	0000000 00	0000 0000000000	

Deep Learning

Thierry Artières

Ecole Centrale Marseille - Option DIGITALE

October 16, 2019

	0000000 00	0000 0000000000	

MLPs • GD variants

2 DNNs

- 3 Depth and Capacity
 - Capacity
 - Overparameterization
- 4) Depth and Optimization
 - Optimization problem
 - Easing optimization

Conclusion

MLPs			
	0000000 00	0000 0000000000	

Outline

MLPs GD variants

2) DNN

- 3 Depth and Capacity
- 4 Depth and Optimization
- 5 Conclusion

MLPs			
	0000000 00	0000 0000000000	

MLP = Universal approximators

One layer is enough !

• Theorem [Cybenko 1989]: Let $\phi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0, 1]^m$. The space of continuous functions on I_m is denoted by $\mathcal{C}(I_m)$. Then, given any $\epsilon > 0$, there exists an integer N, such that for any function $f \in \mathcal{C}(I_m)$, there exist real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$, where $i = 1, \dots, N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \phi \left(w_i^T x + b_i \right)$$

as an approximate realization of the function f where f is independent of ϕ ; that is : $|F(x) - f(x)| < \epsilon$ for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

- Existence theorem only
- Many reasons for not getting good results in practice

MLPs			
	0000000 00	0000 0000000000	

MLP = Universal approximators: Proof (From Francois Fleuret slides)

simple real function

Any function in C([a, b], ℝ) may be approximated with any desired prevision with a linear combination of translated / scaled Relu functions.

$$f(x) = w_1 \times R(x - a_1) + w_2 \times R(x - a_2) + \dots$$

MLPs			
	0000000 00	0000 0000000000	

MLP = Universal approximators: Proof (From Francois Fleuret slides)

More general functions in $\Psi \in \mathcal{C}([0,1]^D,\mathbb{R})$

• Previous result hods for sin function

$$\begin{aligned} \forall A > 0, \epsilon > 0, \exists N, (\alpha_n, a_n) \in \mathbb{R} \times \mathbb{R}, n = 1, ..., N, \\ \text{s.t.} \max_{x \in [-A, A]} |\sin(x) - \sum_{n=1}^{N} \alpha_n R(x - a_n)|| \leq \epsilon \end{aligned}$$

• Density of Fourier series

$$orall \Psi, \delta > 0, \exists M, (v_m, \gamma_m, c_m) \in \mathbb{R}^D \times \mathbb{R} \times \mathbb{R}, m = 1, ..., M,$$

s.t. $\max_{x \in [0,1]^D} |\Psi(x) - \sum_{m=1}^N \gamma_m \sin(v_m.x - c_m)| \le \delta$

• Result easily follows

MLPs			
	0000000 00	0000 0000000000	

Optimal learning rate and convergence speed

Second order point of view

• Taylor expansion, noting $\nabla^2 C(w)$ the Hessian (a $N \times N$ matrix with N a model with parameters)

$$|\nabla C(w)|_{w'} = \nabla C(w)|_w + \nabla^2 C(w)(w'-w)$$

•
$$\rightarrow$$
 optimum rule (setting $\nabla C(w)|_{w'}$ to 0):

$$w' = w - (\nabla^2 C(w))^{-1} \nabla C(w)$$

- Optimal move not in the direction of the gradient
- In Order 1 Gradient descent the optimal the optimal value of ε depends on eigen values of the Hessian ∇²C(w)

[Lecun et al, 93]

MLPs			
	0000000 00	0000 0000000000	

Optimization routines

Many SGD variants popular in DL

- SGD with Momentum
- Nesterov accelerated gradient
- Adragrad
- Adadelta
- RmsProp
- ...

