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Abstract

In the rapidly evolving landscape of deep learning, the proliferation of large-scale neural networks has brought
forth new horizons of artificial intelligence. However, their sheer size and computational demands have posed sig-
nificant challenges, limiting their applicability in resource-constrained environments. The overarching problem of
network compression seeks to mitigate these challenges by efficiently designing deep neural models. In this report,
we embark on a journey to address this problem, exploring novel avenues for model compression.

Our first contribution, CORING, introduces a pioneering filter pruning method that harnesses tensor decomposi-
tion, preserving the multidimensional essence of filters. By leveraging the power of CORING, we achieve impressive
reductions in model size and computational requirements while retaining or even enhancing performance. CORING’s
ability to generalize models through pruning is demonstrated across various architectures and datasets.

The second contribution, NORTON, unveils a hybrid network compression technique that combines tensor de-
compositions with structured pruning. NORTON offers a comprehensive approach to model compression, optimizing
architecture, and reducing the number of parameters. With NORTON, we attain superior compression ratios and
accuracy retention, making it a versatile tool for model optimization.

Looking ahead, our research sets the stage for future investigations. Potential avenues include delving deeper into
the compression domain, expanding to encompass various decomposition techniques, exploring a broader spectrum of
neural network architectures, and applying these efficient models to diverse applications. As we navigate the evolving
landscape of deep learning, the pursuit of efficient model design remains at the forefront, driving innovation and
unlocking the potential for AI in resource-constrained scenarios.

Keywords: network compression, low-rank representation, filter pruning, frugal machine learning

This first-year report has been examined by the Thesis Follow-up Committee (CSI):

Thesis Supervisor: Thanh Phuong Nguyen, Associate Professor, Université de Toulon
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1. Introduction

Over the past decade, the widespread adoption of large-scale deep neural networks (DNNs) [31, 10] has ushered
in a transformative era across various domains. These DNNs have reshaped the landscape of object classification [31],
natural language understanding [26], and have played pivotal roles in autonomous navigation and advanced pattern
recognition tasks.
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However, amid these achievements, significant challenges have emerged. The deployment of these large DNNs,
especially in resource-constrained environments, has revealed their substantial computational and memory demands
[42]. These demands have spurred research efforts to make large-scale DNNs more accessible and practical [8, 15,
12, 41, 37, 24, 11, 5].

Model compression techniques offer several compelling advantages:
• Reduced Computational Demands: Model compression techniques significantly decrease the computational

requirements for both training and inference, making DNNs feasible for a broader range of applications. Mem-
ory Efficiency: By reducing the model size, memory usage is optimized, enabling deployment on resource-
constrained devices.

• Environmental Impact: Smaller, more efficient models consume fewer computational resources, contributing to
reduced energy consumption and environmental sustainability.

• Faster Inference: Compressed models lead to quicker inference times, making them suitable for real-time ap-
plications.

• Improved Generalization: Model compression often leads to improved model generalization, enhancing perfor-
mance on various tasks.

Yet, the path to effective network compression is fraught with challenges:
• Preserving Essential Features: Achieving compression without compromising critical model features is a deli-

cate balance.
• Maintaining Accuracy: Ensuring that compressed models maintain accuracy levels comparable to their larger

counterparts is a significant challenge.
• Robustness in Compression: Developing methods to ensure the robustness of compressed models, especially in

the face of noisy or incomplete data.
• Exploration of Novel Architectures: Investigating new model architectures that are inherently more compress-

ible and efficient.
• Scalability: Adapting compression techniques to large and complex DNNs poses scalability challenges.
In response to these challenges, prior research has embarked on a quest to make large-scale DNNs more accessible

and practical [8, 15, 12, 41, 37, 24, 11, 5]. Several techniques have emerged, aiming to mitigate the computational
burden and environmental impact of these models. Among these methods, two prominent approaches hold particular
promise: 1. Network pruning systematically identifies and removes unnecessary parameters or structures from neural
networks. Techniques include weight pruning [8], channel pruning [24], and N:M sparsity [22], all aimed at streamlin-
ing models while minimizing performance degradation. 2. Low-rank representation offer a mathematical framework
to represent the weight tensors of neural networks in lower-dimensional subspaces [13, 12]. Common decompositions
include CP decomposition [13], Tucker decomposition [36], and high-order SVD [3], which reduce the memory foot-
print of models while preserving their representational power [14]. These techniques, along with other methods like
quantization [37], knowledge distillation [11], and neural architecture search (NAS) [5], collectively contribute to the
endeavor of making deep neural networks more efficient and resource-friendly.

