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Abstract

Following [Brewka, 91], most attempts for introducing cumulativity in full default logic
are associated with the consistency of the set of justifications used for deriving an extension.
But this modification of the original formalism of Reiter is not always suitable. Actually,
it is known that cumulativity does not rely on commitment to justifications. However, it
is only recently that cumulative default logics without commitment to justifications has re-
ceived a real attention1. In the present paper, a cumulative variant of default logic that does
not require commitment to justifications is introduced for skeptical reasoning in the sense of
[Makinson, 89]. It can be noted that both Reiter’s and Lukaszewicz’s approaches are embedded
in it, and that no extension of the underlying language is required (contrary to [Brewka, 91]).
Indeed, can be distinguished the default theories in the sense of Lukaszewicz that are cu-
mulative from those which are not using this framework. By reconsidering the approach of
[Schaub, 91] the present work also tries to focus on the difference between two kinds of cumu-
lativity allowed by default logics.

1 Introduction

Cumulativity was introduced by [Gabbay, 85] as an interesting formal option for nonmonotonicity.
Roughly, a cumulative agent is supposed to be complete in the sense that, although some part of
his beliefs become verified as theorems, the previous state of his beliefs and the new one remain
identical. Cumulativity is associated with attractive semantics and should improve nonmonotonic
theorem provers by allowing the use of lemmas. From the time that [Makinson, 89] noticed the
non-cumulativity of Reiter’s and Lukaszewicz’s default logics, different attempts have been made in
order to introduce this property in full default logic. Following [Brewka, 91], most of these attempts
([Schaub, 91], [Dix, 92], [You, Li, 94]) have been associated with a reinterpretation of default rules

∗Supported by a grant from the Natural Science and Engineering Research Council of Canada.
1While finishing this paper (corresponding to a part of his PhD thesis, see [Risch, 93]), the author became aware

of the works of [Wilson, 93] and [Giordane, Martelli, 94]. The first one describes a variant of default logic close to
the one presented here, but with a different concern. The second one has just become available at the same time
that the present paper was submitted.
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due to [Poole, 88]. The basic idea is to require commitment to justifications, so that, instead of
simply reasoning with lack of given information, explicit assumptions must be done for deriving
extensions. Hence, the initial meaning of a default rule is deeply modified. This modification has
the advantage of both restoring cumulativity (in various forms) and providing a solution to the
“broken arms” paradox (see [Brewka, 91]). However, it appears not to be suitable in every case.
Now, it was also pointed out by [Brewka, 91] and [Schaub, 92] that cumulativity actually does not
rely on commitment. However, cumulative default logics without commitment to justifications has
received little attention, with the noteworthy exception of some very recent work (cf. [Wilson, 93]
and [Giordane, Martelli, 94]).

Different possible “cumulativities” can be considered in default logic. There are not only dif-
ferent ways of defining a nonmonotonic consequence operation (e.g. skeptical, credulous), but also
there are different ways of understanding what “adding a formula” means. Since default theories
are not homogeneous, some authors prefer to interpret it as naturally adding a classical formula (cf.
[Makinson, 89], [Dix, 92]), whereas other authors reinterpret it as adding a default (cf. [Schaub, 91],
[Schaub, 92] ). However, in the latter case a slightly more complicated apparatus has to be consid-
ered. Anyway, both approaches suggest changing the nature of a formula. It can be pointed out
that this aspect is lacking in the current abstract studies about cumulativity (cf. [Makinson, 89],
[Kraus & Al., 90]). In those studies, formulas change their status from belief to knowledge without
any consideration to the possible repercussions due to this change. This aspect also is also lacking
in the studies of cumulative default logics based on the extension of the underlying language to
assertions (cf. [Brewka, 91], [Makinson, 91], [Giordane, Martelli, 94]).

In this paper, a different approach to cumulativity in default logic is investigated. Following
[Dix, 92], it focuses on a skeptical approach, but it also should be easily extendible to a credulous
approach à la [Schaub, 92]. No extension of the first order language is required. Since no commit-
ment between justifications is required, both Reiter’s and Lukaszewicz’s approaches are embedded
in it, and can be easily characterized. Indeed, it distinguish those default theories in the sense of
Lukaszewicz which are cumulative from those which are not. Following [Voorbrak, 93], this provides
a “filter” on “well formed” theories regarding cumulativity. Although the semantical aspect is not
studied, it is noteworthy that fixed-point theories (see Reiter’s and Lukaszewicz’s formal presenta-
tion) can probably be described inside a preferential framework (that is the semantic counterpart
of cumulativity)2.

