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Abstract

Following the framework proposed by Besnard and
Hunter for argumentation, this paper aims to propose a log-
ical tool for the generation of new arguments when two for-
mal agents have to face their respective knowledge. The
following notions are addressed: the behaviour of an agent
facing an argument, the answer of an agent in front of a
set of formulas, and relations among arguments.X-logics,
a nonmonotonic extension of classical propositional logic
proposed by Siegel and Forget, is used as the background
formalism for representing the reasoning of the agents on
arguments.

1 Introduction

The problem of how to represent argumentation with
logical tools is an old question, tackled by many authors
in many different ways (see [4]). A common view is that
an argument is composed with a set of reasons, a conclu-
sion, and a method of inference by wich the conclusion is
meant to follow from the reasons. One question is to find
a way for representing and processing the arguments ex-
changed by two agents: obviously, this question is related
with nonmonotonic reasoning1 (e.g.[7], [5], [1] among oth-
ers). Another important question concerns the way of com-
bining sentences for or against a given conclusion, which
is related to the notion ofacceptabilityof an argument [5].
The association of linking sentences with anargumentation
treehas been investigated by [2]. It is noteworthy that this
last work avoids any reference to a dialectic representation
of distinct agents. In this paper, we consider a logical frame-
work composed of two formal agents facing their respective
knowledge and debating about them: one agent supports a

1A way of reasoning that assumes that truth is no given for eternity,
contrary to classical logics.

certain conclusion, and the other has to find an answer re-
garding his state of knowledge. Our approach attempts to
give a formal description of how the second agent can gen-
erate a relevant answer in front of the argument claimed by
the first agent. The necessity to cope with a possible revi-
sion of the respective knowledge of the agents leads us to
useX-logics, a nonmonotonic extension of classical propo-
sitional logics, for representing the reasoning of the agents
on arguments. Our paper is organized as follows: section 2
below briefly describesX-logics, section 3 introduces the
notion of agent, section 4 the notion of attitude of an agent
in front of a set of formulas, section 5 has to do with an-
swers and generation of new arguments, and section 6 with
an application to the framework of [2]. Formaly, our lan-
gage is classical propositional logics where` denotes the
classical consequence relation,> and⊥ the usual truth val-
ues, and¬, ∨, ∧, ⇒ the usual connectors. Formulas are
denoted by lower case letters whereas sets of formulas are
denoted by shift case letters. A finite setA of formulas is
logically interpreted by the conjunction of its elements, that
is a sentence. We abuse the notation¬A as a shorthand for
the negation of the conjunction of the formulas inA. A fi-
nite consistent set of formulas is called aknowledge base2.
Finaly, givenE a set of sets,min (E) is the set of minimal
sets ofE regarding inclusion.

2 X-logics

X-logics were defined in [9] as an attempt for defining
a proof theory for nonmonotonic logics from any classical
logic with a given setX of formulas. Whereas classically
K ` f iff K ∪ {f} = K (where the line over the sets
denotes the theorems associated with these sets),X-logics
can be considered as a generalization (hence a weakening)
of `, namely`X , defined such asK`Xf iff K ∪ {f} ∩
X = K ∩ X i.e. `X is monotonic only onX. WhenX

2Note that in [2], consistency is not required for knowledge bases



equals the language,̀X is equivalent tò . If X = {⊥}
thenK`Xf is equivalent toK 0 ¬f which describes the
consistency relation betweenK andf (“K∧f is satisfiable”
holds), providedK is consistent by itself. IfX = ∅, all
the formulas can be entailed. Actually, the following result
holds:

Theorem 2.1. K`Xf iff (∀x ∈ X \ K)(K ∧ f 0 x)

Note that K`Xf if every theorem (regarding̀ ) of
K ∪ {f} which is in X is a theorem ofK (by addingf
to K the set of classical theorems which are inX does not
grow). Intuitively,X can be considered as the set of “perti-
nent” informations relevant to our mode of reasoning: a set
K of informations entailsf if the addition off to K does
not produce more pertinent formulas than withK alone. Al-
though this was already proved independently, also note this
theorem shows thatX-logics are supraclassical.

