discussion covers
important issues for at least one part (e.g.financial or politi-
cal negotiation, or yet, advertising). Actually the purpose of
argumentation as a part of rhetoric is indeed to propose and
stress values to which each agent believes orfeint to believe
regarding her respective goals. In this respect, the ability to
represent, manage, and detect deceitful arguments appears
as a major step toward a complete formal theory of argu-
mentation, and as such, was already questioned in (Ham-
blin 1970)’s pioneering work. In this paper, and following
(Aubry & Risch 2005), we address this question via the use
of X-logics, a nonmonotonic extension of classical proposi-
tional logics. Extending their approach, devoted to the ques-
tion of the generation of new arguments, we propose a log-
ical approach to the notion of deceitful argument, and show
how agents may generate lies while maintaining the consis-
tency of their knowledge. The question of the detection of
lies is briefly considered via the notion ofcommitment store
(Hamblin 1970). Our paper is organized as follows: sec-
tion 2 below briefly introduces standard notations, section3
recallsX-logics, section 4 introduces the notions of agent,
attitudes, kinds of answers and arguments, while section 5
concerns deceitful arguments.

Notations

Formally our language is classical propositional logic de-
noted byL. Formulas are denoted by lowercase letters
whereas sets of formulas are denoted by shift case letters.
The symbols⊤ and⊥ are the usual truth values, and¬, ∨,
∧, ⇒, ⇔ the usual connectors. Classical consequence re-
lation is denoted by⊢. A finite setE of formulas is logi-
cally interpreted by the conjunction of its elements, that is
a sentence. We abuse the notation¬E as a shorthand for
the negation of the conjunction of the formulas inE, e.g.
E = {e1, . . . , en}, hence¬E = ¬e1 ∨ · · · ∨ ¬en. We
denote byE the set of classical consequences ofE (i.e.
E = {f | E ⊢ f}), and by2E , the powerset ofE. A
finite consistentset of formulas is called aknowledge base.



X-logics
X-logics were defined in (Siegel & Forget 1996) as an at-
tempt for defining a proof theory for nonmonotonic log-
ics from any classical logic with a given setX of formu-
las. Whereas classicallyK ⊢ f iff K ∪ {f} = K, X-
logics can be considered as a generalization (hence a weak-
ening) of ⊢, namely⊢X , defined such thatK ⊢X f iff
K ∪ {f} ∩ X = K ∩ X, i.e. ⊢X is monotonic only on
X. WhenX = L, ⊢X amounts to be just⊢. If X = {⊥}
thenK ⊢X f is equivalent toK 0 ¬f which describes the
consistency relation betweenK andf (“K∧f is satisfiable”
holds), providedK is consistent by itself. IfX = ∅, all the
formulas can be entailed. Note thatK ⊢X f if every theo-
rem (regarding⊢) of K ∪ {f} which is inX is a theorem of
K (by addingf to K the set of classical theorems which are
in X does not grow). Indeed, since classical consequence
relation is monotonic, in order to check whetherK ⊢X f
it is sufficient to check whetherK ∪ {f} ∩ X ⊆ K. In
other words,K ⊢X f iff ∀x ∈ X \ K, K ∪ {f} 0 x.
Although this was already proved independently, this shows
thatX-logics are supraclassical. Actually and as shown in
(Bochman 2003),X-logics coincide with permissive infer-
ence relations which are completely characterized by Left
Logical Equivalence, Right Weakening, Reflexivity, Con-
junctive Cautious Monotony, Cut and Or.

Let us make use of the following terminology: ifK ⊢X f
we say thatf is compatiblewith K regardingX, andincom-
patibleotherwise. The notion of compatibility encompasses
the notion of consistency, whereas formulas can be incom-
patible withK regardingX without being inconsistent with
K. The following properties obviously hold:

Property 1.

1. (metacoherence)A formula cannot be both compatible
and incompatible.

2. (paraconsistency of compatibility)Both a formula and its
negation can be compatible withK regardingX.

3. (paraconsistency of incompatibility)Both a formula and
its negation can be incompatible withK regardingX.

Example 2.