Our paper is organized in the following way: in the second section, basic abstract properties
about cumulativity are briefly recalled. In the third section, the characterizations of three main
default logics are given. The fourth section gives special attention to two different approaches of
cumulativity in default logics. In the fifth section, commitment to justifications is discussed. In
section six, guess default logic is introduced and its basic properties are given.

2 Cumulativity

Definition 1 ([Makinson, 89], [Kraus & Al., 90]) Let |∼ be a nonmonotonic consequence re-
lation, A a set of formulas, f and g any formulas; Cut and Cautious Monotony are defined by:

(Cut)
A ∪ {f} |∼ g, A |∼ f

A |∼ g

(Cautious Monotony)
A |∼ f, A |∼ g

A ∪ {f} |∼ g

2But this was already noticed by [Siegel, Schwind, 93]
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Property 1 ([Makinson, 89], [Kraus & Al., 90]) Cut and Cautious Monotony together can be
expressed jointly by Cumulativity:

If A |∼ f then (A |∼ g iff A ∪ {f} |∼ g).

Definition 2 A set of nonmonotonic consequences derived from a set A of formulas is defined by

C(A) = {f | A |∼ f}.

Remark: Following [Makinson, 89], Cut and Cautious Monotony can be expressed infinitistically
by:

(Cut) A ⊆ B ⊆ C(A) ⇒ C(B) ⊆ C(A)
(Cautious Monotony) A ⊆ B ⊆ C(A) ⇒ C(A) ⊆ C(B)

So, we get:
(Cumulativity) A ⊆ B ⊆ C(A) ⇒ C(A) = C(B)

That is, a cumulative agent keeps his beliefs when one of them becomes true.

3 Default theories

As defined by [Reiter, 1980], a closed default theory is a pair (W, D) where W is a set of closed first

order sentences and D a set of default rules. A default rule has the form
α : β

γ
where α, β and γ are

closed first order sentences. α is called the prerequisite, β the justification and γ the consequent of
the default. PREREQ(D), JUST(D) and CONS(D) are respectively the sets of all prerequisites,
justifications and consequents that come from defaults in a set D. Whenever one of these sets is a
singleton, we may identify it with the single element it contains. For instance, we prefer to consider

PREREQ({α : β

γ
}) as an element rather than a set. The following definition shows us how the use

of a default is related to its prerequisite (cf. [Schwind, 90]):

Definition 3 ([Schwind, 90]) A set D of defaults is grounded in W iff for all d ∈ D there
is a finite sequence d0, . . . , dk of elements of D such that (1) PREREQ({d0}) ∈ Th(W ), (2) for
1≤i≤k − 1, PREREQ({di+1}) ∈ Th(W ∪ CONS({d0, . . . , di})), and dk = d.

An extension of a default theory is usually defined as a smallest fixed point of a set of formulas.
It contains W , is deductively closed, and the defaults whose consequents belong to the extension
verify a property which actually allows them to be used. The manner in which this property is
considered is related to the variant of Default Logic under consideration. In what follows, we
directly give the characterizations previously obtained by Camilla Schwind and the author for the
extensions in the sense of [Reiter, 1980], [Lukaszewicz, 88], [Schaub, 91] respectively. The first are
called R-extensions (for Reiter’s extensions), the second j-extensions (for justified extensions), and
the third c-extensions (for constrained extensions).

Theorem 1 Let ∆ = (W, D) be a default theory.

• [Schwind, Risch, 91], [Risch, 93] E is an R-extension for ∆ iff there is a D′ a grounded subset

of D, such that E = Th(W ∪ CONS(D′)), and ∀d ∈ D, d =
α : β

γ
:
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(i) If d ∈ D′ then α ∈ E and ¬β 6∈ E,

(ii) If d 6∈ D′ then α 6∈ E or ¬β ∈ E.