This report is organized into four sections. Sections 2 and 3 introduce our contributions, CORING and NORTON.
In Section 4, we draw conclusions and outline directions for future research.

2. The CORING Framework

2.1. Introduction
We propose a novel approach, called CORING, for effiCient tensOr decomposition-based filteR prunING. It is a

filter pruning technique using tensor decompositions [13]. Specifically, we decompose each layer’s filters using the
higher-order singular value decomposition (HOSVD) [3] and use this representation to measure similarity between
filters, rather than considering the entire filter in its tensor, matrix, or vector form. This method allows to (i) preserve
the multidimensional structure of the filters and their essential information while providing a low-rank approximation,
and (ii) reduce computational time as we will show later. This approach is general and can work with any similarity
metric. In our experiments, we evaluate our approach using the Euclidean and cosine distances, as well as a novel
metric we introduced called VBD (Variance-Based Distance), which is derived from the Signal to Noise Ratio (SNR)
distance [43]. We show that our approach is effective across all these metrics and outperforms SOTA.

This work brings the following contributions:
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• Introducing tensor decompositions, namely the HOSVD, for filter pruning, which preserve the multidimensional
structure of filters while providing a low-rank approximation to reduce computational time.

• Demonstrating a novel and general way of calculating similarity between filters that utilizes the low-rank ap-
proximation provided by the HOSVD, rather than relying on the full filter or its reshaped versions. Our approach
is tested with Euclidean, cosine, and VBD distances.

• Presenting a simple filter selection method based on the similarity matrix, which considers the relationships
between filters in the same layer.

• Evaluating the proposed framework across a range of representative computer vision tasks, encompassing image
classification, object detection, instance segmentation, and keypoint detection. Extensive experiments are con-
ducted to show the effectiveness of CORING in terms of accuracy, parameter reduction, and MACs reduction
compared to SOTA.

2.2. Approach

The CORING approach, illustrated in Fig. 1, can be divided into three distinct steps, each of which we will discuss
separately in the following subsubsections.
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Figure 1: The CORING approach for filter pruning in one layer, summarized in three steps.

2.2.1. Filter decomposition
In this section, for the sake of clarity and to simplify the notation, we consider a filter without its subscript as F of

size cl−1 × hl × wl. Now, if we apply the TD [13] to F by considering that R1 = R2 = R3 = 1, the model reduces
to

F ≈ s×1 a×2 b×3 c = [[s;a,b, c]], (1)

where a ∈ Rcl−1 , b ∈ Rhl , c ∈ Rwl , and s is a scalar that can also be seen as a 3-order tensor s ∈ R1×1×1, . Without
loss of generality, we can now denote F simply as

F ≈ [[a,b, c]]. (2)

To decompose F as in (2), there are multiple tensor decomposition methods available. In this work, we chose to
use the HOSVD algorithm [3]. This choice is justified by several factors. Firstly, the HOSVD is a non-iterative
algorithm, unlike ALS-based techniques [9], which can be computationally expensive. Secondly, it is based on the
SVD, which ensures that the approximation with respect to the decomposed matrices is optimal [6]. Finally, the
HOSVD is relatively easy to implement, making it a practical choice for many applications.
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2.2.2. Similarity measure
The authors of [43] proposed an SNR-based metric to measure the similarity of image pairs for deep metric

learning. While this quasi-metric has been shown to be effective, it has one major caveat that should be noted: it does
not satisfy the symmetry property, which is important for distance functions. To remedy this, we define the VBD as

dV BD(F i,F j) =
Var(F i −F j)

