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MLP = Universal approximators

One layer is enough !

Theorem [Cybenko 1989]: Let φ(·) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m. The space of continuous functions on Im is denoted by C(Im). Then,
given any ε > 0, there exists an integer N, such that for any function f ∈ C(Im), there exist
real constants vi , bi ∈ R and real vectors wi ∈ Rm, where i = 1, · · · ,N, such that we may
define:

F (x) =
N∑

i=1

viφ
(

wT
i x + bi

)
as an approximate realization of the function f where f is independent of φ ; that is :
|F (x)− f (x)| < ε for all x ∈ Im. In other words, functions of the form F (x) are dense in
C(Im).
Existence theorem only
Many reasons for not getting good results in practice
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MLP = Universal approximators: Proof (From Francois Fleuret slides)

simple real function

Any function in C([a, b],R) may be approximated with any desired prevision with a linear
combination of translated / scaled Relu functions.

f (x) = w1 × R(x − a1) + w2 × R(x − a2) + ...
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MLP = Universal approximators: Proof (From Francois Fleuret slides)

More general functions in Ψ ∈ C([0, 1]D ,R)

Previous result hods for sin function

∀A > 0, ε > 0,∃N, (αn, an) ∈ R× R, n = 1, ...,N,

s.t. max
x∈[−A,A]

| sin(x)−
N∑

n=1

αnR(x − an)|| ≤ ε

Density of Fourier series

∀Ψ, δ > 0,∃M, (vm, γm, cm) ∈ RD × R× R,m = 1, ...,M,

s.t. max
x∈[0,1]D

|Ψ(x)−
N∑

m=1

γm sin(vm.x − cm)| ≤ δ

Result easily follows
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Optimal learning rate and convergence speed

Second order point of view

Taylor expansion, noting ∇2C(w) the Hessian (a N × N
matrix with N a model with parameters )

∇C(w)|w′ = ∇C(w)|w +∇2C(w)(w ′ − w)

→ optimum rule (setting ∇C(w)|w′ to 0):

w ′ = w − (∇2C(w))−1∇C(w)

Optimal move not in the direction of the gradient
In Order 1 Gradient descent the optimal the optimal value of ε
depends on eigen values of the Hessian ∇2C(w)

From
[Lecun et al, 93]
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Optimization routines

Many SGD variants popular in DL

SGD with Momentum
Nesterov accelerated gradient
Adragrad
Adadelta
RmsProp
...
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GD variants

Using Momentum

SGD with Momentum

Standard Stochastic Gradient descent :
w = w − ε ∂C(w)

∂w
SGD with Momentum:

v = γv + ε
∂C(w)
∂w

w = w − v

SGD standard SGD avec momentum

T. Artières (ECM - LIS / AMU ) Deep Learning October 16, 2019 9 / 48



MLPs DNNs Depth and Capacity Depth and Optimization Conclusion

GD variants

Nesterov Accelerated Gradient

Principle

Idea: Better anticipate when to slow down by looking forward

vt+1 = γvt + ε∇C(w)|wt−γvt

wt+1 = wt − vt+1

Blue vectors: standard momentum
Brown vectors: jump
Red vectors: correction
Green vectors: accumulated gradient
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GD variants

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

Define gt,i = ∂C(w)
∂wi

the derivative wrt a single weight value wi

wt+1,i = wt,i − ε√
Gt,ii +γ

gt,i

where Gt,ii is a diagonal matrix with i th element equal to
∑

t g2
t,i

γ is a very small value to avoid numerical exceptions
Standard value ε = 0.01

Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and
RmsProp
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Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

hi (x) = g(W i × hi−1(x))
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Shallow vs deep models

From [LeCun tutorial Statlearn]

Neural Networks with one hidden layer are
shallow models
SVMs are shallow models

DL

Joint learning of a hierarchy of
representations and of a prediction model
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Feature hierarchy : from low to high level

What feature hierarchy means ?