• [Risch, 91] E is a j-extension with respect to F for ∆ iff there is a D′, a maximal grounded

subset of D, such that E = Th(W ∪ CONS(D′)), F = JUST(D′), and ∀d ∈ D′, d =
α : β

γ
:

(i) If d ∈ D′ then α ∈ E and ¬β 6∈ E.

• [Risch, 93] E is a c-extension with respect to C for ∆ iff there is a D′, a maximal grounded
subset of D, such that E = Th(W ∪ CONS(D′)), C = Th(W ∪ JUST(D′) ∪ CONS(D′)), and

∀d ∈ D′, d =
α : β

γ
:

(i’) If d ∈ D′ then α ∈ E and E ∪ JUST(D′) is consistent.

Since the belonging of prerequisites to a given extension is obviously covered by the groundedness
of the corresponding set of defaults, we get:

Corollary 1 Let ∆ = (W, D) be a default theory. Let D′ ⊆ D.

• E = Th(W ∪ CONS(D′)) is a j-extension of ∆ with respect to F = JUST(D′) iff D′ is a
maximal grounded subset of D, such that (∀β ∈ JUST(D′))(¬β 6∈ E).

• E = Th(W ∪ CONS(D′)) is a c-extension of ∆ with respect to C = Th(W ∪ JUST(D′) ∪
CONS(D′)) iff D′ is a maximal grounded subset of D, such that E ∪ JUST(D′) is consistent.

Remark:

• Clearly, both conditions (i) and (ii) imply the maximality of D′. Hence, the only difference
between Reiter’s and Lukaszewicz’s approach is in the behavior of the defaults that do not
participate in the construction of an extension. These defaults have to verify condition (ii) in
Reiter’s default logic. The present characterization sheds light on the intuition which stands
behind Lukaszewicz’s variant. In the latter, we are never allowed to revise a justification
used for deriving the consequent of a default. According to Lukaszewicz, it is only in this
precise way that we may speak of “justification” in a correct sense. Indeed, note that the only
difference between Lukaszewicz’s and Schaub’s approaches concerns the consistency of the set
of justifications related to an extension. Note that default reasoning is decidable on condition
that Th is defined on a decidable language.

• There are different ways for defining a nonmonotonic consequence relation from default the-
ories. The most usual are the following:

(Credulous reasoning) W |∼D,∪ f iff (∃E)(E, extension of (W, D))(f ∈ E)

(Skeptical reasoning) W |∼D,∩ f iff (∀E)(E, extension of (W, D))(f ∈ E)

The operator CD, associated with the corresponding form of reasoning, is defined on the base
of the previous general pattern:

CD(W ) = {f | W |∼D,s f} with s ∈ {∪,∩}.
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4 Different approaches of cumulativity in default logic

Let ∆ = (W, D) be a default theory. Cumulativity in default logic is interpreted by [Makinson, 89]
as the adding of a classical formula to W i.e.:

(Cumulativity) W ⊆ W ∪ {f} ⊆ CD(W ) ⇒ CD(W ) = CD(W ∪ {f})

that is:
f ∈ CD(W ) ⇒ CD(W ) = CD(W ∪ {f}).

In this sense, neither Reiter’s default logic nor Lukaszewicz’s one is cumulative as shown by

[Makinson, 89]: let ∆ = (W, D) with W = ∅, D = { : a

a
,
a ∨ b : ¬a

¬a
}. Since there are only nor-

mal defaults (i.e. defaults with justification equal to the consequent), R- and j-extensions coincide.
∆ has only one extension: E1 = Th({a}). Since CD(W ) = Th({a}) (no matter whether it is defined
skeptically or credulously), a ∨ b ∈ CD(W ). But adding {a ∨ b} to W modifies CD(W ) since we
have to consider now ∆{a∨b} = (W ∪ {a ∨ b}, D) which has two extensions: E1

{a∨b} = Th({a}),
E2
{a∨b} = Th({¬a}).

