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Deep Learning = Representation Learning

Sequence of representation spaces implemented by successive hidden layers
A series of hidden layers

Task-oriented vs. unsupervised models
Task-oriented: classification, regression
Unsupervised: autoencoders
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Deep Learning = Representation Learning

What are good features of a representation space?
Naturally induced by the learning objective

Contain sufficient and useful information (for the targeted task)
Noise free

Expected, and partially observed, but not so easy to favor
High (semantic) level

Not observed without specific effort but one may try to favor
Disentangled vs. distributed
Interpretable vs. black box
Compositionality
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High-level representations emerge in deep layers

Which ones?
Very popular credo: A learned NN implements a hierarchy of (more and more
semantic) features

Induced by CNN’s increasing receptive field size in CNNs
It might rather be a refinement of representations (in a context) in transformers and
ResNets-based architectures
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High-level representations emerge in deep layers

Which ones?
Very popular credo: A learned NN implements a hierarchy of (more and more
semantic) features

Induced by CNN’s increasing receptive field size in CNNs
It might rather be a refinement of representations (in a context) in transformers and
ResNets-based architectures

Actually not so easy to know what a NN uses as information... For instance: what
do CNN actually uses in an image? shapes? or textures?

(Geirhos et al. [Gei+19])
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How lo learn good representations?

Many ways dedicated to various goals
Standard: Iterative refinement in successive hidden layers (hierarchy of
representations)
Structural bias (convolution, recurrence...)
Adding constraints on the hidden representation space on a sample per sample basis
(sparsity, norm, etc)
Adding constraints on the hidden representation space on a distributional basis
(Adversarial loss)
Using the context

T. Artières (ECM - LIS / AMU ) June 10, 2024 7 / 79



Guiding the learning of a representation space

Adding a regularization loss
Use a combined loss

C(w) =
∑

i

lossi(w)︸ ︷︷ ︸
Data Fit term

+Ω(w)

Many possibilities for Ω
Standard L1 and L2 regularization strategies: ∥w∥ or ∥w∥2 for the full NN or for a
single layer
Sparsifying activations in a layer l :

∑
i ∥hl

i ∥
2

Limiting sensitivity to input features :∥Jl (x)∥2 =
∑

p,k

( ∂hl
k (x)

∂xp

)2
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Guiding the learning of a representation space

Removing information from a representation space
Learn a predictor (classifier) that predicts some specific information from a hidden
layer’s output
Learn the feature extractor (i.e. NN below the hidden layer) so that the classifier
cannot recover the specific information

(Ganin and Lempitsky [GL15])
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Guiding the learning of a representation space

Adding a distributional constraint
Enforcing the distribution in a hidden layer to obey a predefined distribution with an
adversarial discriminator

(Makhzani [Mak18])
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Disentanglement learning

Main idea
Identify main factors of variation of the data (e.g. hair colour, w/wo glasses in face
images)
Encode the factors in different components of the latent space
Allows easier (semantic) edition of data
Better with some supervision (Cf. impossibility theorem in unsupervised mode by
(Locatello et al. [Loc+18]))

(Perarnau et al. [Per+16])
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Compositionality in latent representations

Pioneer results in Natual Language Processing (Skipgram architecture (Le and
Mikolov [LM14]))

Unsupervised learned word representations (called embeddings, e(word)) exhibit a
compositionality feature:

e(uncle) + (e(woman) − e(man)) ≈ e(aunt)
e(King) + (e(plural) − e(singular)) ≈ e(Kings)

e(France) + (e(capital) − e(country)) ≈ e(Paris)
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Exploring the latent space

Traversals
One may compute interpolated representations of samples (more relevant in
autoencoder-like architectures since details might be removed in classifiers)
Example

Consider two samples x1 and x2
Compute their latent representations with encoder E : hi = E(xi )
Interpolate hα = αh1 + (1 − α)h2 for some α ∈ [0, 1]
Decode x ′ = D(hα)