Let us make use of the following terminology: ifK`Xf
we say thatf is admissibleby K, andnon admissibleoth-
erwise. The following properties obviously hold:

Property 2.2. 1) (metacoherence)A formula cannot be
both admissible and non admissible. 2)(paraconsistency)
Both a formula and its negation can be admissible.

As shown in [3],X-logics coincide with permissive in-
ference relations which are completely characterized by Re-
flexivity, Left Logical Equivalence, Right Weakening, Con-
junctive Cautious Monotony, Cut and Or.

3 Agents

In the litterature, some argumentation theories consider
the notion ofproponant-opponent[8, 11] whereas other
describe argumentation systems in which arguments made
from a unique set of formulas are linked together, in a kind
of abstract game among arguments [7, 5, 1, 2]. Following
[10], we make use of the following notion ofagent:

Definition 3.1. An agentis a couple[K,X] whereK is a
knowledge base, andX ⊇ {⊥}, a set of formulas. The set
of agents, a subset of2L × 2L, is denoted byA.

WhereasK is used as a representation of the knowledge
of an agent,X can be considered as a set of contraints on
the reasoning of this agent. The obligation made forX to
contain at least the contradiction is motivated by the require-
ment for an agent to reason consistently. In other words, in
the context of an agent, the notion of admissibility covers at
least consistency (K is consistent and⊥ ∈ X).

Having in mind to further define the construction of new
arguments by an agent, we are more especialy interested by
the different possible cases regarding the admissibility of a
formula or its negation, that is the attitudes that this agent

can have in front of a given formula. Theses attitudes de-
pend both on the knowledge and the constraints; as already
mentionned, we may perfectly have that bothK`Xf and
K`X¬f , that isf as well as¬f are admissible by the agent
(property 2.2.2). Actualy, regarding the admissibility/non-
admissibility of a formula or its negation, the following
elementary sentences can be enumerated:K `X f , or
K 0X f , or K `X ¬f , or K 0X ¬f . Let us label re-
spectively (a), (b), (c), (d) these elementary cases.

4 Attitudes

Theorem 4.1. Exactly eight distinct cases can be consid-
ered regarding the admissibility of a formula or its nega-
tion: (a), (b), (c), (d), (ac), (ad), (bc), (bd).

Let us callattitudeany one among these eight available
cases. The table 1 gives a synthetic view of how the atti-
tudes organize themselves regarding the language: each line
is a partition among the formulas, and each row describes
inclusions among attitudes ((bc) is included in (b) and (c)).

a b
ad ac bc bd
d c d

Table 1. Relations among attitudes

Definition 4.2. Consider an agent[K,X] and a formulaf .
[K,X] is for f iff K `X f andK 0X ¬f , neutralabout
f iff K `X f and K `X ¬f , againstf iff K 0X f and
K `X ¬f , puzzledbyf iff K 0X f andK 0X ¬f .

By extension, an agent is for (resp. neutral about,
against, puzzled by) a set of formulas iff it is for (resp. neu-
tral about, against, puzzled by) the conjunction of the for-
mulas of this set.

Replacing the labels by their corresponding sentences in
table 1 yields the graph 1: every node is one of the eight
avaible cases, and the edges link pair of nodes that have a
non-empty intersection; the three lines/partitions of thepre-
vious table are the three horizontal plans that intersect with
the vertex of the octahedron, whereas the non-horizontal
edges detail the embedding among attitudes.

Remark. There is an obvious interpretation of the mid-
dle plan of the octahedron in the framework of Belnap’s
logicFOUR: by associating respectively the four attitudes
for, neutral, against, and puzzled with the truth valuestrue,
>, falseand⊥ of this logic, the complete lattice first pro-
posed by Fitting [6] is reconstructed via theX-inference.
However, whereas Belnap’s logic has only one negation, an
obvious distinction has to be made by differentiating be-
tween negation of a formula and negation of admissibility
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Figure 1. Octahedron of attitudes

(i.e. non-admissibility). Moreover, an agent does not com-
mit to an attitude in the absolute, but relatively to a set of
formulas, which makes more complex the interpretation of
attitudes as pure truth values.

Property 4.3. Consider an agentΦ and a set of formulas
A: Φ is for A iff it is against¬A, Φ is neutral aboutA iff
it is neutral about¬A, Φ is puzzled byA iff it is puzzled by
¬A, Φ is for the tautologies and against the contradictions.