In order to introduce cumulativity in default logic, [Brewka, 91] followed by [Makinson, 91],
and [Giordane, Martelli, 94] resorts to the notion of assertional default theories, but this involves a
modification of the underlying language. On the one hand such a modification is an improvement
since an assertion, being a quasi-default formula, corresponds to an homogenization of the initial
formalism. But on the other hand this transformation (1) may involve a limitation of the scope of
cumulativity as defined in [Makinson, 89], (2) leads to a non-intuitive behavior when considering the
abduction of a belief to the theory. An assertion is any expression of the form 〈p : J〉 where, roughly
speaking, J is a set of formulas supporting the belief in p. Note that whereas 〈p : J〉 expresses the
belief in p supported by J , at least it is not the same as the belief in p expressed by 〈p : K〉 (although
this does not mean that one assertion should be stronger than the other). Consider point (1), that
is cumulativity in assertional default logics. What is usually shown is that given any extension of
a default theory (W, D) containing the assertion 〈p : J〉, E is an extension of (W, D) containing
〈p : J〉 iff E is an extension of (W ∪ {〈p : J〉}, D). But nothing is told in the case where instead
of introducing in W the assertion 〈p : J〉 contained in a given extension of the default theory, we
introduce 〈p : K〉. In other words, what happens if an expression previously considered as a certain
kind of belief turns to be an other kind of belief? Indeed, should the case K = ∅ be considered
as a special case? On the other hand there is some ambiguity concerning what is added regarding
cumulativity in the framework of [Makinson, 89]. It remains unanswered whether this ambiguity is
an advantage or not. Point (2) is a consequence of a remark due to [Schaub, 92]. Since adding the
assertion 〈p : J〉 eliminates all the extensions that are inconsistent with the assertion, it appears
stronger than the abduction of a simple belief, which seems to go against the original intuition.

In order to avoid a modification of the language, [Schaub, 91] introduces lemmata default rules
which, on the other side, involve an adaptation of cumulativity. Actually, cumulativity in default
logic was interpreted a priori from the adding of a classical formula to W by [Makinson, 89] (see
above). But it is noteworthy that a default is a contextual inference rule since its application
depends on the formulas which belong to it. In other words, a default is an intermediate form
between a single formula and a whole inference rule. [Schaub, 91] makes the most of this remark
by reinterpreting cumulativity as the adding of a default to D, although this turns out to require a
slightly more complicated apparatus. Given a default theory ∆ = (W, D), (1) let us define a new
operator ∪D by:

(W, D) ∪D {f} =def (W, D ∪ {df})
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where df is a default corresponding to the formula f ; (2) CD is now extended to a new operator C
on whole default theories:

C((W, D)) = {f | (W, D) |∼D f}
Now, we are able to redefine the usual cumulativity by the following D-cumulativity :

(D-cumulativity) f ∈ C(∆) ⇒ C(∆) = C(∆ ∪D {df})

In what follows the term “cumulativity” is used to refer to the usual cumulativity3, as opposed
to “D-cumulativity”. Note that whereas D-cumulativity corresponds to the abduction of a belief,
usual cumulativity should now be interpreted as the abduction of a fact.

5 Cumulativity versus commitment to justifications

Schaub’s variant is D-cumulative in the following way:

Definition 4 Let |∼D be the credulous nonmonotonic relation defined from ∆ = (W, D) by

(W, D) |∼D f iff (∃E)(E, c-extension of (W, D))(f ∈ E).

The set of nonmonotonic consequences derived from (W, D) is: C((W, D)) = {f | (W, D) |∼D f}.

Definition 5 ([Schaub, 91]) Let ∆ = (W, D) be a default theory, and E be a c-extension of ∆.
Let f ∈ E, and Df be a minimal set of defaults such that W ∪ {CONS({d}) | d ∈ Df} ` f . A
lemmata default rule for f is the following default:

df =
:
∧

d∈Df
JUST({d}) ∧ ∧

d∈Df
CONS({d})

f
.

Property 2 ([Schaub, 91]) D-cumulativity holds for |∼D.

Example 1[Makinson, 89] Let ∆ = (W, D) with W = ∅, D = { : a

a
,
a ∨ b : ¬a

¬a
}. ∆ has only one

c-extension: E1 = Th({a}). Since a ` a ∨ b, we may add the lemmata default rule
: a

a ∨ b
to D.

∆{
: a

a ∨ b
} = (W, D ∪ { : a

a ∨ b
}) has the same c-extension as ∆ = (W, D): E1

{
: a

a ∨ b
}

= Th({a}).