T. Artières (ECM - LIS / AMU ) June 10, 2024 16 / 79



Exploring the latent space

Edition in the latent rep
One may edit data in a hidden layer representation space (latent space)
Edition process

Compute the latent representation h of input x with encoder E : h = E(x)
Add some vector z to h
Decode x ′ = D(E(x) + z)

If the latent space ”is semantic” then one may get a transformed version of x by
using an appropriate semantic translation vector z

For instance z is an

When should it work?
The latent space should be ”semantic”
The latent space should be well occupied by training data: whatever x , E(x) + z
should have been encountered by the decoder D in the training stage or it should be
able to generalize.
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Exploring the latent space

Editing with statistics in the latent space
One may compute means of samples’ representations in a hidden layer
representation space (latent space).
If the latent space ”is semantic” then one may get some latent space representation
of a specific label in the latent space

Mean of latent representation of faces of men
Mean of latent representation of faces of men minus that of women
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Generative models

Goal
Given data {x1, ..., xN} over a data space X = Rd learn the underlying distribution
p∗

Learn a model of the density of data / able to sample with this density
Postulate a parametric model / family Pθ = {pθ, θ ∈ Θ}
Learning = select the best θ∗

Requires a performance measure : distance/loss between pθ∗ and p∗: L(pθ∗ , p∗)

What we may expect
pθ assigns high density to samples taken from the true p∗

x ∼ p∗(x) ⇒ pθ(x) is ”high”

Samples taken from pθ behave similarly to real samples from p∗

x ∼ pθ(x) ⇒ p∗(x) is ”high”

Of course both properties are related by the normalization feature of densities
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Generative models

Strategies
Dealing with first or second expectation yields different choices for the loss L and
different behaviours for pθ

Focusing with first property (pθ assigns high density to samples taken from the true
p∗)

”Coverage driven” strategy
Easier since it requires only samples from p∗ ⇒ MLE approaches, Normalizing flows,
Variational autoencoders (Kingma and Welling [KW14])...

Focusing with second property (Samples taken from pθ behave similarly to real
samples from p∗)

”Quality driven” strategy
Less convenient as a right implementation would require access to p∗ ⇒ GANs
(Goodfellow et al. [Goo+14])...
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Adversarial learning principle

Principle
Use a two player game

Learn both a generator of artificial samples AND a discriminator that learns to
distinguishes between true and fake samples.
The generator wants to flue the discriminator

If an equilibrium is reached the generator produces samples with the true density
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Adversarial Learning: Generator

Determinitic NN as a generative model

Using a deterministic NN as a generative model
Let note the function implemented by the model as G
Let note the input z → The NN computes G(z)
Assume z obeys a prior (noise) distribution, pz , e.g. Gaussian distribution
then the output x of the NN follows a distribution

⇒ pG (x) =
∫

z s.t. G(z)=x
pz (z)dz
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Generative Adversarial Networks [Goodfellow and al., 2014]

Principle
Two players game: Generator G
and Discriminator D

D aims at distinguishing true
samples from fake samples
G aims at fooling D
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Adversarial Learning criterion

Criterion from (Goodfellow et al. [Goo+14])
Generator G and Discriminator D are two NNs

Whose parameters are noted θg and θd

Distributions
pdata stands for the empirical distribution of the data from the training set
pz is a prior noise distribution, e.g. a Gaussian distribution
On convergence we want pg = pdata

Learning criterion:

ming maxdv(θg , θd) = Ex∼pdata [logD(x)] + Ez∼pz [log(1 − D(G(z)))]

Assume G is fixed: D is trained to distinguish between fake and true samples
Assume D is fixed : G is trained to generate samples as realistic as possible
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Adversarial Learning theory: What happens during Learning
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Interpolating with GANs (Goodfellow et al. [Goo+14])

Idea
The latent code space is fully occupied
Any sample drawn by sampling with the generator should be realistic
One may interpolate between two latent codes and see
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5 years of GAN research
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Adversarial AE (Makhzani et al. [Mak+15])