Low-level features are shared among categories
High-level features are more global and more invariant

[From Taigman et al., 2014]
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Capacity

Deep networks are powerful

[Kaiming He]
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Capacity

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

There is a simple function expressible by a 3-layer network that may not be approximated by
a 2-layer network to more than a certain accuracy unless its width is exponential in the
input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

DNNs with RELU activation function ⇒ piecewise linear function
Capacity as a function of the number of linear regions one may divide the input space
Exponentially more regions per parameter in terms of number of HL

Case of p0 inputs and p = 2p0 hidden cells per HL (with k HL) :
Maximum number of regions at least : 2(k−1)p0

∑p0
j=0

(
2p0

j

)
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Capacity

Deep vs Shalow ?

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

DNNs with RELU activation function ⇒ piecewise linear function
Complexity of DNN function as the Number of linear regions on the input data
Case of n0 inputs and n = 2n0 hidden cells per HL (k HL) :

Maximum number of regions : 2(k−1)n0
∑n0

j=0

(2n0
j

)
Example: n0 = 2

Shallow model: 4n0 units → 37 regions
Deep model with 2 hidden layers with 2n0 units each → 44 regions
Shallow model: 6n0 units → 79 regions
Deep model with 3 hidden layers with 2n0 units each → 176 regions

Exponentially more regions per parameter in terms of number of HL
At least order (k-2) polynomially more regions per parameter in terms of width of HL n
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Capacity

Deep vs Shalow ?

From [Pascanu and al., 2014]

Left: Regions computed by a layer with 8 RELU hidden neurons on the input space of two
dimensions (i.e. the output of previous layer)
Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2 hidden
layers of width 4, and one linear output unit. Black lines delimit regions of linearity of the
function
Right: Heat map of a function computed by a 4 layer model with a total of 24 hidden units.
It takes at least 137 hidden units on a shallow model to represent the same function.
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Capacity

DNNs are overparameterized

Large DNNs may even learn noise

For instance : Learn after random permutation of the labels of the training samples
It learns, but it takes more time...
Note that the same (large) architectures that may learn random labels generalize well when
trained on non perturbated data

[Zhang and al., 2017]
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Capacity

DNNs and overfitting

Actually NNs do not easily overfit

The more you learn the better it generalizes
Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size H) NNs
without any regularization → no overfitting observed

[Neyshabur 2017]
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Capacity

Capacity

Vapnik dimension

Rademacher capacity

Rn(H) = Eσ[suph∈H
1
n

n∑
i=1

σi h(xi )]

with σi ∈ {−1, 1}
Clearly looks like the randomization test
Trivial upperbound (=1): useless
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Capacity

DNNs’ capacity

Vapnik dimension of deep NNs with ReLU

With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is h = Θ(L2p2)

Considering classical generalization bound : R(w) ≤ Remp(w) + Õ(
√

L2p2
n )

This does not explain generalization behavior

[O. Bousquet, tutorial 2017]
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Overparameterization

Deep nets do not actually need to be huge

Size helps learning but one may simplify once
learned !

Low rank tensor approximation (CP,
Tucker, TensorTrain) of layer weight
matrices (FC, Conv, RNN) [Novikov et al.
2015]
Distillation strategy [Hinton et al., 2015]

Learn a deep and complex model fNN
(or en ensemble of deep models) on a
dataset D
Create a new learning task by
computing the output vectors o of
fNN for samples in D (better use
logits than outputs of the softmax)
Learn a narrower model to predict o
vectors for samples in D
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Overparameterization

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer

Knowledge distillation + intermediate distillation losses
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Optimization problem

From shalow to deep

Simply stacking layers does not work (CIFAR
results) ! (figures form [He and al., 2015])
...

