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Intro

Where is Al?

Constat

@ The original Al was the General Al (1A forte)
@ Today 60 years after the Dartmouth meeting

o We have achieved some NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

Gartner Hype Cycle for Emerging Technologies, 2017

gartner.com/SmarterWithGartner

Gartner
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Intro

At the heart of Al: Machine Learning (and Deep Learning)

Which algorithms to solve these tasks ? J

person

helmet

motorcycle
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Intro

Machine Learning

What is it for?

@ Writing programs that solve a task while we don’t even know how to writre the algorithm
@ Where a program takes some input and produce a corresponding output

@ The program is learned from labeled data = pairs of (input, output)

What is it?
@ Algorithms that enable learning a function f : x € X — y € Y from a training dataset of
samples
@ The function must generalize well to data unseen at training time

@ x and y may be discrete, continuous, vectors, matrices, tensors, sequences ...
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Intro

Main difficulty

Generalization

@ It is “easy” to learn models that are perfect on training data

@ But is is useless

Sous-apprentissage Sur-apprentissage
_

Echantillon

/ de test

Erreur de prédiction

Echantillon

danaandlion Limite au dela de laquelle

{on est en sur-apprentissage

Complexité du modele
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History

Intro2

of Neural Networks

Key dates
@ 1943 : Formal neuron [McCuloch-Pitts]
@ 1950 : Oragnization of neurons and learning rules [Hebb]
@ 1960 : Perceptron [Rosenblatt]
@ 1960 : Update rule [Widrow Hoff]
@ 1969 : Limitations of the Perceptron [Minsky]
@ 1980s : Back-propagation [Rumelhart and Hinton]
@ 1990s : Convolutional Networks [LeCun and al.]
@ 1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]
@ 2006 : Paper on Deep Learning in Nature [Hinton and al.]
@ 2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]
@ 2013 : First edition of ICLR
@ 2013 : Memory networks [Weston and al.]
@ 2014 : Adversarial Networks [Goodfelow and al ]
@ 2014 : Google Net [Szegedy and al.]
@ 2015 : Residual Networks [He et al.]
° v
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Intro2

Al today

Where are we?

@ The original Al (Dartmouth workshop) was General Al (IA forte)
@ Today 60 years after Dartmouth

o We have achieved NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

Gartner Hype Cycle for Emerging Technologies, 2017

gartner.com/SmarterWithGartner

Gartner
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Intro2

Al today

Where are we?
@ The original Al (Dartmouth workshop) was General Al (IA forte)

@ Today 60 years after Dartmouth

o We have achieved NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

The evolution of artificial intelligence

Intelligence

<2016 2016 2020 2050 >2050

Source: UBS, as of 15 August 2016
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Intro2

Deep Learning today

Spectaculary breakthroughs - fast industrial transfer

@ Images, Videos, Audio, Speech, Texts
@ Successful setting

Structured data (temporal, spatial...)

Huge volumes of datas

Huge models (millions of parameters)

Huge storage and computing resources (GPU, TPU)

VGGNet DeepVideo
Used For = glimane =y g Video Translation
Category Category

Image Video English Text
i & >

Output 1000 Categories 47 Categories
Parameters 140M ~100M 380M

Data Size 1.2M Images with 1.1M Videos with |6M Sentence Pairs,
assigned Category | assigned Category 340M Words
Dataset ILSVRC-2012 Sports-1M WMT 14
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Intro2

Machine Learning and Deep Learning today

Spectacular diffusion and activity
@ Machine Learning and Deep Learning Conferences sold out early
@ More attendees than ever seen in computer science conferences

@ Exponential growth

@ Semantic change in what Al means

Large Conference Attendance

— AAAI
LJCAI
NIPS
= CVPR
ICML
— ICRA

2000
e —*

1990 2000 2010

4000

Attendees

Year

July 2, 2019 12 / 100
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Intro2

Machine Learning and Deep Learning today

Topics, trends and who's who?
@ Mix between academics and companies
@ Extreme popularity of Deep Learning topics

@ Birth of the International Conference on Learning Representation (2014)

1 1 Tutorials Hall A 2789 287

2 2 Deep Learning, Applications 2364 289 '

3 3 Deep Learning 1831 163 @ tong st un

4 3 Reinforecment Learning, Deep Learning 1592 140 ﬂ' ﬂ'
5 1 Optimization 1522 130

6 1 Tutorials Hall C 1344 135 GOOGLE cmu
7 1 Algorithms 1307 137 MICROSOFT T
8 2 Theory 1288 83 1BM STANFORD
9 2 Algorithms Optimization 1223 107

10 4 Deep Learning, Algorithms 1202 113

11 4 Deep Reinforcement Learning 1202 43

12 2 Invited talk: Kate Crawford: The Trouble with Bias 1162 71

13 3 Reinforcement Learning, Algorithms, Applications 1156 134

14 3 Invited talk: Pieter Abbeel: Deep Learning for Robotics 1087 61

15 1 Tutorials Grand Ballroom 1082 132

T. Artieres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 13 / 100



Intro2

DL research is going very fast !!