Learning criterion
Few definitions for q(z|x) : simplest = deterministic
Learning criterion:

ming maxdv(θg , θd) = Ex∼pdata

[
∥Dc(Ec(x)) − x∥2] + Ez∼pz [logD(z)]

+ Ex∼pdata [log(1 − D(q(z|x)))]
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Conditional GANs (Mirza and Osindero [MO14])

Learning criterion
Citerion

ming maxdv(θg , θd) = Ex,y pdata [logD(x , y)] + Ez pz ,y′ py

[
log(1 − D(G(z, y ′), y ′))

]
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3 Few Deep Learning studies for MRI data
Objectives and means
Computational vs. neural representations
Comparing computational and neural representations
Encoding and decoding via intermediate representation space
Constraining the computational representation from neural representation
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Usual tasks

Encoding and decoding
Encoding: Predict the brain activity from the stimuli
Decoding: Predict the stimuli (or its class) from brain activity
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Usual tasks

Encoding and decoding
Encoding: Predict the brain activity from the stimuli
Decoding: Predict the stimuli (or its class) from brain activity

Brain mapping
Explain / understand the (level of) processing peformed in areas of the brain

Main problems
Encoding and decoding: both supervised tasks but limited training data
Encoding and decoding are likely complex nonlinear mappings
Noisy data (MRI)
Small size dataset
Large inter-subject variability
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How to infer knowledge on the brain?

Encoding, decoding, brain mapping
Using standard prediction tools

Decoding: Predicting some information about the stimuli from the whole brain activity
and use explainability strategies to find where some information is encoded
Decoding: Predicting some information about the stimuli from the brain activity from
a specific area
Encoding: Predicting voxel activity from specific features (spectrogram vs semantic) of
a stimuli (speech)
...

Using Representation Similarity Analysis (RSA)
Compare neural and computational representation spaces

Examples of outcomes
Where is encoded some feature of a stimuli presented to a subject (eg.
gender/age/emotion of a speaker etc)
Identify areas of low-level vs. high-level processing of stimuli
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Interpreting encoding and decoding models: caveats (Kriegeskorte and
Douglas [KD19])

Encoding
”Brain regions do not in general form chains of processing stages without skipping
connections or recurrent signaling”
”The primate visual hierarchy is a case in point, where cortical areas interact in a
network with about a third of all possible pairwise inter-area connections”

Decoding
”Decoding reveals the products, not the process of brain computation. However, it
is a useful tool for testing whether a brain region contains a particular kind of
information in a particular format.”
”Linear decodability indicates “explicit” information”
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Representation Similarity Analysis (RSA) (McClure and Kriegeskorte
[MK16])

Motivation (Credit images)
Needs to compare very different representation spaces
Offers a simple way to compare and get insight on the similarity of two
representation spaces without learning/tuning a predictor
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Representation Similarity Analysis (RSA)
(McClure and Kriegeskorte [MK16])

Comparing 2 representation spaces (RS)
Consider N ”objects” that were observed in the two RS
Compute a N × N dissimilarity matrix (RDM) for each modality

Euclidean, Cosine distance...
Compute a similarity between RDM1 and RDM2

Pearson correlation coefficient, Rank correlation...

(Kriegeskorte, Mur, and Bandettini [KMB08])
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Characterizing the processing level of stimulus in the brain (Güçlü and
Gerven [GG15])

Principle
Use a pretrained NN (for image classification)

Assuming that successive layers implement RS of increasing level of processing of the
input
Identify the layer whose RS best matches the RS of each area in the brain (actually an
area is centred on a voxel, spotlight approach)

A first approach Güçlü and Gerven [GG15]
Learn a linear model to predict each voxel activity from the hidden layer representation
of a stimulus (training set = set of stimulus)
Label each voxel according to the depth of the hidden layer yielding most accurate
prediction