Remark:

• [Dix, 92] establishes usual cumulativity for a skeptical relation based on a twofold application
of a fixed-point operator on default theories with commitment to justifications (that is, con-
strained default theories), whereas [You, Li, 94] establishes usual cumulativity for a credulous
relation with respect to prerequisite-free constraint default theories.

• Actually, it is easy to show that D-cumulativity as defined above also holds for Lukaszewicz’s
default logic. [Schaub, 92] also defines D-cumulativity for Reiter’s default theories. In this
case, a lemmata default rule is any non-singular default

df =
: JUST ({d1}), . . . , JUST ({dn})

f
,

where f and Df are defined as above, with Df = {d1, . . . , dn}.
3or, in other words, “W -cumulativity”. . .
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• Note that there are other ways of defining D-cumulativity. For instance, it is easy to prove
that D-cumulativity holds for all the above variants of default logic when using the following
lemmata default rule:

df =
:
∧

d∈Df
CONS ({d})
f

,

where f and Df are defined as in definition 5.

Commitment to justifications is not suitable in all cases. Let us illustrate this with the following
two examples. The first one directly concerns a simple problem of knowledge representation. In the
second example, it is stressed that commitment to justifications may involve an undesirable result
with respect to cumulativity.

• Let us consider the following default theory: ∆ = (W, D) with W = {hike},
D = {hike : good-weather-forecast

take-sunglasses
,

hike : ¬good-weather-forecast

take-jacket
}. Since constraint default logic requires

commitment to justifications, ∆ has the two following extensions E1 = Th({hike, take-sunglasses}),
E2 = Th({hike, take-jacket}). Now we are forced to choose one of the two extensions, and hence
to gamble on the weather. But it should be stressed that (1) we do not know anything about
the weather forecast and (in lack of any actual information) we probably prefer to leave this
unknown, (2) two contrary but not necessarily contradictory actions are considered (taking
sunglasses or taking a jacket). Here both Reiter’s and Lukaszewicz’s default logics have only
one extension E = Th({hike, take-sunglasses, take-jacket}) which seems more suitable.

• Couples are invited to a party. The corresponding default theory is ∆W = (W, D) where

W = {COUPLE(Bogart, Bacall), COUPLE(Romeo, Juliet), COUPLE(Charles, Diana)}

D = {COUPLE(x, y) : PRESENT(x) ∧ PRESENT(y)

PRESENT(x) ∧ PRESENT(y)
,

COUPLE(x, y) ∧ (PRESENT(x) ∨ PRESENT(y)) : ¬(PRESENT(x) ∧ PRESENT(y))

¬(PRESENT(x) ∧ PRESENT(y))
}.

Let us stress the following points: (1) W denotes actual knowledge; (2) the first default
expresses our a priori hope that couples should come; (2) the second default expresses the idea
that we may have to consider the case where only one half of a given couple is present. Since
the defaults are normal, R- and j-extensions coincide. So, let us simply speak of extensions,
as opposed to c-extensions. In the present state the theory has only one extension:

EW = Th(W ∪ {PRESENT(Bogart), PRESENT(Bacall), PRESENT(Romeo), PRESENT(Juliet),

PRESENT(Charles), PRESENT(Diana)}).

This theory is not cumulative: PRESENT(Diana) belongs to EW as a belief, but if added to W as
a fact, the new theory

∆W∪{PRESENT(Diana)} = (W ∪ {PRESENT(Diana)}, D)

has two extensions:

EW∪{PRESENT(Diana)} = EW ,

E ′
W∪{PRESENT(Diana)} = Th(W ∪ {PRESENT(Bogart), PRESENT(Bacall),

PRESENT(Romeo), PRESENT(Juliet)

¬PRESENT(Charles), PRESENT(Diana)})
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whereas the only c-extension of the corresponding theory ∆
D∪{

: PRESENT(Charles) ∧ PRESENT(Diana)

PRESENT(Diana)
}

is EW (with : PRESENT(Charles) ∧ PRESENT(Diana)

PRESENT(Diana)
as lemmata default rule). However, regarding the

presence of new information (i.e. Diana is present, but we still know nothing about Charles)
the noncumulative version seems more realistic (for lack of being definitively optimistic about
the presence of Charles). Maybe, it could be argued that a different formulation of the theory
∆W would allow the expected extensions in a “D-cumulative” way. Let us point out that
on the one hand cumulativity does not change anything about the formulation of a default
theory; on the other hand, it is here defined in order to restrict the set of generated extensions.