• {a} ⊢{⊥} a ∧ b, and{a} ⊢{⊥} ¬(a ∧ b)

• {a} 0{⊥,b,¬b} a ∧ b, and{a} 0{⊥,b,¬b} ¬(a ∧ b)

• {a} ⊢{b∧c} b, but{a, c} 0{b∧c} b

Agents, attitudes, answers and arguments
In the literature, some argumentation theories consider the
notion of proponent-opponent(Rescher 1977; Vreeswijk
1992) whereas other describe argumentation systems in
which arguments made from a unique set of formulas are
linked together, in a kind of abstract game among arguments
(Lin & Shoham 1989; Dung 1995; Amgoud & Cayrol 1998;
Besnard & Hunter 2001). Following (Simari & Loui 1992;
Amgoud & Parsons 2002), (Aubry & Risch 2005), we intro-
duce a notion ofagent, but with the objective to map each
agent with a uniqueX-inference.

Definition 3. (Aubry & Risch 2005) Anagentis a couple
[K,X] whereK is a knowledge base, andX ⊇ {⊥}, a
set of formulas. The set of agents, a subset of2L × 2L, is
denoted byA.

Compatibility extends naturally to the notion of admissi-
bility of a formula by an agent,i.e. a formula isadmissible
by an agent[K,X] iff this formula is compatible withK
regardingX; it is non-admissibleotherwise1. Intuitively
K is used as a representation of the factual knowledge of
an agent, whereasX corresponds to formulas that an agent
cannot admit unless they are part of her factual knowledge.
In other words, formulas inX delineate negatively the hopes
of the agent (since the agent does not admit these formulas),
whereas the positive counterpart indeed should correspond
to the agent’s expectations (the agent accept everything but
formulas ofX, unless she has to take account of them be-
cause there are already part of her knowledge). In the fol-
lowing, we will call X theforbidden formulas. The require-
ment thatX contains at least the contradiction is motivated
by the natural expectation that an agent should reason con-
sistently. The notion of admissibility determines four possi-
ble distinctattitudesthat an agent may adopt concerning a
given formula, as shown in (Aubry & Risch 2005):

Definition 4 (Attitudes). (Aubry & Risch 2005) Consider an
agent[K,X] and a formulaf :

• [K,X] is for f iff K ⊢X f andK 0X ¬f

• [K,X] is neutral aboutf iff K ⊢X f andK ⊢X ¬f

• [K,X] is puzzled byf iff K 0X f andK 0X ¬f

• [K,X] is against f iff K 0X f andK ⊢X ¬f

By extension, an agent isfor (resp.neutral about,against,
puzzled by) a set of formulas iff she isfor (resp. neu-
tral about,against, puzzled by) the conjunction of the for-
mulas of this set.

In figure 1, the four corners of the median layout are as-
sociated with the attitudes, and are clearly generated by both
the two edges above and below corresponding to the admis-
sible or non-admissible character off and¬f respectively.

f is admissible f is non-admissible

f is admissible

f is non-admissible
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X f
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Figure 1: Generative octahedron of attitudes of an agent
[K,X] in front of a formulaf

1Note that our notion of admissibility differs from the notion
previously defined in (Bondarenkoet al. 1997) and in (Dung,
Kowalski, & Toni 2006).



Yet, as shown in (Aubry & Risch 2005), given an agentΦ
and a formulaf :

• Φ is for f iff she isagainst ¬f ,

• Φ is neutral aboutf iff she isneutral about¬f ,

• Φ is puzzled by f iff she ispuzzled by¬f ,

• Φ is for the tautologies andagainst the contradictions.

The different possible attitudes of an agent in front of a
set of formulas yield a partition of this set.Confrontation
operatorsare introduced in order to associate each attitude
with the formulas of a particular partition.

Definition 5. (Aubry & Risch 2005) Theoperator|+ (resp.
|0, |− and|p) maps an agent and a setE of formulas with the
subsets ofE such that this agent isfor (resp.neutral about,
against or puzzled by) these subsets:

|+ : A× 2L −→ 22L

Φ |+ E 7−→ {P ⊆ E | Φ is for P}

As shown further down, confrontation operators are
meant to be used by an agent for deciding precisely which
are the points of agreement or disagreement she has with the
different parts of a given argument.