[GG15]
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Characterizing the processing level of stimulus in the brain using RSA
(Güçlü et al. [Güç+16])

Same principle as before
Pretrained models for music tag prediction

Either time or frequency representations (96000 dimensional), or both, of 6s long audio
signals

RSA used to label the voxels in the STG

[GG15]
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Relying on an intermediate representation space

Main assumption
One can efficiently learn higher-level representation of stimuli using large datasets,
either in unsupervised or supervised way
One may assume that the learned representation is a non-linear function of the input
One may expect that the mapping between the intermediate representation space
and the brain activity space is a simpler (hopefully linear) function than the original
mapping
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Relying on an intermediate representation space

Main assumption
One can efficiently learn higher-level representation of stimuli using large datasets,
either in unsupervised or supervised way
One may assume that the learned representation is a non-linear function of the input
One may expect that the mapping between the intermediate representation space
and the brain activity space is a simpler (hopefully linear) function than the original
mapping

Method
Decouple the learning task into

A non-linear mapping learned with a large dataset
A simpler (linear) mapping for learning the mapping with MRI data (with fewer
training samples)

Relies in the hypothesis that the mapping will be easier to learn
Does depend on the nonlinear mapping.
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Combining probabilistic inference with deep learning [Güç+17]

Method
Use a pretrained encoder model ϕ (extractor part of a convnet, VGG-Face) as in
(Güçlü and Gerven [GG15])
Learn a linear predictor from latent space to brain space
Invert it
Learn a decoder (ϕ−1) with adversarial learning using a discriminator ψ

−λadvE[log(ψ(ϕ−1(z)))] + λfeatureE[||ξ(x) − ξ(ϕ−1(z)||2] + λstiE[||x − ϕ−1(z)||2]
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Method
Use a pretrained encoder model ϕ (extractor part of a convnet, VGG-Face) as in
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Decoding with a deep Adversarial Autoencoder (VanRullen and Reddy
[VR19])

Method
Learn a Gan-VAE

i.e.: an autoencoder (E + D), whose
reconstruction are driven to be more realistic
using an adversarial discriminator
Input: x → hidden representation: z = E(x)
→ reconstruction: D(z) = D(E(x))

Then:
Learn a linear predictor from latent space to
neural space

y = W × z
...and inverse it for decoding

ẑ = (W T W )−1W T × y

⇒ x̂ = D(ẑ) Model used
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Input: x → hidden representation: z = E(x)
→ reconstruction: D(z) = D(E(x))

Then:
Learn a linear predictor from latent space to
neural space

y = W × z
...and inverse it for decoding

ẑ = (W T W )−1W T × y

⇒ x̂ = D(ẑ)
Editing in the latent space
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Then:
Learn a linear predictor from latent space to
neural space

y = W × z
...and inverse it for decoding

ẑ = (W T W )−1W T × y

⇒ x̂ = D(ẑ)

Reconstruction from subjects 1 and
2
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T. Artières (ECM - LIS / AMU ) June 10, 2024 47 / 79



Decoding with a deep Adversarial Autoencoder (VanRullen and Reddy
[VR19])

Method
Learn a Gan-VAE

i.e.: an autoencoder (E + D), whose
reconstruction are driven to be more realistic
using an adversarial discriminator
Input: x → hidden representation: z = E(x)
→ reconstruction: D(z) = D(E(x))

Then:
Learn a linear predictor from latent space to
neural space

y = W × z
...and inverse it for decoding

ẑ = (W T W )−1W T × y

⇒ x̂ = D(ẑ)

Reconstruction accuracy per brain
area
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Outline

3 Few Deep Learning studies for MRI data
Objectives and means
Computational vs. neural representations
Comparing computational and neural representations
Encoding and decoding via intermediate representation space
Constraining the computational representation from neural representation
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Enforcing Learning relevant representation for brain mapping

Drawback of previous approaches
One expects the learned mapping by a pretrained or independently trained NN to
enable a linear mapping between the latent space and the brain space
This likely hides the selection of a ”relevant” NN which exhibits such a behaviour,
amongst a number of trained models.