How does the behaviour of an agent evolve when a new
formula is added to the initial set of formulas about which
he is for, neutral, against, or puzzled? This question is espe-
cialy relevant when one consider the possibility for an agent
to construct a strategy.

Property 4.4. Giving two setsA and B of formulas, the
table 2 lists the attitudes an agent may adopt aboutA ∪ B,
regarding respectively his attitude aboutA and his attitude
aboutB.

Attitude of an agent
regardingA regardingB regardingA ∪ B

For

For all possibles
Neutral Neutral or Against
Puzzled Puzzled or Against
Against Against

Neutral Neutral or Against
Neutral Puzzled

Against
Against

Puzzled
Puzzled Puzzled or Against
Against Against

Against Against Against

Table 2. Evolution of the attitudes of an agent
regarding a growing set of formulas

When a set grows, the agent facing this set tends to be
against it. This may also indicate that a cautious strategy
for avoiding conflicts would be to construct only small ar-
guments.

The attitudes an agent can have in front of a set of formu-
las leads to a partition of this set. Confrontation operators
allow to reach one or the other element of the partition. We
also define a “technical” operator for non-admissibility.

Definition 4.5. Theoperator|+ (resp. |0, |− and |p) maps
an agent[K,X] and a setE of formulas with the subsets
of E such as this agent is for (resp. neutral, against or
puzzled) these subsets:

|+ : A× 2L −→ 22L

[K, X] |+ E 7−→ {P ⊆ E | K `X P andK 0X ¬P}

|0 : A× 2L −→ 22L

[K, X] |0 E 7−→ {P ⊆ E | K `X P andK `X ¬P}

|− : A× 2L −→ 22L

[K, X] |− E 7−→ {P ⊆ E | K 0X P andK `X ¬P}

|p : A× 2L −→ 22L

[K, X] |p E 7−→ {P ⊆ E | K 0X P andK 0X ¬P}

Definition 4.6. Thenon-admissibilityoperator|/r maps an
agent[K,X] and a setE of formulas with the subsets ofE
such as each of these subsets is non-admissible by the agent
[K,X]:

|/r : A× 2L −→ 22L

[K,X] |/r E 7−→ {P ⊆ E | K 0X P}

Note that the non-admissibility operator is more interest-
ing than a potentential dual admissibility operator, sincethe
first allows to identify precisely conflicting formulas (dueto
the existential quantifier in(∃x ∈ X \ K)(K ∪ A ` x)).

However, note also that using the non-admissibility op-
erator is merely a technical choice, which does not limit
our approach only to the generation of disputing arguments.
This is studied in detail in the next section.

5 Generating arguments

Definition 5.1 (cf. [10, 2, 1]). Let ∆ be a finite set of for-
mulas. Anargumentof ∆ is the couple〈S, c〉 such as: 1)
S 0 ⊥; 2) S is a minimal subset of∆ such asS ` c.

S is called thesupportof the argument, andc its conclu-
sion. Thesets of argumentsis a subset of2L × L, written
Arg. supp (α) denotes the support of the argumentα, and
concl (α) denotes its conclusion.

Essentialy, an argument can be considered as a set of
formulas (the support) used for classically proving a for-
mula (the conclusion). The minimality criterion allows to
only consider relevant formulas for proving the conclusion.
Besnard and Hunter [2] show that the following relation of
attack can handle various existing relations in the litterature:



Definition 5.2. [2] An argumentβ attacks3 an argument
α iff concl (β) = ¬(s1 ∧ · · · ∧ sn), with {s1, . . . , sn} ⊆
supp (α).

We define the relation ofdefenseamong arguments:

Definition 5.3. An argumentβ defendsan argumentα iff
concl (β) = s1 ∧ · · · ∧ sn, with {s1, . . . , sn} ⊆ supp (α).

We are interested by constructing new arguments from
both a set of formulas, and the attitudes of an agent regard-
ing this set. We use a new notion ofanswerin order to link
an agent with an argument: roughly, an answer is a set of
formulas fixed by the attitude of the agent. For instance, if
K 0X A then(∃x ∈ X \ K)(K ∪ {¬x} ` ¬A) (with a
consistentA): K ∪ {¬x} is called an answer toA.

