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Generative models

Generative models

Goal

@ Learn to generate complex and realistic data
o Statistical viewpoint : learn a model of the density of data / able to sample with
this density
o Postulate a parametric model : Usually not complex enough
o Postulate a parametric form and perform optimization (e.g. Maximum Likelihood) :

Intractable for complex forms p(x) = ";(—(XX) with Z(x) = ZX F(x)

eee o oo oo ee o Maximum Likelihood Estimation (MLE)

0" = arg max Enpiara 108 Pmodel (T | 0)
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Generative models

Adversarial learning principle

Taxonomy of Generative Models

!

‘ Maximum Likelihood

R e

Explicit density ‘ Implicit density

N o

Tractable density ‘Approximate density Markov Chain

— - GSN
-Fully visible belief nets
NADE ST

_MADE Variational | ' Markov Chain

Direct ‘

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

(Goodfellow 2016)
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GANs

Adversarial learning principle

Principle
@ Use a two player game

o Learn both a generator of artificial samples AND a discriminator that learns to
distinguishes between true and fake samples.

o The generator wants to flue the discriminator

@ If an equilibrium is reached the generator produces samples with the true density
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GANs

Adversarial Learning: Generator

Determinitic NN as a generative model

Using a deterministic NN as a generative model

@ Let note the function implemented by the model as G
@ Let note the input z — The NN computes G(z)
@ Assume z obeys a prior (noise) distribution, p;, e.g. Gaussian distribution

@ then the output x of the NN follows a distribution

= pe(x) = / pz(z)dz
zs.t. G(z)=x
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GANs

Le principe de I'adversarial learning [Goodfellow and al., 2014]

Principle

@ Jeu a deux joueurs: un générateur
et un discriminateur
e le discriminateur veut distinguer
les exemples générés des vrais
exemples
o Le générateur veut tromper le
discriminateur

T. Artidres (ECM, LIF-AMU)
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GANs

Adversarial Learning criterion

Criterion from [Goodfellow and al., 2014]

o Generator G and Discriminator D are two NNs
o Whose parameters are noted 6 and 04
o Distributions

@ Pgata Stands for the empirical distribution of the data from the training set
o p; is a prior noise distribution, e.g. a Gaussian distribution
o On convergence we want pg = Pdata

@ Learning criterion:

mingmaxqv(0g, 0a) = Exnpg, [l0gD(x)] + Ezp, [log(1 — D(G(2)))]

o Assume G is fixed: D is trained to distinguish between fake and true samples
o Assume D is fixed : G is trained to generate samples as realistic as possible
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GANs

Adversarial Learning theory: What happens during Learning

Discriminator Data

2,
¥ Model
distribution
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GANs

Learning algorithm

Algo from [Goodfellow and al., 2014]

‘Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

 Sample minibatch of m noise samples {z(1), ..., (™} from noise prior p,(2).
o Sample minibatch of m examples {2()),...,2(™} from data generating distribution
Paaa(T).

o Update the discriminator by ascending its stochastic gradient:
I } )
= i) — (i
v”"m Zl: [logD (a: ) + log (1 D (G (z )))] .
i=

end for
 Sample minibatch of m noise samples {z(*), ..., (™} from noise prior pg(z).
o Update the generator by descending its stochastic gradient:

vﬂ,,% glog (1 -D (G (z<i>))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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GANs

Characterizing the solution

Optimal discriminator
@ G being fixed
* pdata(X)
D¢(x) = ———————
600 = ) + i)
o Let note C(G) = maxpV/(G, D)

= C(G) = —log(4) + 2 x JSD(pdatal| )
o with: JSD(paata||pg) the Jensen-Shanon divergence

pdata(X) )+ KL(ng pdata(X) )

JSD ata =KL atal|~ 7 N | - [\
(pasal Ps) = KL{paseall 0= 0 para(x) + P ()

o with JSD > 0 and JSD = 0 — pgata = pg
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GANs

Convergence proof

Convergence proof

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ezrpie 108 DG(%)] + Exnp, [log(1 — Dg(x))]
then pg converges t0 Pyas

Proof. Consider V(G, D) = U(py, D) as a function of p, as done in the above criterion. Note
that U (pg, D) is convex in py. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
SUPye4 fo(z) and fo(z) is convex in x for every o, then dfg(x) € Of if 8 = argsupye 4 fo(2).
This is equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding G. supp, U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg, p, converges to p,, concluding the proof. O
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GANs

Good Examples
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GANs

Bad examples
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GANs

Interpolating with GANs [Goodfellow and al., 2014]

Idea
@ The latent code space is fully occupied
@ Any sample drawn by sampling with the generator should be realistic

@ One may interpolate between two latent codes and see

IVI I SLSISISISISISHNZI212121217171/71717

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.
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GANs

Original GANs' features

Known problems
Dlfficult learning
Very long learning

Missing modes

Evaluation measures

Many many variants
o Conditional
o Disantangling

o Image editing
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

q(z[x)
x 7z ~ q(z)

/ iint4

Dl‘;ﬂ\' mnzlﬂ;w Adversarial cost
rom p(z) |4 for distinguishing
o _) ™ _)@ positive samples p(z)

from negative samples ¢(z)

Learning criterion
o Few definitions for g(z|x) : simplest = deterministic
@ Learning criterion:
mingmaxav(0g, 04) = Exwpy, [IID(Ec(x)) = X[[2] + Exvp, [logD(2)]
+ Exvpgors [l0g(1 — D(q(2]x)))]
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

Adversarial Autoencoder Variational Autoencoder

Manifold of
Adversarial Autoencoder
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Investigating the hidden code space
@ Using different (2D) prior noise distributions with AAE and VAE (left)

@ Sampling uniformly the Gaussian percentiles along each hidden code dimension z in
the AAE (right)
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]
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Adversarial Autoencoders

About using additional discriminators [Ganin et al, ICML 2015]
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Examples

Conditional GANs [Mirza and al., 2014]

Learning criterion

o Citerion

mingmaxgv(0g, 0a) = Exy py,, [l0gD(x, ¥)] + E: 5,y o, [log(1 — D(G(z.y"),y))]

Discriminator Dixly)
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z y Figure 2: Generated MNIST digits, each row conditioned on one label
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Examples

Image editing with Invertible Conditional GANs [Perarnau and al., 2016]

Total number of papers

Cumulative number of named GAN papers by month

T. Artidres (ECM, LIF-AMU)
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Examples

Disentangling factors of variation [Chen et al., 2018]
Generating images under various styles
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Examples

Disentangling factors of variation [Chen et al., 2018]

Transfering styles between images

Ty
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Examples

Disentangling factors of variation [Qi et al., 2017]

Transfering styles between motion capture sequences

D Cy i Co
A Emotion Decoder Emotion
Discriminator clnssifier LST™ classifier
’ Adversarial \/
s

Zerue ~ P(2) = N(0,01) Adversarial

Encoder
LSTM
X
Pride+Walk
X1 -]
i
=8
Sadness+KnockDoor] Sadnoss+ Walking
X2
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