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Generative models

Generative models

Goal
Learn to generate complex and realistic data
Statistical viewpoint : learn a model of the density of data / able to sample with
this density

Postulate a parametric model : Usually not complex enough
Postulate a parametric form and perform optimization (e.g. Maximum Likelihood) :
Intractable for complex forms p(x) = F (x)

Z(x with Z(x) =
∑

x F (x)

[Goodfellow, 2014]

Maximum Likelihood Estimation (MLE)
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Generative models

Adversarial learning principle
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GANs

Adversarial learning principle

Principle
Use a two player game

Learn both a generator of artificial samples AND a discriminator that learns to
distinguishes between true and fake samples.
The generator wants to flue the discriminator

If an equilibrium is reached the generator produces samples with the true density
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GANs

Adversarial Learning: Generator

Determinitic NN as a generative model

Using a deterministic NN as a generative model

Let note the function implemented by the model as G
Let note the input z → The NN computes G(z)
Assume z obeys a prior (noise) distribution, pz , e.g. Gaussian distribution
then the output x of the NN follows a distribution

⇒ pG (x) =
∫

z s.t. G(z)=x
pz (z)dz
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GANs

Le principe de l’adversarial learning [Goodfellow and al., 2014]

Principle
Jeu à deux joueurs: un générateur
et un discriminateur

le discriminateur veut distinguer
les exemples générés des vrais
exemples
Le générateur veut tromper le
discriminateur
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GANs

Adversarial Learning criterion

Criterion from [Goodfellow and al., 2014]
Generator G and Discriminator D are two NNs

Whose parameters are noted θg and θd

Distributions
pdata stands for the empirical distribution of the data from the training set
pz is a prior noise distribution, e.g. a Gaussian distribution
On convergence we want pg = pdata

Learning criterion:

ming maxd v(θg , θd ) = Ex∼pdata [logD(x)] + Ez∼pz [log(1− D(G(z)))]

Assume G is fixed: D is trained to distinguish between fake and true samples
Assume D is fixed : G is trained to generate samples as realistic as possible
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GANs

Adversarial Learning theory: What happens during Learning
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GANs

Learning algorithm

Algo from [Goodfellow and al., 2014]
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GANs

Characterizing the solution

Optimal discriminator
G being fixed

D∗G (x) = pdata(x)
pdata(x) + pg (x)

Let note C(G) = maxDV (G ,D)

⇒ C(G) = −log(4) + 2× JSD(pdata||pg )

with: JSD(pdata||pg ) the Jensen-Shanon divergence

JSD(pdata||pg ) = KL(pdata||
pdata(x)

pdata(x) + pg (x) ) + KL(pg ||
pdata(x)

pdata(x) + pg (x) )

with JSD ≥ 0 and JSD = 0→ pdata = pg
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GANs

Convergence proof

Convergence proof
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GANs

Good Examples
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GANs

Bad examples
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GANs

Interpolating with GANs [Goodfellow and al., 2014]

Idea
The latent code space is fully occupied
Any sample drawn by sampling with the generator should be realistic
One may interpolate between two latent codes and see
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GANs

Original GANs’ features

Known problems
DIfficult learning
Very long learning
Missing modes
Evaluation measures

Many many variants
Conditional
Disantangling
Image editing
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

Learning criterion
Few definitions for q(z|x) : simplest = deterministic
Learning criterion:

ming maxd v(θg , θd ) = Ex∼pdata

[
‖Dc (Ec (x))− x‖2]+ Ez∼pz [logD(z)]

+ Ex∼pdata [log(1− D(q(z|x)))]
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

Investigating the hidden code space
Using different (2D) prior noise distributions with AAE and VAE (left)
Sampling uniformly the Gaussian percentiles along each hidden code dimension z in
the AAE (right)
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

Label conditioned Variant
Goal: Better shape of the
hidden code space
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Adversarial Autoencoders

About using additional discriminators [Ganin et al, ICML 2015]
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Examples

Conditional GANs [Mirza and al., 2014]

Learning criterion
Citerion

ming maxd v(θg , θd ) = Ex,y pdata [logD(x , y)] + Ez pz ,y′ py

[
log(1− D(G(z, y ′), y ′))

]
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Examples

Image editing with Invertible Conditional GANs [Perarnau and al., 2016]
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Examples

Disentangling factors of variation [Chen et al., 2018]

Generating images under various styles
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Examples

Disentangling factors of variation [Chen et al., 2018]

Transfering styles between images
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Examples

Disentangling factors of variation [Qi et al., 2017]

Transfering styles between motion capture sequences
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