6 Guess-default logic

We introduce now our variant, called guess default logic. Let us stress the following intuitive ideas:

• W denotes actual knowledge (corresponding to the “world” of [Reiter, 1980]);

• any prerequisite denotes a local context in which a corresponding default should be applied;

• any justification corresponds to a plausible assumption related both to a context and derived
consequences of defaults;

• any consequence of a default is considered as a guess depending on both a context and the
plausible assumptions.

Our idea is to get sets of guesses from maximal sets of plausible assumptions. So, we first try
to put forward as many plausible assumptions as possible provided that they are consistent with
the corresponding conclusions attached to them (i.e. the consequents of the corresponding default
rules). In this way, pre-sets of guesses are obtained which are sound with respect to plausible
assumptions. In order to get the actual guess, we keep only those which hold regarding the current
contexts. More formally:

Definition 6 Let ∆ = (W, D) be a default theory. Let D′′ and D′ be any sets of defaults such that
D′′ ⊆ D′ ⊆ D. E = Th(W ∪ CONS(D′′)) is a g-extension4 of ∆ with respect to JUST(D′) iff
D′ is a maximal subset of D such that (∀β ∈ JUST(D′))(¬β 6∈ Th(W ∪ CONS(D′))) and D′′ is a
maximal grounded subset of D′.

Definition 7 Let ∆ = (W, D) be a default theory. Let E = Th(W ∪ CONS(D′′)) be a g-extension
of ∆ with respect to JUST(D′).

• The set JUST(D′) is called the set of plausible assumptions supporting E, and D′ itself is
called the support of E.

• The set PREREQ(D′′) is called the set of actual contexts of E, and D′′ itself is called the set
of generating defaults of E.

4for guess-extension. . .
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Example 2 The default theory (∅, {c : ¬a ∧ ¬b

d
,

: ¬a

a ∨ b
,
: a

a
}) has three g-extensions:

E1 = Th(∅) under the plausible assumption {¬a ∧ ¬b},
E2 = Th({a ∨ b}) under the plausible assumption {¬a},
E3 = Th({a}) under the plausible assumption {a}.

Note that E1 ⊆ E2 ⊆ E3.

Example 3 The default theory ({a}, {a : b

b
,
c : d

e
,
a : ¬e

b
}) has two g-extensions:

E1 = Th({a, b}) under the plausible assumptions {b, d},
E2 = Th({a, b}) under the plausible assumptions {b,¬e}.

Since E1 = E2, it can also be considered that ∆ has only one g-extension but with possibly two
different sets of defaults as supports.

A g-extension is defined regarding a pre-extension for which the justification conditions hold. In
this way, any g-extension is contained in a g-extension that could appear after the abduction of a
previously derived formula. This is precisely the key point of our approach: by giving up the idea of
systematically getting maximal extensions we are able to recover cumulativity in default reasoning.

Definition 8 Let be |∼D be the skeptical nonmonotonic relation defined from ∆ = (W, D) by

W |∼D f iff (∀E)(E, g-extension of (W, D))(f ∈ E).

The set of nonmonotonic consequences derived from W is: CD(W ) = {f | W |∼D f}.

Given a default theory ∆, and in order to establish that cumulativity holds for |∼D, it is necessary
to consider how adding a formula f to W affects the behaviour of defaults. In the following lemma,
we show that adding {f} to W actually does not change the supports initially obtained from ∆.

Lemma 1 Let ∆ = (W, D) be a default theory, and f a formula. Let us call DW and DW∪{f} the
sets of supports of the g-extensions of (W, D) and (W ∪ {f}, D) respectively. We have:

f ∈ CD(W ) ⇒ (DW = DW∪{f}).

Proof : Let D′ be any element of DW . So D′ is a maximal subset of D such that (∀β ∈
JUST (D′))(¬β 6∈ Th(W ∪ CONS (D′)). Now, since f ∈ CD(W ), Th(W ∪ CONS (D′)) =
Th(W ∪ {f} ∪ CONS (D′)), hence D′ ∈ DW∪{f}, i.e. DW ⊆ DW∪{f}. Conversely, any D′

f ∈ DW∪{f}
is a maximal subset of D such that (∀β ∈ JUST (D′

f ))(¬β 6∈ Th(W ∪ {f} ∪ CONS (D′
f )). Since

f ∈ CD(W ), Th(W ∪ {f} ∪ CONS (D′
f )) = Th(W ∪ CONS (D′

f )), hence D′
f ∈ DW , i.e. DW∪{f} ⊆

DW . Q.E.D.