Example 6. ConsiderΦ an agent with the following knowl-
edge base and set of forbidden formulas (whereA and
B denote respectively “Amelia” and “Brandon”):KΦ =
{B-comes ⇒ Annoyed,¬B-comes ⇒ Sad, A-comes ⇔
Happy}, XΦ = {⊥, Annoyed, Sad}. The attitudes ofΦ
regarding the setE = {B-comes, A-comes, B-comes⇒
Annoyed, A-comes∧ ¬Happy} yield the following partition
of E:

Φ |+ E =
{

{B-comes⇒ Annoyed}
}

Φ |0 E =
{

{A-comes}, {A-comes, B-comes⇒ Annoyed}
}

Φ |− E =
{

{A-comes∧¬Happy}, {B-comes, A-comes}, ∗
}

Φ |p E =
{

{B-comes}, {B-comes, B-comes⇒ Annoyed}
}

The symbol∗ in Φ |− E stands for each subset ofE
containing either of the two other sets stated inΦ |− E.

In order to link the attitudes of an agent with the construc-
tion of new arguments (Aubry & Risch 2005) make use of
the following notion ofanswer. Roughly, an answer is a
set of formulas fixed by the attitude of an agent regarding
a given set of formulas this agent is faced with. Consider
X = {x1, . . . , xn}, and let us useconceivable (X) as a
shorthand for{¬x1, . . . ,¬xn}.

Definition 7 (Answer). (Aubry & Risch 2005) Ananswer
of the agent[K,X] to a consistent setA of formulas is a
consistent setR of formulas such that, for someK ′ ⊆ K
and someX ′ ⊆ (X \ {⊥}):

1. R = K ′ ∪ conceivable (X ′)

2. K ′
0{⊥}∪X′ A

The set of answers given by[K,X] to A is writtenRA
[K,X].

The first point constrains answers to contain only knowl-
edge or negations of forbidden formulas of the agent. The

second point specifies that an answer to a setA necessar-
ily contains formulas which are conflicting withA: ∃x ∈
({⊥} ∪ X ′) \ K ′, K ′ ∪ A ⊢ x. In other words, an an-
swerK ′ ∪ conceivable (X ′) to A is such thatA is non-
admissible by the “virtual” agent[K ′, {⊥} ∪ X ′]. The con-
tradiction is present here for technical reasons: for instance,
this allows to answerR = K ′ = {a} to A = {¬a} without
having to addX ′ = {⊥} in R.

Following directly from definition 7: (1) no answer is
empty,(2) any answer of an agent to a given set of formu-
las is inconsistent with this set. In addition, the following
property holds:

Property 8 (Existence of an answer). (Aubry & Risch 2005)
If an agent isagainst or puzzled about a subset of a consis-
tent set of formulas, then there exists an answer of this agent
to this set. The opposite does not hold.

In the following, we consider two easy but important re-
finements of definition 7, namelycoherent, andrelevantan-
swers. Let us define the first of these two notions:

Definition 9 (Coherent answer). An answer of the agent
Φ = [K,X] is called acoherent answerof Φ iff it is con-
sistent withK.

As stated further down, each answer of an agentΦ to A
(and especially coherent answers) is potentially the support
of a counterargument ofΦ (that is the reason why to believe
the conclusion of this counterargument) to an argument con-
tainingA. Note however this does not limit agents to gener-
ate only disputing arguments (remind thatΦ is for A iff she
is against ¬A). Answers that are not coherent will drive
us to deceitful arguments, and as such definition 9 plays an
important role as the counterpart of the notion of lie, consid-
ered further down.

Let us now come to the second refinement of definition 7.
In most works on argumentation, only minimal arguments
are considered: they only contains formulas necessary to
elaborate the conclusion of the argument. Among the pos-
sible answers of an agent to a set of formulasA, some of
them are included in others: they contain less superfluous
information. In the limit case, the minimal answers are only
made with formulas necessary to elaborate the conclusion
¬A. Such answers are calledrelevant2.

Definition 10 (Relevant answer). (Aubry & Risch 2005) An
answer of the agentΦ to a setA of formulas is calledrele-
vant iff it does not contain any other answer ofRA

Φ. The set
of relevant answers given byΦ to A is writtenRr A

Φ.