MLPs			
000	0000000 00	0000 0000000000	
GD variants			

Using Momentum

SGD with Momentum

- Standard Stochastic Gradient descent : $w = w - \epsilon \frac{\partial C(w)}{\partial w}$
- SGD with Momentum:

$$\mathbf{v} = \gamma \mathbf{v} + \epsilon \frac{\partial \mathcal{C}(w)}{\partial w}$$

$$w = w - v$$

SGD standard

SGD avec momentum

MLPs			
000	0000000 00	0000 0000000000	
GD variants			

Nesterov Accelerated Gradient

Principle

• Idea: Better anticipate when to slow down by looking forward

$$v_{t+1} = \gamma v_t + \epsilon \nabla C(w)|_{w_t - \gamma v_t}$$
$$w_{t+1} = w_t - v_{t+1}$$

- Blue vectors: standard momentum
- Brown vectors: jump
- Red vectors: correction
- Green vectors: accumulated gradient

MLPs			
000	0000000 00	0000 0000000000	
GD variants			

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

• Define
$$g_{t,i} = \frac{\partial C(w)}{\partial w_i}$$
 the derivative wrt a single weight value w_i

•
$$w_{t+1,i} = w_{t,i} - \frac{\epsilon}{\sqrt{G_{t,ii}+\gamma}}g_{t,i}$$

- where $G_{t,ii}$ is a diagonal matrix with i^{th} element equal to $\sum_{t} g_{t,i}^2$
- γ is a very small value to avoid numerical exceptions
- Standard value $\epsilon = 0.01$
- Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and RmsProp

DNNs			
	0000000 00	0000 0000000000	

Outline

DNNs			
	0000000 00	0000 0000000000	

Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

$$h^{i}(x) = g(W^{i} \times h^{i-1}(x))$$

DNNs			
	0000000 00	0000 0000000000	

Shallow vs deep models

From [LeCun tutorial Statlearn]

- Neural Networks with one hidden layer are shallow models
- SVMs are shallow models

DL

• Joint learning of a hierarchy of representations and of a prediction model

DNNs			
	0000000 00	0000 0000000000	

Feature hierarchy : from low to high level

What feature hierarchy means ?

- Low-level features are shared among categories
- High-level features are more global and more invariant

[From Taigman et al., 2014]

	Depth and Capacity		
	0000000 00	0000 0000000000	

Outline

	Depth and Capacity		
	0000000 00	0000 0000000000	
Capacity			

Deep networks are powerful

	Depth and Capacity		
	0000000 00	0000 0000000000	
Capacity			

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

• There is a simple function expressible by a 3-layer network that may not be approximated by a 2-layer network to more than a certain accuracy unless its width is exponential in the input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

- DNNs with RELU activation function \Rightarrow piecewise linear function
- Capacity as a function of the number of linear regions one may divide the input space
- Exponentially more regions per parameter in terms of number of HL
 - Case of p_0 inputs and $p = 2p_0$ hidden cells per HL (with k HL) :
 - Maximum number of regions at least : $2^{(k-1)p_0} \sum_{i=0}^{p_0} {2p_0 \choose i}$

	Depth and Capacity		
	0000000		
	00	0000000000	
Capacity			

Deep vs Shalow ?

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

- DNNs with RELU activation function \Rightarrow piecewise linear function
- Complexity of DNN function as the Number of linear regions on the input data
- Case of n_0 inputs and $n = 2n_0$ hidden cells per HL (k HL) :
 - Maximum number of regions : $2^{(k-1)n_0} \sum_{i=0}^{n_0} {2n_0 \choose i}$
- Example: $n_0 = 2$
 - Shallow model: $4n_0$ units $\rightarrow 37$ regions
 - Deep model with 2 hidden layers with $2n_0$ units each \rightarrow 44 regions
 - Shallow model: $6n_0$ units \rightarrow 79 regions
 - Deep model with 3 hidden layers with $2n_0$ units each \rightarrow 176 regions
- Exponentially more regions per parameter in terms of number of HL
- At least order (k-2) polynomially more regions per parameter in terms of width of HL n

	Depth and Capacity 000●0000 00	Depth and Optimization 0000 0000000000	
Capacity			
_			

Deep vs Shalow ?

From [Pascanu and al., 2014]

- Left: Regions computed by a layer with 8 RELU hidden neurons on the input space of two dimensions (i.e. the output of previous layer)
- Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2 hidden layers of width 4, and one linear output unit. Black lines delimit regions of linearity of the function
- Right: Heat map of a function computed by a 4 layer model with a total of 24 hidden units. It takes at least 137 hidden units on a shallow model to represent the same function.