Property 3 Cautious Monotony holds for |∼D.
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Proof : Let CD(W ) be the intersection of all the g-extensions of a default theory ∆ = (W, D), as
defined above, and let f be a formula of CD(W ). We would like to show CD(W ) ⊆ CD(W ∪ {f}).
So given any default d =

α : β

γ
such that γ ∈ CD(W ) we have to show that γ ∈ CD(W ∪ {f}). Let

us assume, on the contrary, that this does not hold, i.e. γ 6∈ CD(W ∪ {f}). Following lemma 1,
the support to which d belongs does not change, hence this means that {d} is grounded in W but
is no longer grounded in W ∪ {f}. This is a contradiction since (by monotonicity of Th) a set of
grounded default in W cannot decrease when adding f to W . Q.E.D.

Property 4 Cut holds for |∼D.

Proof : Similar to the proof of property 3: as previously, let f be a formula of CD(W ). We would

like to show CD(W ∪ {f}) ⊆ CD(W ). That is, for any default d =
α : β

γ
such that γ ∈ CD(W ∪ {f})

we have to show that γ ∈ CD(W ). Let us assume, on the contrary, that this does not hold, i.e.
γ 6∈ CD(W ). Again, by lemma 1, the support to which d belongs does not change hence this means
that {d} is grounded in W ∪ {f}, but is not grounded in W . Since f ∈ CD(W ), this turns out to
be a contradiction. Q.E.D.

Corollary 2 |∼D is cumulative.

Example 4 [Makinson, 89] Let ∆ = (W, D) with W = ∅, D = { : a

a
,
a ∨ b : ¬a

¬a
}. ∆ has two g-

extensions:

E1 = Th({a}) under the plausible assumption {a},
E2 = Th(∅) under the plausible assumption {¬a}.

The only guess generated under the assumption {¬a} are the tautologies (i.e. the content of W )
since the corresponding context does not hold. Since CD(∅) = ∅, cumulativity trivially holds. Note
that ∆{a∨b} = (W ∪ {a ∨ b}, D) still has two g-extensions:

E1
{a∨b} = Th({a}) with {a} as support,

E2
{a∨b} = Th({¬a}) with {¬a} as support.

∆{a} = (W ∪{a}, D) keeps E1
{a} as the only g-extension. Because there is more precise actual knowl-

edge in W , fewer conjectures are possible. We have Ei ⊆ Ei
{a∨b}, for i ∈ {1, 2}, and E1

{a∨b} ⊆ E1
{a}.

The lack of an extension E2
{a} can be considered as an extreme attempt to preserve consistency,

when trying to apply the default
a ∨ b : ¬a

¬a
facing the actual knowledge W ∪ {a}.

The previous example concerning couples behaves in the same way. From the beginning two g-
extensions are generated, associated with possible guesses regarding the actual knowledge of W .
Actually, the process involved by the generation of the g-extensions of a default theory corresponds
to the opposite way for obtaining the c-extensions of this theory. Instead of removing the “too
many” extensions, we try to initially generate the “missing” ones in order to establish cumulativity.
Since we do not require commitment to the justification, we avoid any restriction on the reasoning
of a cumulative agent. Indeed, we now have a cumulative approach of default logic in which two
main non-cumulative approaches are embedded:

10



Theorem 2 Let ∆ = (W, D) be a default theory, and let us consider E = Th(W ∪ CONS(D′′))
with D′′ ⊆ D. E is a j-extension of ∆ iff E is a g-extension of ∆ such that D′′ is a maximal set of
generating defaults.

Proof :

(⇒) straightforward, using corollary 1.