Rr A
Φ =

{

R ∈ RA
Φ | ∀R′ ⊂ R, R′ /∈ RA

Φ

}

Now, given an agent[K,X] facing a setA of formulas,
her set of relevant answers can be shared among three sub-
sets. The first contains the answers only made from the
knowledge of this agent. Hence this subset is not empty
whenK∪A is inconsistent. The second category of answers
is made of those exclusively constructed from the forbidden

2Note that the notion ofrelevant movepreviously defined in
(Prakken 2005) has a different meaning, since it is defined in the
context of a dialogue.



formulas of this agent. Finally, the relevant answers neither
in the first nor in the second subset are made from at least
one formula of the set of knowledge of this agent and one
formula of the set of forbidden formulas of this agent.

This partitioning can be considered via “virtual” agents.
The answers only made from the knowledge of the agent
[K,X] are actually answers of an agent[K, {⊥}], while the
answers only made of the forbidden formulas of the agent
[K,X] are answers of the agent[∅,X].

These different sets of relevant answers are fully charac-
terized in (Aubry & Risch 2005).

Answers are used as a tool for generating new argu-
ments by an agent, where arguments are defined following a
very common intuitive view (Simari & Loui 1992; Elvang-
Gøransson, Krause, & Fox 1993; Amgoud & Cayrol 1998;
Besnard & Hunter 2001),i.e. anargumentis a set of relevant
formulas that can be used to classically prove some formula,
together with that formula. This notion is made more precise
here by taking account of both notions of agent and answer.

Definition 11 (Argument). (Aubry & Risch 2005) Consider
A, a set of formulas. Anargumentα of an agentΦ is any
pair 〈R,¬A〉 such thatR is a relevant answer ofΦ to A.
The set of arguments of an agentΦ is writtenArgΦ, i.e.

∀Φ,∀R,∀A, 〈R,¬A〉 ∈ ArgΦ iff R ∈ Rr A
Φ

The set of all arguments is denoted byArg. Finally, R is
called thesupportof the argument, denoted bysupp (α),
while¬A is called theconclusionof the argument, denoted
byconcl (α).

From the definition of an answer (definition 7), we have
indeed that the conclusion of an argument is classically en-
tailed by the support of this argument. Let us now address
the question of the use of arguments by an agent. The two
complementary notions ofattackanddefenseof an argument
in the context of a dispute are well known in philosophy.
Following a solid tradition (e.g. (Schopenhauer 2004)) we
consider that an argument can be attacked (resp. defended)
either on the premises (the support) or on the conclusion.
Hence we allow arguments to be decomposed intoelements
that an agent can analyze for such further attack or defense.
Thus, the elements of an argument are taken as parts of the
support, together with the conclusion:

Definition 12 (Elements of an argument). Theelementsof
an argument〈S, c〉, writtenelements (〈S, c〉), are given by
a mapping fromArg to 22L

such that:

elements (〈S, c〉) = {E ∈ 2L | E ⊆ S} ∪ {{c}}

The two relations of attack and defense are then defined
classically. Note however that generally, defending argu-
ments is considered throughreinstatement: an argument that
is defeated by another argument can be justified only if it is
reinstated by a third argument (this corresponds to (Dung
1995)’s notion ofacceptability). Actually, the notions of
attitude and the generation of agent’s answers allow us to
define a pure relation of defense of arguments.

Definition 13. The set of arguments of an agentΦ attacking
(resp. defending) an argumentα is writtenArgatt(α)

Φ (resp.

Argdef(α)
Φ ), where:

• Argatt(α)
Φ = {〈R,¬A〉 | R ∈ Rr A

Φ, A ∈ elements (α)}

• Argdef(α)
Φ = {〈R,

∧

a∈A A〉 | R ∈ Rr {¬A}
Φ ,
A ∈ elements (α)}

The following property links the attack and the defense of
arguments with the attitudes of an agent:

Property 14. Consider t ∈ {supp () , concl ()}.
∀Φ,∀A,∀α:

• A ∈ Φ |− t(α) ⇒ ∃R, 〈R,¬A〉 ∈ Argatt(α)
Φ

• A ∈ Φ |+ t(α) ⇒ ∃R, 〈R,
∧

a∈A a〉 ∈ Argdef(α)
Φ

• A ∈ Φ |p t(α) ⇒







∃R1,∃R2,

〈R1,¬A〉 ∈ Argatt(α)
Φ

〈R2,
∧

a∈A a〉 ∈ Argdef(α)
Φ

Sketch of proof.Applying property 8 then definition 11.