Example of an emerging topic: Generative Adversarial Networks

@ First publication : 2014 by lan J. Goodfellow, and al.

@ Hundreds of publications (close to a thousand) papers since

New publication mode

@ Wasserstein GANs, Martin Arjovsky and al.

o Published on arXiv : Jan 2017
o Published at ICML in Aout 2017

@ Improved Training of Wasserstein GANs by Ishaan Gulrajani and al.

o Published on arXiv : March 2017
o Published at NIPS in December 2017

@ Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual
Effect by Xiang Wei and al.

o Published on Openreview : Oct 2017
o Accepted as poster at ICLR in 2018 (April 2018)

v
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Intro2

Spectaculary breakthrough

Computer vision
Real time Object recognition J

VISION ERROR RATE

30%
Algorithms

2%

N—

0
20010 20 2012 2013 2014 2015 2016

SOURCE ELECTRONIC FRONTIER FOUNDATION © HBR.ORG
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Intro2

Spectaculary breakthrough

Speech J

Read speech (vocabulary: 1K, 5K.20K)  Eroadcast speech  Conversational speech

100%
Read Speech Conyersational
/ T Broadcast Switchboard Cellutar

20k Peech ——\-t:a\.

2 Poor Microphone: Switchboard

x 1K =N

E 10% - Y 2012 System @

W

2 5K

i Clean
2 S oo mosom s ¥ 2 9 = 8 @ ¥ o
§EEE383888828888¢8¢8¢6¢8

Year of Annual Evaluation

FIGURE 2.7 Historical progress on reducing the word error rate in speech recog-
nition systems for different kinds of speech recognition tasks. Recent competency
for the “difficult switchboard” task (human conversation in the wild) is marked
with the green dot. SOURCE: X. Huang, J. Baker, and R. Reddy, 2014, A histori-
cal perspective of speech recognition, Communications of the ACM 57(1):94-103,
doi:10.1145/2500887. © 2014, Association of Computing Machinery, Inc. Reprinted
with permission.
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Intro2

Spectaculary breakthrough

Games

@ BackGammon, Chess, Go

3200

3000

Eanuing —Human
2600 | e—Computer

1980 1985 1930 1995 2000 2005 2010 2015

FIGURE 2.3 Elo scores—a measure of competency in competitive games—
showing the chess-playing competency of humans and machines, measured over
time. SOURCE: Courtesy of Murray Campbell
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Intro2

Spectaculary breakthrough

Image generation
Recent Nvidia results J

. R;ined
i o

Training Data Samples
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Intro2

Spectaculary breakthrough

Should we still trust what we see? J

AL
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https://www.facebook.com/verge/videos/1661231000579903/

Intro2

Why now ?

Huge training resources for huge models

@ Huge volumes of training data

@ Huge computational ressources (clusters of GPUs)

v
Advances in understanding optimizing NNs
@ Regularization (Dropout...)
@ Making gradient flow (ResNets, LSTMs, ...)
v

Faster diffusion than ever

@ Softwares
@ Results

e Publications (arxiv publication model) + codes

o Architectures, weights (3 python lines for loading a state of the art computer vision
model!)
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MLPs

Outline

© mLPs

@ Basics
@ Deeper in MLPs
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MLPs

Where DL comes from

F. Rosenblatt 1958 : The perceptron
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MLPs
[ Jole}

Basics

A single Neuron

One Neuron

@ Elementary computation

activation = w' .x = E wiXj + wo
J

output = g(a(x))

Non linearity : g 5 .
— sigmoi
4l =—thanh

@ Sigmoide, Hyperbolic tangent, Gaussian : —ri /

@ Rectified Linear Unit (RELU)

F(x) = 0if x <0 —

= x otherwise 5 o 5
v
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MLPs
oeo

Basics

Multi Layer Perceptron (MLP)

Structure

@ Organization in successive layers

e Input layer -
o Hidden layers Input Hidden Output

e Output layer Layer Layer Layer

Function implemented by a MLP ’

g(We.g(W'x))

[w]”

Ny

@ Inference: Forward propagation from input O
to output layer

o Fill the input layer with x: hg = x
o lterate from the first hidden layer to
the last one
o W =w xn-?
o h' = g(h')
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MLPs
ooe

Basics

Learning a MLP

Learning as an optimization problem
@ Objective function of parameters set w for a given training set T

C(w) =F(w) 4+ R(w)
- Z Lw(x,y,w) +||w|]?