Two main answers
Hard constraint / Inductive bias
Soft constraint / Adding a loss term
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Inductive bias in DL models

Extensively used
A standard strategy

Convolution layers for images
Recurrent layers for times series
More recently in physics informed ML/DL

(Karniadakis et al. [Kar+21])
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Implicit bias for audio processing (Kell et al. [Kel+18])

A Task-Optimized Neural Network Replicates Human Auditory Behavior...
Question: is auditory cortical computation hierarchical, potentially corresponding to
cortical regions?
Study: optimization (selection amongst ≈ 200 architectures) of the best architecture
trained for two tasks: word recognition and musical genre identification

Best model contain separate music and speech path-ways following early shared
processing, potentially replicating human cortical organization

Results
Human-like errors
Hierarchical organization
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Constraining the representation space to match neural RDMs

First attempt (McClure and Kriegeskorte [MK16])
Motivation: Studies have shown that DNNs trained for object recognition learn
similar representations to those found in the human ventral stream
How to encourage this

Add prediction from intermediate layers (comes next)
Enforce the hidden representation spaces to replicate RDMs from brain responses

First tries on MNIST and CIFAR data for learning a student model from a teacher
model
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Constraining the representation space to match neural RDMs

Learn a model to match RDM of stimuli in the brain (Federer et al. [Fed+20])
Applied with Macaques (actually not MRI data but neural firing rates recordings)

Cost function using RDM constraint on layer l

λ
∑

i,j

||RDMmacaque
i,j − RDMNN(l)

i,j ||2 + LossClassif

λ updated so that the ratio of the two loss term remains equal to a constant r
Use the combined loss for a few epochs then use the classification loss only

The DNN achieves better image classification results on CIFAR 100

T. Artières (ECM - LIS / AMU ) June 10, 2024 53 / 79



Constraining the representation space to match neural RDMs

Learn a model to match RDM of stimuli in the brain (Federer et al. [Fed+20])
Applied with Macaques (actually not MRI data but neural firing rates recordings)

Cost function using RDM constraint on layer l

λ
∑

i,j

||RDMmacaque
i,j − RDMNN(l)

i,j ||2 + LossClassif

λ updated so that the ratio of the two loss term remains equal to a constant r
Use the combined loss for a few epochs then use the classification loss only

The DNN achieves better image classification results on CIFAR 100

T. Artières (ECM - LIS / AMU ) June 10, 2024 53 / 79



A Model of Neural computation (Seeliger et al. [See+21])

Neural Information Flow
Data driven approach that represent neural information processing between different
cortical areas
No computational task / End to end learning
Method: Add predictors from hidden layers to predefined brain regions

Introduce simplifying assumption in the predictors to enable learning from small data
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Outline

1 Learning representations

2 Generative models

3 Few Deep Learning studies for MRI data

4 A focus on speaker decoding

5 Conclusion
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Outline

4 A focus on speaker decoding
Basics
Approach
Results
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A focus on decoding vocal (identity) from the brain (Lamothe et al.
[Lam+24])

Joint work with
Charly Lamothe (His PhD’s work)
INT people: Pascal Belin, Bruno Giordano, Etienne Thoret, Sylvain Takerkard
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A focus on decoding vocal (identity) from the brain (Lamothe et al.
[Lam+24])

The vocal brain
The brain areas that process the audio
vocal signal ”before linguistics”
How voice information is represented in
neuronal populations ?
More particularly how speaker identity
(including gender, age etc) is encoded ?