	Depth and Capacity		
	0000000 00	0000 000000000	
Capacity			

DNNs are overparameterized

Large DNNs may even learn noise

- For instance : Learn after random permutation of the labels of the training samples
- It learns, but it takes more time...
- Note that the same (large) architectures that may learn random labels generalize well when trained on non perturbated data

	Depth and Capacity		
	00000000		
	00	0000000000	
Capacity			

DNNs and overfitting

Actually NNs do not easily overfit

- The more you learn the better it generalizes
- Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size *H*) NNs without any regularization → no overfitting observed

[Neyshabur 2017]

	Depth and Capacity		
	00000000 00	0000 0000000000	
Capacity			

Capacity

Vapnik dimension

Rademacher capacity

$$R_n(H) = E_{\sigma}[sup_{h \in H} \frac{1}{n} \sum_{i=1}^n \sigma_i h(x_i)]$$

with $\sigma_i \in \{-1, 1\}$

- Clearly looks like the randomization test
- Trivial upperbound (=1): useless

	Depth and Capacity		
	0000000 00	0000 0000000000	
Capacity			

DNNs' capacity

Vapnik dimension of deep NNs with ReLU

- With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is $h = \Theta(L^2 p^2)$
- Considering classical generalization bound : $R(w) \le R_{emp}(w) + \tilde{O}(\sqrt{\frac{L^2 \rho^2}{n}})$
- This does not explain generalization behavior

[O. Bousquet, tutorial 2017]

	Depth and Capacity		
	0000000 • 0	0000 0000000000	
O			

Deep nets do not actually need to be huge

Size helps learning but one may simplify once learned !

- Low rank tensor approximation (CP, Tucker, TensorTrain) of layer weight matrices (FC, Conv, RNN) [Novikov et al. 2015]
- Distillation strategy [Hinton et al., 2015]
 - Learn a deep and complex model *f_{NN}* (or en ensemble of deep models) on a dataset *D*
 - Create a new learning task by computing the output vectors o of f_{NN} for samples in D (better use logits than outputs of the softmax)
 - Learn a narrower model to predict *o* vectors for samples in *D*

number of parameters in the weight matrix of the first layer

		Depth and Capacity		
		0000000 00	0000 0000000000	
Overparameter	ization			

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer

• Knowledge distillation + intermediate distillation losses

		Depth and Optimization	
	0000000	0000	

Outline

			Depth and Optimization	
		0000000 00	0000 0000000000	
Optimization pr	oblem			

From shalow to deep

			Depth and Optimization	
		0000000 00	0000 000000000	
Optimization p	roblem			

From shalow to deep

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun Statlearn tutorial]

- ... but expectation of generalized results to other activation functions
- With ReLu and MaxPooling operators one may formalize what happens on a path from an input to the output
- The output may be computed as :

$$\hat{y} = \sum_{P} \delta_{P}(W, X) (\prod_{(ij) \in P} w_{ij}) x_{j_{start}}$$

- $\delta_P(W, X)$: 1 if active path, 0 otherwise
- Implemented function is piece-wise linear

		Depth and Optimization	
	0000000 00	0000 0000000000	
Out that			

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun Statlearn tutorial]

 Objective function : piece wise polynomial (degree = number of hidden layers) with partially random coefficients

$$C(W) = \sum_{P} C_{P}(X, Y, W)(\prod_{(ij) \in P} w_{ij})$$

• Hint from results on distribution of critical points for polynomials with random coefficients

			Depth and Optimization		
			0000		
		00	0000000000		
Optimization problem					

Deep ReLu networks

Easier analysis... [LeCun Statlearn tutorial]

- Experiments by [Choromanska and al., 2015]: Train 2-layers nets on Mnist from multiple initializations and measure loss on the test set
- Many close local minimas for large nets
- Objective function do not exhibit lots of saddle points and most local minima are good and close to globale minimas

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]

			Depth and Optimization	
		0000000	0000	
		00	0000000000	
Easing ontimiza	tion			

Yet the depth alone is not enough

While SGD works well for shallow NNs, the optimization of DNNs requires careful design and tricks

- Make the gradient flow
 - Use normalization strategies (e.g. Batch Normalization)
 - Use auxiliary losses
 - Dropout regularization
 - Include structural constraints like Including the identity mapping as a possible path from the input to the output of a layers (e.g. ResNet building block [He and al., 2015]])

			Depth and Optimization	
		0000000	0000	
Easing optimiz	ation		000000000	

Activity propagation in deep NNs [He et al., 2016]

Few slides from Fei Fei Li

Standard initialization schema for MLPs

- 10 layers networks (500 neurones each, with tanh)
- Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
- All activations at 0
- What about the gradient ?