(xy)eT
@ Gradient descent optimization: w = w — Eaga/w)
v
Forward propagation
T vy
Backpropagation 7

@ Use chain rule for computing derivative of 8 . -

the loss with respect to all weights in the O

NN Y

Oe  Backpropagation

— (y — )2
B e=(y—19)
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MLPs
@000

Deeper in MLPs

A single ReLU Neuron

One Neuron
@ Elementary computation
. . _ T _ .
activation = w' .x = E wjXj + wo

J
output = ReLU(a(x))
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MLPs
@000

Deeper in MLPs

A single ReLU Neuron

One Neuron

@ Elementary computation

activation = w' .x = E wiXj + wo
J

output = ReLU(a(x))
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MLPs

[e] lele)

Deeper in MLPs

What a MLP may compute

What does a hidden neuron
@ Divides the input space in two J

Combining multiple hidden neurons
@ Allows identifying complex areas
of the input space

@ New (distributed) representation
of the input
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MLPs
[e]e] le)

Deeper in MLPs

MLP compute distributed representations

Might be much more efficient than non distributed ones

Somehow the number of regions in which a NN architecture may divide the input space is a
measure of its capacity

Sub partition 1

Sub partition 5

Subpariiond /¢
/' partit e
/ Bemon . Sub partition 2

Sub partition 3

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 28 / 100



MLPs
[e]e]e] )

Deeper in MLPs

MLP = Universal approximators

One layer is enough !

@ Theorem [Cybenko 1989]: Let ¢(:) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let /;, denote the m-dimensional unit
hypercube [0, 1]™. The space of continuous functions on I, is denoted by C(/n). Then,
given any € > 0, there exists an integer N, such that for any function f € C(/m), there exist

real constants v;, bj € R and real vectors w; € R™, where i = 1,--- , N, such that we may
define:
N
F(X) = E vi¢ (W,-TX -+ b,')
i=1

as an approximate realization of the function f where f is independent of ¢ ; that is :
|F(x) — f(x)| < e for all x € I;. In other words, functions of the form F(x) are dense in
C(Im).

@ Existence theorem only

@ Many reasons for not getting good results in practice
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Optim

Outline

© optim
@ Computation graph
@ Regularization
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Gradient Descent Optimization

Gradient Descent Optimization

@ Initialize Weights (Randomly)
@ lterate (till convergence)

o Restimate wyi1 = we — 6823") we

C(W) = Cste

Initial

weight \

Jw) Gradient

Glabal cost minimum
L b

= Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog
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http://ruder.io/optimizing-gradient-descent/

Optim

Optimal learning rate and convergence speed

Second order point of view

@ Taylor expansion, noting V2C(w) the Hessian (a N x N
matrix with N a model with parameters )

VW)l = VW)l + VEC(w)(w' — w)
@ — optimum rule (setting VC(w)|,,s to 0):
W = w — (V2C(w)) 'V C(w)
@ Optimal move not in the direction of the gradient

@ In Order 1 Gradient descent the optimal the optimal value of €
depends on eigen values of the Hessian V2C(w)

T. Artidres (ECM - LIS / AMU ) IAMS - Dakar 2019

principal
w2 eigenvector

w1

[Lecun et al, 93]
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Gradient Descent: Stochastic, Batch and mini batchs
Objective : Minimize C(w) = Zi:l..N L (i) with Ly (i) = Lw(x',y", w)

Batch vs Stochastic vs Minibatchs

@ Batch gradient descent

e Use VC(w)
o Every iteration all samples are used to compute the gradient direction and amplitude

@ Stochastic gradient

e Use VL, (i)

o Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude

o Introduce randomization in the process.

e Minimize C(w) by minimizing parts of it sucessively

o Allows faster convergence, avoiding local minima etc

@ Minibatch

o Use szewj Lw(j)

o Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
o Introduce randomization in the process.

y
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Optimization routines

Many SGD variants popular in DL

@ SGD with Momentum
@ Nesterov accelerated gradient
@ Adragrad

Adadelta

°
@ RmsProp
°
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Optim
@0

Computation graph

Gradient Computation: Chain rule

Equivalent computation with the Chain rule

Gradient of a function

Seta = f(x+3 X y)and b=g(5 X x+y)

z=2Xf(x+3xy)+6xg(5xx+y) = z=2xat6xb
82 , , 62762 da dz b
:>8—|X,y:2><f(x+3><y)+30><g(5><x+y) = o 23 o T S o
X With:
oz dz
z=2a+b 2 Mo °
o2a
— =f(aXxx+3Xy)
Ax
/ \ % e
a=f(x+3y) b=g(5x+y) o f v

da ,
— =3Xf(axx+3Xy)
9y

/ \ / \ ob

X y X y

= xgl(S X x+y)
Ay
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Optim
(o] J

Computation graph

BackPropagation

Forward pass

(6]
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Optim
(o] J

Computation graph

BackPropagation

Backward pass

Clw) — 5,.5:32&(2”)
el 2 eSS
afli | T QOO (341
[ai)i (6]
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Optim
[ ]