Var(F i) + Var(F j)
. (3)

Let us now consider d(., .) as a general distance function. To calculate the distance between a pair of filters F i, F j ,
we will use their HOSVD as in (2). Let us assume that F i = [[ai,bi, ci]] and F j = [[aj ,bj , cj ]]. In this case, we can
calculate the distance between F i and F j as follows.

d(F i,F j) = d
(
[[ai,bi, ci]], [[aj ,bj , cj ]]

)
. (4)

2.2.3. Filters selection
The algorithm takes as input a similarity matrix between all pairs of filters, the set of filters, and a sparsity target.

The output of the algorithm is a set of κ selected filters. The procedure works by iteratively deleting filters that are
most similar to the other filters. The algorithm starts by finding the pair of filters with the highest similarity and
deleting one of the filters. The choice of the filter to delete is based on the sum of its similarities with the other filters
in the layer. The algorithm then updates the similarity matrix by deleting the row and column of the deleted filter and
continues to delete filters until the desired sparsity target is reached.

2.2.4. Pruning strategy
It is a variation of multi-shot pruning, which prunes the network in K rounds with the possibility of fine-tuning

between rounds. By fixing the number of pruning rounds, K-shots pruning provides better control over the pruning
process and allows for more efficient use of computational resources. In K-shots pruning, the number of filters to
prune in each round is calculated based on the total number of filters in the network and the desired overall sparsity
level. After each round of pruning, the pruned network can be fine-tuned to recover any loss in accuracy. This
fine-tuning step can be repeated between rounds to further improve the performance of the pruned network.

2.3. Experiments

The CORING method is assessed in three variations, namely CORING-C, CORING-E, and CORING-V, each
corresponding to a specific distance metric: cosine similarity, Euclidean distance, and VBD, respectively. We denote
CORING-X-K as the combination of distance X and strategy of K shots, where X ∈ {C, E, V} and K ∈ {5, 10, 15}.
If the suffix does not contain the variable K, then it implies that one-shot pruning is being performed.

VGG-16-BN. Table 1 shows the pruning results of VGGNet on CIFAR-10. In all three levels, compared with
other methods, CORING consistently gets the highest accuracy while maintaining the same level of pruning. Results
from both pruning strategies outperform the state-of-the-art.

ResNet-50. To assess the scalability of CORING, we conduct experiments on the extensive dataset ImageNet by
addressing ResNet-50 as shown in Table 2. Across all evaluated scenarios, CORING consistently outperforms other
approaches in terms of both performance and complexity reduction.

3. The NORTON Framework

3.1. Introduction

Our proposed method operates on the original weight tensor in a filter-by-filter manner. The key insight lies in
the fact that in a convolution layer, the input undergoes convolution separately with each filter, and the outputs are
then aggregated to generate the final feature map. Therefore, it is intuitive to decompose each 3-order filter tensor
individually. The filters decomposition approach offers a higher level of granularity compared to its counterpart,
layer decomposition. With filters decomposition, not only the multidimensional property is strictly preserved, but
also the layer’s 4-order weight is spontaneously interpreted as a set of 3-order filters. Additionally, an interesting
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Table 1: Pruning results of VGG-16-BN on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

VGG-16-BN 93.96 14.98M(00.0) 313.73M(00.0)
CHIP [34] 93.86 2.76M(81.6) 131.17M(58.1)
EZCrop [23] 93.01 2.76M(81.6) 131.17M(58.1)
DECORE-500 [1] 94.02 5.54M(63.0) 203.08M(35.3)
CORING-C 94.16
CORING-E 94.10
CORING-V 94.11
CORING-C-5 (Ours) 94.25 2.76M(81.6) 131.17M(58.1)
CORING-E-5 94.42
CORING-V-10 94.36

FSM [4] 93.73 N/A(86.3) N/A(66.0)
FPAC [39] 93.86 2.50M(83.3) 104.78M(66.6)
AutoBot [2] 94.01 6.44M(57.0) 108.71M(65.3)
CORING-C 93.79
CORING-E 94.20
CORING-V 94.19
CORING-C-15 (Ours) 94.07 2.50M(83.3) 104.78M(66.6)
CORING-E-15 94.03
CORING-V-10 94.04