			Depth and Optimization	
		0000000 00	0000 00 0000000 0	
Easing optimiz	ation			

Tuning weights initialization

Increasing weights initial values comes with neuron saturation problem

- 10 layers networks (500 neurones each, with tanh)
- Initialization : gaussian random with normal (std=1.0) values
- All neurons saturate
- No gradient backpropagated

From Fei Fei Li's slides

			Depth and Optimization	
		0000000 00	0000 000 0 000000	
Easing optimiza	tion			

Smarter intialization

Good (but not enough)

- 10 layers networks (500 neurones each, with tanh)
- Xavier initialization : random gaussian with std dev = $\frac{1}{N_{previouslayer}}$
- Much better behavior but fails with RELU activation (assuming normalized inout data)

From Fei Fei Li's slides

			Depth and Optimization	
		0000000 00	0000 0000000000	
Easing optimiza	tion			

Smarter intialization

Good (but not enough)

- 10 layers networks (500 neurones each, with tanh)
- Xavier initialization : random gaussian with std dev = $\frac{1}{N_{previouslayer}}$
- Much better behavior but fails with RELU activation (assuming normalized inout data)

From Fei Fei Li's slides

T. Artières (ECM - LIS / AMU)

			Depth and Optimization	
		0000000	0000	
Easing optimizati	on			

Batch Normalization

Main idea

- Usually inputs to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1
- BN essentially performs Whitening to the intermediate layers of the networks.
- Usually placed before nonlinearities

			Depth and Optimization	
		0000000	0000	
Easing optimiza	ition			

Batch Normalization

BN layer

- Normalizes the output of a layer by scaling neuron's outputs within a minibatch (of size M)
- For one neuron of the input layer, its output is modified according to:

$$\mu_B = \frac{1}{M} \sum_{i=1}^{M} x_i \qquad (1)$$

$$\sigma_B^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu_B)^2 \qquad (2)$$

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \tau}} \qquad (3)$$

$$y_i = \gamma x_i + \beta \qquad (4)$$

 Use a different computation at inference time (empirical mean and variance computed on the full training set)

T. Artières (ECM - LIS / AMU)

			Depth and Optimization	
		0000000 00	0000 0000000000	
Easing optimiz	ation			

Other normalization methods

many variants

• ...

			Depth and Optimization	
		0000000 00	0000 00000000000	
Easing optimiza	ation			

Auxiliary loss on intermediate layers

Google net architecture

• Auxiliary loss brings some gradient to first layers

			Depth and Optimization	
		0000000 00	0000 00000000000	
Easing ontimiza	ation			

Dropout [Hinton 2012]

Principle

- First method that allowed learning rellay deep networks without pretraining and smart initialization
- Related to ensemble of models
- Weights are normalized at inference time

			Depth and Optimization	
		0000000	0000	
Easing optimiz	ation	00		

Dropout [Hinton 2012]

Do not ever fear overfitting !

			Depth and Optimization	
		0000000 00	0000 000000000	
Easing optimizati	on			

RESNET implementation

Include identity connexions in the architecture

			Depth and Optimization	
		0000000	0000	
_		00		
Easing optimiz:	tion			

RESNET implementation

Include identity connexions in the architecture

Standard 2 block layers

```
def Unit(x,filters):
    out = BatcNNormalization()(x)
    out = conv20(filters=filters, kernel_size=[3, 3], strides=[1,
    1), padding="same")(aut)
    out = BatcNNormalization()(aut)
    out = BatcNNormalization()(aut)
    out = conv20(filters=filters, kernel_size=[3, 3], strides=[1,
    1], padding="same")(aut)
    return out
```

ResNet building block [He and al., 2015]

```
def Unit(x,filters):
    res = x
    out = BatcNNormalization()(x)
    out = ActNNormalization()(x)
    out = ActNNormalization()(u)
    out = Conv2D(filters=filters, kernel_size=[3, 3], strides=[1,
    1], padding="same")(out)
    out = BatcNNormalization()(out)
    out = ActNNormalization()(u)
    out = Conv2D(filters=filters, kernel_size=[3, 3], strides=[1,
    1], padding="same")(out)
    out = Across.layers.add([res,out])
    return out
```