(⇐) Let E = Th(W ∪ CONS (D′′)) be a g-extension with D′ as support, such that D′′ ⊆ D′ ⊆ D.
That is, D′′ is any maximal grounded subset of D′, D′ is maximal in D such that (∀β ∈
JUST (D′))(¬β 6∈ Th(W ∪ CONS (D′))), and finally, D′′ is a maximal set of generating de-
faults. Let us assume that E is not a j-extension. Hence, from corollary 1, D′′ cannot be a
maximal subset of D such that both following conditions hold:

• D′′ is grounded in W , and

• (∀β ∈ JUST (D′′))(¬β 6∈ Th(W ∪ CONS (D′′))).

Since D′′ ⊆ D′, this is a contradiction!

Q.E.D.

Example 5 Let be D = {c : ¬a ∧ ¬b

d
} and D′ = { : ¬a

a ∨ b
,
: a

a
}. The default theory (∅, D) has

only one g-extension which also is a j-extension: E = Th(∅). The default theory(∅, D ∪ D′) has
three g-extensions: E1 = E = Th(∅), E2 = Th({a ∨ b}), E3 = Th({a}). Only E2 and E3 are
j-extensions. Note that E1 ⊆ E2 ⊆ E3.

Hence:

• any j-extension is a g-extension;

• any R-extension is a g-extension (since following theorem 1 it is also a j-extension).

Guess default logic is cumulative whereas Lukaszewicz’s default logic is not in general. Now, con-
sidering a given default theory ∆ = (W, D), let us say that ∆ itself is cumulative iff cumulativity
holds regarding CD(W ). In what follows, we are interested in the characterization of which among
the default theories in the sense of Lukaszewicz are cumulatives from which are not. First, let us
consider the defaults which are involved in the construction of g-extensions but do not generate
j-extensions.

Definition 9 Let ∆ = (W, D) be a default theory. Let Ej and Eg be respectively the set of the j-
extensions and the set of the g-extensions of ∆. The difference set of defaults for ∆, DS(∆), is
defined by the union of all the D′ \ D′′ such that, for any E ∈ Eg \ Ej, D′ is the support of E and
D′′ is the set of generating defaults of E.

So, the following criteria holds for cumulative default theories in the sense of Lukaszewicz:

Property 5 Let ∆ = (W, D) be a default theory and let CD(W ) be defined skeptically regarding
the j-extensions of ∆. Let DS(∆) be the difference set of defaults for ∆. The default theory ∆

understood in the sense of Lukaszewicz is cumulative iff for any default d ∈ DS(∆), d =
α : β

γ
,

(α ∈ CD(W ) ⇒ ¬β ∈ CD(W ∪ {α})).

11



Proof : First note that if DS(∆) = ∅, the property obviously holds. Hence assume DS(∆) 6= ∅.

(⇒) Let us assume ∆ to be cumulative. Consider d ∈ DS(∆), d =
α : β

γ
, with α ∈ CD(W ) and

¬β 6∈ CD(W ∪ {α}). But in that case, since ∆ is cumulative, also ¬β 6∈ CD(W ). That is d is
involved in the generation of each j-extension of ∆, which contradicts d ∈ DS(∆).

(⇐) Assume that for any default d ∈ DS(∆), d =
α : β

γ
, (α ∈ CD(W ) ⇒ ¬β ∈ CD(W ∪ {α})).

That is, adding any formula f of CD(W ) to W never fires d because either α 6∈ CD(W ), or
α ∈ CD(W ), but in that case ¬β ∈ CD(W ∪ {α}). Since no extra default can be fired by
adding f to W , CD(W ) = CD(W ∪ {f}).

Q.E.D.

7 Conclusion

A cumulative variant of default logic has been introduced. On the one hand this variant matches
the initial definition of cumulativity for default logic (see [Makinson, 89]), on the other hand Re-
iter’s and Lukaszewicz’s approaches are embedded in it. Indeed this variant can be used in order
to select cumulative default theories in the sense of Lukaszewicz. This work is in progress and
a lot of questions still require further study: it should be easy to show that guess default logic
is D-cumulative, but actually we would even try to define a pure abstract link between usual
W -cumulativity and D-cumulativity. It also remains to characterize cumulative Reiter default
theories inside our framework. A semantical characterization (for instance in the frameworks of
[Besnard, Schaub, 92] or [Voorbrak, 93]) would certainly provide an essential tool for allowing a
comparison with other approaches. Finally, it will be essential for us also to provide a comparison
with the work of [Giordane, Martelli, 94] which has just appeared.
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