DECORE-100 [1] 92.44 0.51M(96.6) 51.20M(81.5)
RASP-70M [45] 92.81 1.13M(92.4) 70.15M(77.7)
CHIP [34] 93.18 1.90M(87.3) 66.95M(78.6)
CORING-C 93.56
CORING-E 93.54
CORING-V 93.63
CORING-C-10 (Ours) 93.68 1.90M(87.3) 66.95M(78.6)
CORING-E-15 93.83
CORING-V-5 93.71

side effect of filters decomposition is that it leads to a narrower range of ranks, which simplifies the rank selection
process, as demonstrated later in subsection 3.2.1. Another notable difference is that filters decomposition replaces
the original layer with 3 sublayers, while layer decomposition requires 4 sublayers, potentially increasing network
depth unnecessarily and introducing the possibility of gradient vanishing issues.

The second consideration of this work is to combine filters decomposition and filter pruning to leverage the inde-
pendent advantages of each method. While previous studies [30, 7, 16, 40] have used low-rank representations and
network pruning for compression purposes, they have not explored an orthogonal combination of these techniques.
In these works, low-rank representations have been used only in the pruning step without directly contributing to the
reduction of model size. In contrast, our approach takes a different direction by sequentially applying low-rank rep-
resentations and pruning in two separate phases, enabling a dual compression process. To the best of our knowledge,
this direction has not been extensively investigated in the literature.

Briefly, the contributions of this work are three-fold:
• Firstly, we introduce a novel filters decomposition method, promoting its differentiation with existing layer

decomposition and reshaped decomposition methods.
• Secondly, we investigate the sequential combination of filters decomposition and filter pruning. We propose a

novel filter pruning algorithm designed to address the challenges associated with this integration scheme.
• Thirdly, we evaluate the proposed framework on representative vision tasks including image classification,

object detection, instance segmentation, and keypoint detection. We compare NORTON with SOTA methods
in both low-rank representations and structured pruning domains to demonstrate the superiority of our method.
Notably, our model with different compression levels can consistently outperform prior arts.
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Table 2: Pruning results of ResNet-50 on ImageNet

Model Top1 Top5 Params (↓%) MACs (↓%)

ResNet-50 76.15 92.87 25.55M(00.0) 4.11B(00.0)
CLR-RNF-0.2 [19] 74.85 92.31 16.92M(33.6) 2.45B(40.1)
DECORE-8 [1] 76.31 93.02 22.69M(11.0) 3.54B(13.4)
CHIP [34] 76.30 93.02 15.10M(40.8) 2.26B(44.8)
CORING-V (Ours) 76.78 93.23 15.10M(40.8) 2.26B(44.8)

DECORE-6 [1] 74.58 92.18 14.10M(44.7) 2.36B(42.3)
SCOP [35] 75.95 92.79 14.59M(42.8) 2.24B(45.3)
Zhang et. al [44] 75.83 92.76 14.23M(44.2) 2.10B(48.7)
CORING-C (Ours) 76.34 93.06 14.23M(44.2) 2.10B(48.7)

EZCrop [23] 74.33 92.00 11.05M(56.7) 1.52B(62.8)
RASP-1G [45] 74.48 92.02 16.29M(36.3) 1.50B(63.6)
Zhang et. al [44] 74.80 92.39 11.04M(56.7) 1.52B(62.8)
CORING-V (Ours) 75.55 92.61 11.04M(56.7) 1.50B(63.6)

CLR-RNF-0.44 [19] 72.67 91.09 9.00M(64.7) 1.23B(69.9)
Zhang et. al [44] 73.18 91.32 8.01M(68.6) 0.95B(76.7)
HRel-3 [32] 73.67 91.70 9.10M(64.4) 1.38B(66.4)
CORING-V (Ours) 73.99 91.71 8.01M(68.6) 0.95B(76.7)

3.2. Approach

Fig. 2 illustrates the overall pipeline of our approach, which comprises two main phases: decomposition and
pruning.