			Conclusion
	0000000 00	0000 0000000000	

Outline

1 MLPs

2 DNNs

- 3 Depth and Capacity
- Depth and Optimization

000 0000000 0000 00 0000000000	ļ

DL vs standard ML

Traditional Machine Learning

- Overfitting is the enemy
- One may control generalization with appropriate regularization
- Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

- Huge capacity without overfitting
- The size helps learning
- Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
- Regularization may slightly improve performance but is not THE answer for improving generalization
- Not clear what in the DNN may allow to predict its generalization ability

			Conclusion
	0000000	0000	

Réferences

- Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473 (2014)
- Mickaël Chen, Ludovic Denoyer, Thierry Artières, Multi-View Data Generation Without View Supervision. ICLR, 2018.
- Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, Yann LeCun, The Loss Surfaces of Multilayer Networks. AISTATS 2015
- Ronen Eldan, Ohad Shamir, The Power of Depth for Feedforward Neural Networks. COLT 2016: 907-940
- Clément Farabet, Camille Couprie, Laurent Najman, Yann LeCun: Learning Hierarchical Features for Scene Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1915-1929 (2013)
- Fei Fei Li slides : http://cs231n.stanford.edu/
- Yaroslav Ganin, Victor S. Lempitsky, Unsupervised Domain Adaptation by Backpropagation. ICML 2015: 1180-1189
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition. CVPR 2016: 770-778
- Geoffrey E. Hinton, Oriol Vinyals, Jeffrey Dean, Distilling the Knowledge in a Neural Network. CoRR abs/1503.02531 (2015)
- Reducing the Dimensionality of Data with Neural Networks G. E. Hinton and R. R. Salakhutdinov, VOL 313 SCIENCE, 2006
- Sepp Hochreiter, Jürgen Schmidhuber, Long Short-Term Memory. Neural Computation 9(8): 1735-1780 (1997)
- Krizhevsky, Sutskever, Hinton, ImageNet Classification with deep convolutional neural networks NIPS 2012

			Conclusion
	0000000 00	0000 0000000000	

Réferences

- Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, Arxiv, 2014
- LeCun, Bottou, Bengio and Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998
- Lecun tutorial ICML 2013: https://cs.nyu.edu/ yann/talks/lecun-ranzato-icml2013.pdf
- Gilles Louppe, Michael Kagan, Kyle Cranmer, Learning to Pivot with Adversarial Networks. NIPS 2017: 982-991
- Mehdi Mirza, Simon Osindero, Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014)
- Guido F. Montúfar, Razvan Pascanu, KyungHyun Cho, Yoshua Bengio, On the Number of Linear Regions of Deep Neural Networks. NIPS 2014: 2924-2932
- Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nati Srebro, Exploring Generalization in Deep Learning. NIPS 2017: 5949-5958
- Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry P. Vetrov, Tensorizing Neural Networks. NIPS 2015: 442-450
- Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, Jose M. Álvarez, Invertible Conditional GANs for image editing. CoRR abs/1611.06355 (2016)
- Alec Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015)
- Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel: Meta-Learning for Semi-Supervised Few-Shot Classification. CoRR abs/1803.00676 (2018)

			Conclusion
	0000000 00	0000 0000000000	

Réferences

- Marco Túlio Ribeiro, Sameer Singh, Carlos Guestrin, Why Should I Trust You? Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144
- Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, Yoshua Bengio, FitNets: Hints for Thin Deep Nets. CoRR abs/1412.6550 (2014)
- Shreyas Saxena, Jakob Verbeek, Convolutional Neural Fabrics. NIPS 2016: 4053-4061
- Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014)
- Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, End-To-End Memory Networks. NIPS 2015: 2440-2448
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going deeper with convolutions. CVPR 2015: 1-9
- Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR 2014: 1701-1708
- Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, How transferable are features in deep neural networks? NIPS 2014: 3320-3328
- Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks. ECCV (1) 2014: 818-833
- Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, Understanding deep learning requires rethinking generalization. CoRR abs/1611.03530 (2016)