Definition 5.4. An answerof the agent[K,X] to a con-
sistent setA of formulas is a consistent setR of formulas
such that: 1)R = K ′ ∪

⋃

x∈X′{¬x}; 2) K ′ ⊆ K and
X ′ ⊆ X; 3) K ′

0{⊥}∪X′ A. The set of answers givent by
[K,X] to A is writtenRA

[K,X].

Remark. About definition 5.4:
ConsideringK ′

0X′ A instead ofK ′
0{⊥}∪X′ A would

imply that an answer would not be constructed only from
the knowledge of the agent. For instance, in this case,
{a, a ⇒ b} would not be considered an answer of the agent
[{a, a ⇒ b}, {⊥}] to {¬b}, contrary to{a, a ⇒ b,>}. In-
troducing the contradiction allows to construct shorter an-
swers.

Condition 3) of definition 5.4 may suggest that an answer
is based on a pure eristic approach. However, remind that
beeing againstA is beeing for¬A (cf. property 4.3).

Property 5.5. Any answer of an agent to a given set of for-
mulas is inconsistent with this set. The opposite does not
hold.

Property 5.6. If R is a subset of the knowledge of an agent,
such that it is inconsistent with a consistent setA of formu-
las, thenR is an answer of the agent to the setA.

Property 5.7. If a consistent set of formulas is non admis-
sible by an agent, then there exists an answer of this agent
to this set. The opposite does not hold.

Property 5.8. The answers of an agent[K,X ′] to a set of
formulasA′ are answers of the agent[K,X] to A if X con-
tainsX ′, and ifA containsA′.

Corollary 5.9. R is an answer of the agent[K, {⊥}] to A
iff R is inconsistent withA.

Since an argument satisfies a minimality criterion, we
are interested by the shortest answers that can support the
future conclusions of an argument.

3Besnard and Hunter use the expression “is an undercut” ofalpha

Definition 5.10. An answer of the agentΦ to a setA of
formulas is calledrelevantiff it does not contain any other
answer ofRA

Φ. The set of relevant answers given byΦ to A
is writtenRpA

Φ.

Let us now consider an agent[K,X] having to produce
a relevant answer to a consistent setA of formulas. Sev-
eral cases have to be considered: (1) the setA contradicts
a constraint of the agent, which means that the agent has to
produce this constraint; (2) the setA contradicts a knowl-
edge of the agent; (3) the agent will have to use both his
knowledge and his constraints in order to construct an an-
swer:

Theorem 5.11. 1) If 0X A, then
{

¬x | x ∈ A ∩ X \ >
}

⊆ RpA
[K,X]; 2) If K ∪ A ` ⊥,

then min
(

[A, {⊥}] |/r K
)

⊆ RpA
[K,X]; 3) If

K ′ ∈ min
(

[A,X \ K] |/r K
)

and K ′ /∈ RpA
[K,X],

then{K ′ ∪ {¬x} | x ∈ K ′ ∪ A ∩ X} ⊆ RpA
[K,X]

Note that 3) does not allow to capture the complete set
of relevant answers related both to the knowledge and to
the constraints of an agent. Answers of this category can be
interpreted as lies, and we do not study them in this paper.

Theorem 5.12. The relevant answers made by the agent
[K, {⊥}] to A are the minimal subsets ofK that are non-
admissible by the agent[A, {⊥}].

Definition 5.13. Anargument of an agentΦ is an argument
〈R,¬A〉 such asR is a relevant answer ofΦ to A. Theset
of arguments of an agentΦ is writtenArgΦ.

This definition refines definition 5.1: an argument of an
agent is an argument in the sense of definition 5.1, but in
addition it is now possible to take in account the constraints
of an agent for constructing arguments.

Definition 5.14. The set of arguments of an agentΦ attack-
ing (resp. defending) an argumentα is written Argatt(α)

Φ

(resp.Argdéf(α)
Φ ).

From the definitions 5.13 and 5.14:Argatt(α)
Φ =

{〈R,¬A〉 | R ∈ RpA
Φ , A ⊆ supp (α)} ; Argdéf(α)

Φ =

{〈R,
∧

a∈A a〉 | R ∈ Rp{¬A}
Φ , A ⊆ supp (α)}.