Conv 1 Conv 2 Conv N-1 Conv N...

CPDBlock 1 CPDBlock 2 CPDBlock N-1 CPDBlock N...
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Block 1

Pruned
Block 2

Pruned
Block N-1
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Figure 2: Graphic illustration of the NORTON approach.

3.2.1. Filters Decomposition using the CP decomposition
Consider a convolutional layer with O filters of size Kh × Kw × I , where I represents the number of input

channels, and Kh and Kw represent the height and width of the kernel, respectively. The weight tensor W can be
represented as a 4-order tensor of size Kh × Kw × I × O. Alternatively, it can be viewed as a set of O individual
3-order filters denoted as {W1,W2, . . . ,WO}. It is worth noting that the k-th filter can be obtained by extracting
the sub-tensor W :,:,:,k, which is equivalent to Wk. These weights map an input tensor I of size Hin ×Win × I into
an output tensor O of size Hout ×Wout ×O, where Hin, Win, Hout, and Wout are the height and width of the input
and output tensors, respectively. For simplicity, the dimension of the batch is disregarded.

In convolutional neural networks, the mapping of the input tensor I to the output tensor O is achieved through
the convolution operation. This convolution is given by the following expression:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

I(i+m, j + n, p) ·Wk(m,n, p), (5)

where, for 0 ≤ k ≤ O − 1, Ok = O:,:,k, and is of size Hout ×Wout. Based on (5) and the CPD definition in [13],
we can apply the CPD to each individual filter Wk in order to obtain a compact representation. By decomposing Wk
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using CPD, we have

Wk(m,n, p) =

R−1∑
r=0

Ak(m, r) ·Bk(n, r) ·Ck(p, r), (6)

where Ak, Bk and Ck are 3 factor matrices of size Kh ×R, Kw ×R and I ×R, respectively.
By substituting (6) into (5), we obtain a new CPD-based approach to compute the convolution. This approach

involves a sequence of mappings using the factor matrices instead of high-order tensors. The resulting equation for
this CPD-based convolution is:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

R−1∑
r=0

I(i+m, j + n, p)·

Ak(m, r) ·Bk(n, r) ·Ck(p, r).

(7)

Starting from (7), we observe that the CPD-based convolution involves element-wise multiplications between the
input tensor I and the factor matrices Ak, Bk, and Ck. It is important to note that the order of the convolutions can
be rearranged without affecting the final result. This flexibility allows us to describe the computation as a sequential
block of convolutions with smaller kernels, followed by a summation. First, the input tensor I can be convolved with
the kernel Ck along the input channel dimension. The resulting tensor is then convolved with the kernel Bk along the
spatial dimensions. Finally, the output of the second convolution is convolved with the kernel Ak along the spatial
dimensions. The outputs of these convolutions are summed up to compute the final output tensor Ok. The following
set of equations captures these operations in a concise manner:

OC
k (i+m, j + n, r) =

I−1∑
p=0

I(i+m, j + n, p) ·Ck(p, r), (8)

where OC
k is of size Hin ×Win ×R.

OB
k (i+m, j, r) =

Kw−1∑
n=0

OC
k (i+m, j + n, r) ·Bk(n, r), (9)

where OB
k is of size Hin ×Wout ×R.

OA
k (i, j, r) =

Kh−1∑
m=0

OB
k (i+m, j, r) ·Ak(m, r), (10)

where OA
k is of size Hout ×Wout ×R. Finally, we have

Ok(i, j) =

R−1∑
r=0

OA
k (i, j, r). (11)

3.2.2. CPDBlock pruning
The core idea of CPDBlock pruning is to construct a distance matrix D, where each element Dij corresponds

to the distance between the factor matrices [[Ai,Bi,Ci]] and [[Aj ,Bj ,Cj]]. The pruning process involves iteratively
identifying the pair of decompositions, i and j, corresponding to the minimum value of Dij , and removing one of
them. The removed decomposition in our strategy between i and j is the one that most closely resembles the rest of
the decompositions, ensuring that the pruned one retains the representation that is most similar to the remaining ones.
The distance matrix D ∈ RO×O can be expressed as