Note that property 14 makes our intuition about the atti-
tudes of an agent to coincide with her expected behaviour:
an agent is puzzled by one element of an argument because
she can both attack and defend this argument. Similarly, the
fact that an agent is neutral about some element of an ar-
gument does not allow this agent to construct any coherent
answer, and hence does not allow her to attack or to defend
this argument (unless by lying as seen further down).

Example 15. Consider two agentsΦ andΨ arguing about
the text of the future European constitution (denoted by
x) in order to decide whetherx should be accepted or
not. The knowledge ofΦ regardingx is that x men-
tions the concept of trade market, thatx pretends to be
a constitution as well as to set up new political founda-
tions for Europe, and that the need of political foundations
requires a constitution anyway. On the other hand,Φ is
not ready to give up the idea that a constitution should
not include any reference to trade markets. Hence, we
have KΦ = {x, x ⇒ tradeM, x ⇒ constitution, x ⇒
newPoliticalF, newPoliticalF ⇒ constitution}, andXΦ =
{⊥,¬((constitution∧ tradeM) ⇒ ¬admissible)}. The
knowledge of the agentΨ is thatx refers to trade markets,
and as such, has to be considered a treaty rather than a con-
stitution. MoreoverΨ thinks that a treaty can be accepted.
Hence,KΨ = {x, x ⇒ tradeM, x ⇒ treaty, treaty ⇔
¬constitution, treaty⇒ admissible}, while XΨ = {⊥}.

Assume now the claim made byΨ in front of Φ that x
should be accepted,i.e. α1

Ψ = 〈{x ⇒ treaty, treaty ⇒
admissible}, x ⇒ admissible〉.

Since{x ⇒ admissible} ∈ Φ |− concl
(

α1
Ψ

)

, Φ can
compute a counterargument:α1

Φ = 〈{x, x ⇒ tradeM, x ⇒
constitution, (constitution∧ tradeM) ⇒ ¬admissible)},
¬(x ⇒ admissible)〉.

Now Ψ analyzesα1
Φ: Ψ |+ supp

(

α1
Φ

)

= {{x}, {x ⇒
tradeM}, {(constitution∧ tradeM) ⇒ ¬admissible)}, ∗},
where∗ stands for each subset of the set containing∗, andΨ



is against any other elements ofα1
Φ. Ψ set up the following

argument:α2
Ψ = 〈{x, x ⇒ treaty, treaty⇔ ¬constitution},

¬(x ⇒ constitution)〉. On her turn,Φ defends her po-
sition: α2

Φ = 〈{x ⇒ newPoliticalF, newPoliticalF ⇒
constitution},¬¬(x ⇒ constitution)〉.

Deceitful arguments
Deceitful arguments are untruthful arguments made with the
intention to deceive. An agent using such kind of argument
cheats with her current knowledge about the world, and does
so with the intention to trick the other agent. We consider
here two ways of cheating: the first one has to do with some
kind of dilution of an argument, whereas the second one
refers directly to lies. Let us informaly consider dilution
first.

Given an initial argument, in order to narrow the possi-
bilities of counterarguments to consider, (Besnard & Hunter
2001) introduce the following notion ofconservativity:

Definition 16. (Besnard & Hunter 2001) An argument〈S,
c〉 is more conservativethan an argument〈S′, c′〉 iff S ⊆ S′

andc′ ⊢ c.

Selecting only the most conservative counterarguments
allows to summarize the different possibilities of answer (as
shown in (Aubry & Risch 2005)). However, depending on
the goal of the agent beginning a discussion, the most con-
servative argument may not be the most suitable one as first
argument:

Example 17. Consider a commercial agentΦ who wants
sell a scooter of trademarklabel-Z to a client Ψ.
Φ = [{scooter, label-Z, scooter ⇒ edgeOut, edgeOut⇒
¬trafficJam}, {⊥}].