(source [He et al. 2016])
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Optimization problem

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

... but expectation of generalized results to
other activation functions
With ReLu and MaxPooling operators one
may formalize what happens on a path
from an input to the output
The output may be computed as :

ŷ =
∑

P

δP (W ,X)(
∏

(ij)∈P

wij )xjstart

δP (W ,X) : 1 if active path, 0 otherwise
Implemented function is piece-wise linear
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Optimization problem

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

Objective function : piece wise polynomial
(degree = number of hidden layers) with
partially random coefficients

C(W ) =
∑

P

CP (X ,Y ,W )(
∏

(ij)∈P

wij )

Hint from results on distribution of critical
points for polynomials with random
coefficients
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Optimization problem

Deep ReLu networks

Easier analysis... [LeCun Statlearn tutorial]

Experiments by [Choromanska and al., 2015]: Train 2-layers nets on Mnist from multiple
initializations and measure loss on the test set
Many close local minimas for large nets
Objective function do not exhibit lots of saddle points and most local minima are good and
close to globale minimas
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Easing optimization

Yet the depth alone is not enough

While SGD works well for shallow NNs, the optimization of DNNs requires careful design and
tricks

Make the gradient flow
Use normalization strategies (e.g. Batch Normalization)
Use auxiliary losses
Dropout regularization
Include structural constraints like Including the identity mapping as a possible path
from the input to the output of a layers (e.g. ResNet building block [He and al.,
2015]])
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Easing optimization

Activity propagation in deep NNs [He et al., 2016]
Few slides from Fei Fei Li

Standard initialization schema for MLPs

10 layers networks (500 neurones each, with tanh)
Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
All activations at 0
What about the gradient ?

From Fei Fei Li’s slides
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Easing optimization

Tuning weights initialization

Increasing weights initial values comes with neuron saturation problem

10 layers networks (500 neurones each, with tanh)
Initialization : gaussian random with normal (std=1.0) values
All neurons saturate
No gradient backpropagated

From Fei Fei Li’s slides
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Easing optimization

Smarter intialization

Good (but not enough)

10 layers networks (500 neurones each, with tanh)

Xavier initialization : random gaussian with std dev = 1
Npreviouslayer

Much better behavior but fails with RELU activation (assuming normalized inout data)

From Fei Fei Li’s slides
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Easing optimization

Batch Normalization

Main idea

Usually inputs to neural networks are
normalized to either the range of [0, 1] or
[-1, 1] or to mean=0 and variance=1
BN essentially performs Whitening to the
intermediate layers of the networks.
Usually placed before nonlinearities

From Fei Fei Li’s slides
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Easing optimization

Batch Normalization

BN layer

Normalizes the output of a layer by scaling neuron’s
outputs within a minibatch (of size M)
For one neuron of the input layer, its output is
modified according to:

µB =
1
M

M∑
i=1

xi (1)

σ2
B =

1
M

M∑
i=1

(xi − µB)2 (2)

x̂i =
xi − µB√
σ2

B + τ
(3)

yi = γxi + β (4)

Use a different computation at inference time
(empirical mean and variance computed on the full
training set)

From Fei Fei Li’s slides
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Easing optimization

Other normalization methods

many variants

...
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Easing optimization

Auxiliary loss on intermediate layers

Google net architecture

Auxiliary loss brings some gradient to first layers
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Easing optimization

Dropout [Hinton 2012]

Principle

First method that allowed learning rellay deep networks without pretraining and smart
initialization
Related to ensemble of models
Weights are normalized at inference time
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Easing optimization

Dropout [Hinton 2012]

Do not ever fear overfitting !
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Easing optimization

RESNET implementation

Include identity connexions in the architecture
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Easing optimization

RESNET implementation

Include identity connexions in the architecture

Standard 2 block layers

ResNet building block [He and al., 2015]
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DL vs standard ML

Traditional Machine Learning

Overfitting is the enemy
One may control generalization with appropriate regularization
Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

Huge capacity without overfitting
The size helps learning
Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
Regularization may slightly improve performance but is not THE answer for improving
generalization
Not clear what in the DNN may allow to predict its generalization ability
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