Dij = αDA
ij + βDB

ij + γDC
ij , (12)

where DA
ij = ϕ(Ai,Aj) (similarly for DB

ij and DC
ij), and α, β and γ are weight parameters, whose sum is equal to

1.
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3.3. Experiments
VGG-16-BN. Tab. 3 shows compression results of VGG on CIFAR-10. In all compression levels, compared with

other methods, NORTON consistently achieves the highest accuracy while reducing much more computation costs
and enjoying a similar number of parameters.

Table 3: Compression results of VGG-16-BN on CIFAR

Model Top-1 (%) MACs (↓%) Params. (↓%)

VGG-16-BN [33] 93.96 313.73M (00) 14.98M (00)
EZCrop [23] 93.01 131.17M (58) 2.76M (82)
DECORE-500 [1] 94.02 203.08M (35) 5.54M (63)
AutoBot [2] 94.19 145.61M (54) 7.53M (50)
NORTON (Ours) 94.45 126.49M (60) 2.58M (83)

EZCrop [23] 93.70 104.78M (67) 2.50M (83)
CHIP [34] 93.72 104.78M (67) 2.50M (83)
AutoBot [2] 94.01 108.71M (65) 6.44M (57)
NORTON (Ours) 94.16 101.91M (68) 2.34M (84)

AutoBot [2] 93.62 72.60M (77) 5.51M (63)
NORTON (Ours) 94.11 74.14M (77) 3.60M (76)

Lebedev et al. [14] 93.07 68.53M (78) 3.22M (78)
HALOC [38] 93.16 43.92M (86) 0.30M (98)
FSM [4] 93.73 106.67M (66) 2.10M (86)
NORTON (Ours) 93.84 37.68M (88) 1.94M (87)

HRank-3 [20] 91.23 73.70M (77) 1.78M( 92)
DECORE-50 [1] 91.68 36.85M (88) 0.26M (98)
NORTON (Ours) 92.54 13.54M (96) 0.24M (98)

NORTON (Ours) 90.32 4.58M (99) 0.14M (99)

ResNet-50. To evaluate the scalability of NORTON, we perform experiments on the extensive ImageNet dataset
using the ResNet-50 architecture, as enumerated in Tab. 4. Across all evaluated scenarios, NORTON consistently
outperforms other approaches in terms of both performance and complexity reduction.

Table 4: Compression results of ResNet-50 on ImageNet

Model Top-1 Top-5 MACs(↓%) Params(↓%)

ResNet-50 [10] 76.15 92.87 4.09G(00) 25.50M(00)
CLR-RNF-0.2 [19] 74.85 92.31 2.45G(40) 16.92M(34)
FilterSketch-0.7 [18] 75.22 92.41 2.64G(36) 16.95M(33)
DECORE-8 [1] 76.31 93.02 3.54G(13) 22.69M(11)
NORTON (Ours) 76.91 93.57 2.32G(43) 14.51M(43)

DECORE-6 [1] 74.58 92.18 2.36G(42) 14.10M(45)
EZCrop [23] 75.68 92.70 2.26G(45) 15.09M(41)
SCOP [35] 75.95 92.79 2.24G(45) 14.59M(43)
NORTON (Ours) 76.58 93.43 2.08G(50) 13.51M(47)

EZCrop [23] 74.33 92.00 1.52G(63) 11.05M(57)
CC-0.6 [17] 74.54 92.25 1.53G(63) 10.58M(59)
EDP [30] 75.34 92.43 1.92G(53) 14.28M(44)
NORTON (Ours) 75.95 92.91 1.49G(64) 10.52M(59)

DECORE-5 [1] 72.06 90.82 1.60G(61) 8.87M(65)
ABCPruner-50% [21] 72.58 90.91 1.30G(68) 9.10M(64)
CLR-RNF-0.44 [19] 72.67 91.09 1.23G(70) 9.00M(65)
NORTON (Ours) 74.00 92.00 0.96G(77) 7.96M(69)