TVAs / voice areas
The cerebral processing of voice information involves a set of temporal areas (TVAs)
in second auditory cortical regions
The TVAs respond more strongly to sounds of voice but the nature of the
information encoded at these stages (especially related to speaker identity) remains
largely unknown

T. Artières (ECM - LIS / AMU ) June 10, 2024 58 / 79



Questions

Problems
Still poorly understood
Much less studied/known than the neural bases of speech processing and of visual
processing
Not so clear existence of a hierarchy of representations such as in vision areas

In this study
Q1: How does the VLS (Voice Latent Space) account for the brain responses to
speaker identities in A1 and the TVAs? How does it compare to a linear latent
space?
Q2: How does the geometry of the VLS account for the representational geometry
for voice identities in the auditory cortex?
Q3: How well can we reconstruct a stimulus from brain activity?
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Voice Data (Ardila et al. [Ard+19])

Preprocessing
Short sample signals (250ms) Example

To emphasize speaker identity over linguistic information
Allows presentation of many more stimuli

Features input to DNNs
Amplitude spectrograms: (21 time steps × 401 frequency bins)

DNN training data
About 182k voice samples (250ms long)
405 speakers / 8 languages
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MRI Data

MRI data (gathered at INT/INS in Marseille)
3 healthy volunteers...
... were scanned over 10+ hours...
...in response to ≈ 12000 voice samples (called BrainVoice dataset hereafter,
different from the training set of DNNs)
Different sets of stimuli were used for each participant: samples from 119 speakers
in 8 languages.

Comments
Too few subjects to generalize
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MRI Pre-processing steps

We are far from csv-like data ML practitioners love so much
Many sources of noise and variability

Pure noise
Inter-subject variability (brain areas, shape etc)
Distracting activity while scanning (motion etc)
Hemodynamic response

The engineering of presenting audio in the MRI device...
Few steps

Aligning: Account for brain diversity
Denoising: Many distracting information in the brain
Gathering relevant information with GLM models
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MRI data: A complex pipeline

Borrowed from Pascal Belin (INT, Marseille)
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Design Matrix

Images borrowed from a tutorial by P. Belin (INT, Marseille)
1 time series / voxel
The time series for all voxels y is the product of X , the design matrix, and β
The design matrix is built from indicators (0/1 signals from one-hot-encodings) and
additional regressors

1 if speaker i is speaking, 0 otherwise
1 if stimuli i is played, 0 otherwise

The design matrix (indicators only) is convolved with a HRF (Hemodynamic
Response)
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A GLM model

Design matrix and regressors
Bold signal Y ∈ RS×?

Considered regressors X ∈ RT×V

Assumption: Y = X × β with β ∈ RV ×p

Least square approximation:

β̂ = arg max
β

∥Y − X × β∥2 + Ω(β)

Usage
X includes regressors for information one wants to remove ⇒ denoise with
Yd = Y − X × β̂

X includes regressors that we are interested in ⇒ β̂ becomes the quantity of interest
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GLMs

First GLM: Denoising
Desig matrix X : 36 regressors motion and head and ...
Convolve X with hemodynamic response (still noted X)
Precict Y from regressors:

βd = arg max
β

∥Y − X × β∥2 + Ω(β)

Remove noise predicted from distracting and irrelevant regressors

Yd = Y − X × βd
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GLMs

Second GLM: Stimuli representation
Design matrix X ∈ RS×(N+1) (with N = 6000): Stimuli regressors
Convolve X with hemodynamic response (still noted X)
Predict Y from regressors:

βs = arg max
β

∥Y − X × β∥2 + Ω(β)

Model the silence through one (last) regressor, removed by substraction
βs [i , :] are stimuli representations

T. Artières (ECM - LIS / AMU ) June 10, 2024 66 / 79



GLMs

representation
Design matrix X ∈ RS×(Ni +1) with Ni = 415: Identity regressors
Convolve X with hemodynamic response (still noted X)
Predict Y from regressors:

βi = arg max
β

∥Y − X × β∥2 + Ω(β)

Model the silence through one (last) regressor, removed by substraction
βi [s, :] ∈ RV is speaker s’s representation
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4 A focus on speaker decoding
Basics
Approach
Results
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Approach