Φ uses the following argument: 〈{scooter ⇒
edgeOut, edgeOut⇒ ¬trafficJam}, (scooter∧ label-Z) ⇒
¬trafficJam〉. But the agentΨ considers it as adiluted ar-
gumentsince she does not understand why an unsophisti-
cated scooter is not enough to avoid the traffic jams. She
can then address the following argument to the commercial
agent: 〈{scooter ⇒ edgeOut, edgeOut⇒ ¬trafficJam},
scooter ⇒ ¬trafficJam〉. SinceΦ is for each element of
this argument, she cannot generate any counterargument.

Hence depending on how muchΨ is careful, the first ar-
gument ofΦ seems to be useless while a less conservative
argument may appear more appropriate. A new kind of an-
swer can assist our commercial agent to stick up for herself,
which drive us two the second way by which an agent may
cheat:

Definition 18 (Lie). M is a lie of the agentΦ regarding the
set of formulasA iff bothM is a relevant answer ofΦ to A,
andM is not a coherent answer ofΦ. The set of lies ofΦ
regardingA is denoted byRℓA

Φ.

The ability for an agent to construct answers inconsistent
with her knowledge relies on the use of anX-inference in
the definition of an answer (definition 7), and precisely on
the fact that an agent[K,X] can use a formula fromX ∩K.
Indeed,K 0X A iff ∃x ∈ X \ K, K ∪ A ⊢ x. But
a given answerR = K ′ ∪ conceivable (X ′) of this agent

to A only satisfiesK ′
0{⊥}∪X′ A, that is: ∃x ∈ ({⊥} ∪

X ′) \ K ′, K ′ ∪ A ⊢ x. Hence a formula ofX ∩ K \ K ′ is
the reason whyK 0X A, which explains why the answer is
inconsistent with the knowledge of the agent.

Property 19. Let M be a relevant answer of the agent
[K,X] to the setA of formulas. M is a lie of this agent
regardingA iff there exists a formula ofM \K inconsistent
with K.

Proof. (⇒) SinceM ∈ RℓA
[K,X], K ∪ (M \K) ⊢ ⊥. It has

been proved in (Aubry & Risch 2005) that for any answer
R of [K,X], R \ K is either empty or a singleton. Hence
∃m ∈ M \ K, K ∪ {m} ⊢ ⊥. (⇐) By assumption,∃m ∈
M \K, K∪{m} ⊢ ⊥. HenceK∪M ⊢ ⊥. From definition
18, it follows thatM ∈ RℓA

[K,X].

Corollary 20. For every agent[K,X] and for every set of
formulasA, if the intersection ofX and the deductive clo-
sure ofK is empty, then this agent cannot generate any lie
regardingA: ∀[K,X],∀A,X ∩ K = ∅ ⇒ RℓA

[K,X] = ∅

Proof. We prove the contrapositive, that is thatRℓA
[K,X] 6=

∅ ⇒ X ∩ K 6= ∅. AssumeM ∈ RℓA
[K,X]. From

property 19,∃m ∈ M \ K, K ∪ {m} ⊢ ⊥. Then
∃m ∈ conceivable (X) ,K ⊢ ¬m. Hence∃x ∈ X,K ⊢ x,
i.e. X ∩ K 6= ∅.

This corollary leads to the conclusion that an agent with
no knowledge ([∅,X]), or whose way of reasoning is re-
duced to sole consistency ([K, {⊥}]) cannot generate any
lie. Note however that a relevant answer of the agent[∅,X]
to a setA can be a lie regardingA for an agent with the same
set of forbidden formulas but with an adequate knowledge
base:

Example 21. Let both Φ and Ψ be two agents such that
Φ = [∅, {⊥, a}], andΨ = [{a}, {⊥, a}]. With A = {a} we
get:RℓA

Φ = ∅, andRr A
Φ =

{

{¬a}
}

, but:RℓA
Ψ =

{

{¬a}
}

.

A lie can be generated for attacking an argument while
defending another argument:

Example 22(Lie, attack, and defense). Let Φ be an agent
such that:Φ = [{a, a ⇒ (b ∧ c)}, {⊥, a ∧ b}]. An agentΨ
set an argumentα such that{b} ∈ elements (α). ThenΦ
could attackα while generating a lie:β = 〈{a,¬(a ∧ b)},

¬b〉 ∈ Argatt(α)
Φ , and{a,¬(a ∧ b)} ∈ Rℓ

{b}
Φ . But if Ψ

had set an argumentα′ with {¬b} ∈ elements (α′), thenΦ
could have defendedα′ with both the same lie and the same
argumentβ: β ∈ Argdef(α′)

Φ .