The attitude of an agent regarding a set of formulas can
now be linked to the existence of an argument justifying this
attitude.

Theorem 5.15.

• A ∈ Φ |/r supp (α) ⇒ ∃〈R,¬A〉 ∈ Argatt(α)
Φ

• A ∈ Φ |− supp (α) ⇒ ∃〈R,¬A〉 ∈ Argatt(α)
Φ

• A ∈ Φ |+ supp (α) ⇒ ∃〈R,
∧

a∈A a〉 ∈ Argdéf(α)
Φ



• A ∈ Φ |p supp (α) ⇒







∃〈R1,¬A〉 ∈ Argatt(α)
Φ

∃〈R2,
�

a∈A

a〉 ∈ Argdéf(α)
Φ

The fact that an agent is neutral about a subset of the sup-
port of an argument does not allow this agent to construct
any answer, and hence does not allow him to generate an
argument.

6 An application : the generation of maximal
conservative undercuts

In order to collect arguments and counter-arguments for
or against an initial thesis, Besnard and Hunter [2] construct
argumentative trees in which the arguments are embedded,
hence simulating a debate. The union of all argumentative
trees inside an argumentative structure allows to measure
how much credit can be given in favour of this thesis.

These trees only containmaximal conservative under-
cuts(MCU), that are the kind of arguments kept by Besnard
and Hunter for their relevance. We show how to generate
such arguments.

Definition 6.1. [2] An argument α is more conserva-
tive than an argumentβ iff supp (α) ⊆ supp (β) and
concl (β) ` concl (α).

Definition 6.2. [2] An argumentβ is a MCU of the ar-
gumentα iff β is attackingα such as no other argument
attackingα is strictly more conservative thanβ.

Theorem 6.3. [2] If 〈B,¬(a1 ∧ · · · ∧ an)〉 is a MCU of the
argumentα, thensupp (α) = {a1, . . . , an}.

In order to go back to the notion of agent, we consider
that the knowledge contained in the unique set∆ considered
by Besnard and Hunter belongs to two distinct agents before
an operation of union. Since the notion of constraint is not
defined in this argumentative system, the agent’s set of con-
straints is limited to{⊥}. In order to express the notion of
maximal conservative undercut inside our framework, we
make it relative to the knowledge of an agent.

Theorem 6.4.
〈R,¬supp (α)〉 is a MCU ofα iff R ∈ Rpsupp(α)

[K,{⊥}]

Example 6.5. Consider the first argument tree in the ex-
ample 9.3 of [2]. We search the MCU of the root (i.e.
α = 〈{b ⇒ a, b}, a〉). Consider the two following agent
from ∆: P = [{a ⇔ ¬d, b ⇒ a, g ∧ ¬b, d}, {⊥}] and
O = [{a ⇔ ¬d, b, b ⇒ a,¬g,¬d}, {⊥}].

Following both theorem 6.4 and theorem 5.12 we have to
searchmin

(

[supp (α) , {⊥}] |/r KP

)

: {{g ∧ ¬b}, {d, a ⇔
¬d}} is found. Hence we get two MCU:〈{g ∧
¬b},¬supp (α)〉 and〈{d, a ⇔ ¬d},¬supp (α)〉, that cor-
responds to the example of [2]. The next nodes are obtained
similarly.

7 Conclusion and future work

This work investigates the question of the generation of
new arguments. To do this, and from the paraconsistent
framework defined byX-logics, we first enumerated all the
possible attitudes of an agent facing a given set of formulas.
We further introduced the notion of confrontation operators:
these operators yield a partition of the langage from the at-
titudes of an agent, and the correpondings sets of formulas
look like new classes of acceptability. The notion of answer,
linked to the support of an adverse argument, allowed us to
define the construction of new arguments. An application
is the generation of maximal conservative undercuts inside
the framework of Besnard and Hunter. The diversity of the
attitudes an agent may adopt leads us to consider the mod-
elisation of the notion of argumentative strategy as a future
direction of research. Especialy, our framework should al-
low us to represent a form of lie. Further, the interpretation
of the attitudes as truth values in Belnap’s logicFOUR
represents another direction of research.
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