FilterSketch-0.2 [18] 69.43 89.23 0.93G(77) 7.18M(72)
DECORE-4 [1] 69.71 89.37 1.19G(71) 6.12M(76)
CURL [25] 73.39 91.46 1.11G(73) 6.67M(74)
NORTON (Ours) 73.65 91.64 0.92G(78) 5.88M(77)
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4. Conclusion and Future Works

In this report, we have embarked on a journey to enhance the efficiency and accessibility of deep learning-based
systems. Our contributions during this first year of Ph.D. research are represented by the novel methods CORING and
NORTON for network pruning and tensor decomposition. These approaches have demonstrated their effectiveness
in achieving model compression while preserving critical features and maintaining performance. CORING’s tensor
decomposition approach and K-shots pruning strategy offer a versatile solution, while NORTON’s combination of
tensor decompositions and structured pruning provides fine-grained control and scalability.

As we look ahead, numerous exciting avenues for future research beckon:
• Deeper Exploration in Pruning/Decomposition: Building on our initial work, there’s room for delving deeper

into the pruning and tensor decomposition domain. Developing more advanced techniques and algorithms could
involve exploring different criteria for pruning or devising more efficient decomposition methods.

• Broadening to Other Decomposition Techniques: Extending our research to encompass a wider range of model
compression techniques beyond pruning and tensor decomposition is a promising direction. Investigating meth-
ods like quantization, knowledge distillation, and neural architecture search (NAS) will allow us to explore their
potential in reducing model size while maintaining performance.

• Widening to Other Model Architectures: Applying compression techniques to various neural network archi-
tectures other than CNNs opens up exciting possibilities. Experimenting with models like Transformers (used
in natural language processing), recurrent neural networks (RNNs), graph neural networks (GNNs), and large
language models (LLMs) will help assess the effectiveness of our methods in different domains.

• Cross-Domain Transfer: Exploring the potential for transferring insights and techniques from one domain (e.g.,
computer vision) to another (e.g., natural language processing) is a valuable pursuit. Investigating how com-
pression methods developed for one domain can be adapted and applied to other domains can lead to more
efficient and versatile AI models.

• Application to Maritime Surveillance: Given our background in maritime surveillance, considering how model
compression techniques can be specifically tailored to enhance AI applications in this domain is crucial. De-
veloping specialized models and compression strategies to address the unique challenges and requirements of
maritime surveillance, such as real-time processing and anomaly detection, holds significant promise.

• Robustness and Security: Investigating the robustness and security implications of compressed models is essen-
tial. Analyzing the vulnerability of compressed models to adversarial attacks and exploring methods to improve
their resilience are important research directions.

• Automated Compression Frameworks: Developing automated frameworks that intelligently select and apply
compression techniques based on the specific requirements and constraints of a given task or deployment envi-
ronment is a forward-looking endeavor. This can lead to more adaptive and efficient model compression.

• Explainability and Interpretability: Exploring methods to enhance the interpretability and explainability of
compressed models is vital. Making it easier to understand their decisions and behavior is crucial, especially
for safety-critical applications.

• Efficient Deployment: Investigating strategies for efficiently deploying compressed models on a variety of
hardware platforms, including resource-constrained devices, edge devices, and cloud servers, will be essential
to ensure practicality.

• Collaborative Research: Collaborating with experts in related fields such as robotics, environmental science,
or healthcare to apply model compression techniques to address specific domain challenges and make AI more
accessible and impactful in those areas.

These diverse research directions collectively contribute to the ongoing advancement of efficient deep learning
models and their broader applicability across domains and scenarios.

In conclusion, the journey toward making deep learning more efficient and accessible is ongoing. Our contribu-
tions during this first year of Ph.D. research mark the beginning of this exploration. As we move forward, we remain
committed to advancing the field, fostering collaboration, and unlocking the full potential of deep learning-based
systems.
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