Finally, suppose that an agentΦ generates an argument
α constructed from a lie, for answering an argumentβ. If
α ∈ Argdef(β)

Φ (resp. α ∈ Argatt(β)
Φ ), we cannot presume

whether there exists a coherent argument (i.e. not a lie) ofΦ
attackingβ (resp. defendingβ). In other words we cannot
assume thatΦ is against (resp.for) any element ofβ:



Example 23(Lie andneutral attitude). Let Φ be an agent
such that:Φ = [{a}, {⊥,¬b ∨ a}]. Now consider an argu-
mentα such thatA = {¬b} belongs toelements (α). Then
Φ is neutral aboutA, but she could set up a counterargument
to α, as far as it is constructed from a lie:〈{¬(¬b ∨ a)}, b〉.

Coming back to example 17, conferring the commercial
agent the ability to lie allows her to push further her initial
argument.

Example 24 (continuation of example 17). Consider
a commercial agentΦ′ who still wants to sell a
scooter of trademarklabel-Z to a client Ψ. Φ′ =
[{scooter, label-Z, scooter ⇒ edgeOut, edgeOut ⇒
¬trafficJam}, {⊥, (scooter∧ ¬label-Z) ⇒ ¬trafficJam}].

Φ′ set up the following argument: 〈{scooter ⇒
edgeOut, edgeOut⇒ ¬trafficJam}, (scooter∧ label-Z) ⇒
¬trafficJam〉. The client address the following argument to
the commercial agent:〈{scooter⇒ edgeOut, edgeOut⇒
¬trafficJam}, scooter ⇒ ¬trafficJam〉. Just like Φ in
the example 17, the agentΦ′ is for each element of this
argument,but she can now generate a counterargument:
〈{¬((scooter∧ ¬label-Z) ⇒ ¬trafficJam)},¬(scooter⇒
¬trafficJam)〉.

Lies can be advantageous in negotiation dialogues when
a goal is to be achieved. But it is possible to counter-
balance this. Since the work of the philosopher Hamblin
(Hamblin 1970), formal dialogue systems typically establish
and maintain public sets of commitments calledcommitment
storesfor each agent. More than one notion of commitment
is present in the literature on dialogues games3 but essen-
tially they can bee seen as a tool of memorization for the
arguments advanced by each agent. If an agentΨ considers
an argumentα from an agentΦ as a diluted argument (such
as for instance in examples 17 and 24), thenΨ can ques-
tion Φ about one or the other of the elements ofα, and hope
either a clarification (in example 17 where finallyΦ agree
with Ψ), or detect an inconsistency in the commitment store
of Φ (in example 24 whereΦ′ has advanced two arguments
whose supports are inconsistent together).

Conclusion
X-logics allows agents to cope with singular answers,
namely those ones allowing the agent to produce an argu-
ment inconsistent with her knowledge, while keeping con-
sistency in the knowledge base. This ability relies on the
possibility for the agent to use expectations (if any) that con-
tradict her knowledge. This way, a formal notion of lie is de-
fined that seems to match the standard intuition. Moreover,
a very simplified form of commitment store allows to define
a formal way for detecting such lies. Of course, many ques-
tions still deserve to be addressed. A first question may con-
cern how our system could be embedded in standard mod-
els of dialogue. Especially, having defined how agents may
cheat, we are now concerned with the notion of strategy of
an argumentative exchange. In this respect, it might be inter-
esting to see how our system could be used for the formal-

3For recent works on the question, see for instance (Maudet &
Chaib-draa 2003; Bentaharet al. 2004).

ization of some of the strategies described in (Schopenhauer
2004). Another may be more exciting question in the same
direction concerns how an agent can exchange arguments
with herself, thus allowing the representation of a form of in-
trospection. Finally, some technical questions are still unan-
swered or under study, such as a link between the four pos-
sible attitudes of an agent with Belnap’s four valued logic,
or the comparison with the threeattitudesdescribed in (Par-
sons, Wooldridge, & Amgoud 2003).
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