Rather simple
Very similar to (VanRullen and Reddy [VR19])
Pretrained VAE ⇒ unsupervised learning rather than task-oriented DNN

Comparison with a linear model

Learn a linear predictor from neural representation to latent space
Use the decoder to reconstruct a spectrogram from inferred latent representation
Few attempts to improve the baseline

Use a reconstruction loss defined on mfcc rather than on spectrograms
Learn an adversarial discriminator to ”beautify” the reconstruded spectrograms
Joint learning of the autoendoder and of the linear mapping from brain space to latent
space
Add a RDM constraint on the latent space
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Outline

4 A focus on speaker decoding
Basics
Approach
Results
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Exploring the Vocal Latent Space (VLS)

Traversal between 2 samples
Voice A to Voice B
A − − − − B

Feminizing a sample
Changing sample A by
decoding zA + zfemale − zmale

Original - Feminized
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Exploring the Vocal Latent Space (VLS)

Assessing speaker identity encoding
Compute a latent vector per speaker by averaging latent vectors of all his stimulus
Probe the informational content by learning a linear classifier to predict gender / age
/ identity
All results significantly above chance (student test)
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Questions

In this study
Q1: How does the VLS account for the brain responses to speaker identities in A1
and the TVAs? How does it compare to a linear latent space? ⇒ Encoding speaker
identity study
Q2: How does the geometry of the VLS account for the representational geometry
for voice identities in the auditory cortex?
Q3: How well can we reconstruct a stimulus from brain activity?
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Encoding speaker identity

Method
Compute βi ’s (speaker sensitivity maps)
Learn a linear regression model to predict βi from the latent of speaker i
Perform the study for each TVA
Assess performance in a cross Validation setting

Results
Significativity analysis using
ANOVA and Student t-test

ANOVA shows strong effect
of feature (LIN vs VLS) and
ROI

Models are complementary.
No significant advantage of
one over the other
Note the level of (Pearson)
correlations (distribution over
the voxels)
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Questions

In this study
Q1: How does the VLS account for the brain responses to speaker identities in A1
and the TVAs? How does it compare to a linear latent space?
Q2: How does the geometry of the VLS account for the representational geometry
for voice identities in the auditory cortex? ⇒ RSA study at the speaker level
Q3: How well can we reconstruct a stimulus from brain activity?
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RSA for speaker identity analysis

The geometry of the VLS space better matches that of TVAs
Method

One RDMs for each ROI (A1, aTVA, mTVA, pTVA) and hemisphere (dissimilarity
using Pearson’s correlation)
One RDM per model (dissimilarity using cosine distance)
Similarity between two RDMS (two representations spaces) is computed as Spearman
correlation coefficient
Statistical test to compare to null correlation using random permutations of the
model’s RDM columns
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Decoding

Decoding examples
Example 1 (top): VLS reconstructed - Brain Lin - Brain NLin
Example 2 (bottom): VLS reconstructed - Brain Lin - Brain NLin
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Objective and subjective results

Main results
NLin outperforms Lin to preserve genre, age and identity in at least one TVA
pTVA outperforms other ROIs in gender, age and identity
13 human participants judged naturalness, gender, age, and speaker categorization.
Better results for the NLin model in specific cases (naturalness for A1 and TVAs etc)

Performance measures
Objective measures (top): linear classifiers for gender, age and identity
Subjective measures : Listener performance at categorizing gender, age, and identity
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Comments rather than a conclusion

Somehow different from traditional ML studies
A neuroscience paper answers a neuroscientific question

Specific dataset and preprocessing
While benchmark datasets have been a motor for huge progress in ML

Noisy data / hard tasks / etc
Often only weak conclusions (e.g. significantly different from random)
Sometimes (too) strong conclusions on the brain

Risk of biased results?
Results might be biased towards expected results and/or prior knowledge

A challenging field for ML practitioners
Understanding the brain is a fascinating field
And a very difficult one
Lots of interesting questions to answer which require innovation in ML and DL
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