Regularization

Guiding the learning through regularization

Regularization

@ Constraints on weights (L1 or L2)

@ Constraints on activities (of neurons in a hidden layer) — induces sparsity

L1 or L2

Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)

Winner take all like strategies

© 6 o o

@ Disturb learning for avoiding learning by heart the training set

o Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
o Noisy labels

@ Early stopping
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Basics

Outline

e Basics

@ Dense
@ Autoencoders
@ Convolution
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Basics
o

Dense

Dense architecture

Hidden Hidden Hidden Hidden
Layer 1 Layer 2 Layer3 Layer 4

O\
npu Outpu
:_ar\)/e: /“\\ /“\\'{/; '—E‘Yt‘-f)r t
\\"114 '114 \\"l/ \
(
.V/" \“:\‘v}. 1%’9’.‘\2:%"’ ?/‘.
A\\ Aw- A”‘A‘\’\- @’M“} )
' \
i/ n\\ ” /
V/?\V//\g
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Basics

[ Je]

Autoencoders

Autoencoders

Principal Component Analysis
@ Unsupervised standard (Linear) Data Analysis
technique
o Visualization, dimension reduction

@ Aims at finding principal axes of a dataset

NN with Diabolo shape

@ Reconstruct the input at the output via an
intermediate (small) layer

@ Unsupervised learning

@ Non linear projection, distributed representation

@ Hidden layer may be larger than input/output layers
v
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Basics

oe

Autoencoders

Deep autoencoders

Decoder

Deep NN with Diabolo shape

@ Extension of autoencoders (figure [Hinton et al.,
Nature 2006])

@ Pioneer work that started the Deep Learning
wave
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Basics
[ Jele]ele]e]e)
Convolution

Convolutional architectures

Convolutional layers

@ Exploit a structure in the data

o Images : spatial structure
o Texts, audio ; temporal structure
o videos : spatio-temporal structure

@ Use shared weigths

Dense vs. Locally connected

[LeCun and Ranzato Tutorial, DL, 2015]
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Basics

0O@00000

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

- 32 x 32 x 3 image

5 x 5 x 3 filter weights

1 activation

[From Fei Feil Li slides]
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Basics

0O@00000

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps J

activation map
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

[From Fei Feil Li slides]
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Basics

0O@00000

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

activation maps

Convolution Layer

[From Fei Feil Li slides]

T. Artidres (ECM - LIS / AMU ) IAMS - Dakar -

July 2, 2019

43 / 100



Basics

0O@00000

Convolution

Convolution layer

Convolution of multiple inputs with several small

filter yields several activation maps Example of a filter J
v
activation maps " .
Filter weights
32 [1]o]]
1o
B 1ol
Convolution Layer i o
8 8 ® - Positive output
ocoe
32 28
3 OO0
000 =Null output
000

[From Fei Feil Li slides]
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Basics
0O@00000
Convolution

Convolution layer

Very few free parameters but intensive

Convolution of multiple inputs with several small computation

filter yields several activation maps
@ Input : Ny, input maps of size H x W

@ Output N filters with filter size = h x w

activation maps

- @ Parameters : h X w X Np X Nf

28 @ Fwd computation :
~HXW X Nex Ny Xx hx w

Convolution Layer
@ For instance (very small case) :

32 28 e From 3 32 x 32 input maps — 6
filters with filter size 3 x 3

e 3 X3 X 3 X 6 =48 parameters

[From Fei Feil Li slides] e 165 888 operations
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Basics

[e]e] lele]e]e)

Convolution

Convolution layer

Aggregation layer

@ Subsampling layer (one per activation map) with aggregation operator

@ Max pooling — brings invariance and robustness

224x224x64 Single depth slice

112x112x64
pool Al ] |1]1]|2]4
’ max pool with 2x2 filters
B5|(6|7|8 and stride 2 6|8
L I 3 | 2 i 3|4
1(2|3]4
224 downsampling !112
12 = =%
224 y
Complexity
@ No parameters
@ Moderate computation
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Basics

[e]e]e] le]ele)

Convolution

Old and new convolutional architectures

Convolution architectures

@ Most often a mix of (convolutional 4+ pooling) layers followed by dense layers
@ Most computation effort are in propagating through convolution layers

@ Most parameters are in final fully connected layers

LeNet [LeCun and al., 1997]

Y C3:1. maps 16@10x10
INPUT ggzvg:ag‘re maps 5d: 1. maps 16@5x5
32x32

S2: f. may
b@1ad

| Full conection ‘ Gaussian connections
o L G [ Ful
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Basics
[e]e]e]e] Iele)
Convolution

Old and new convolutional architectures

Convolution architectures J

@ Dit it change so much 7

LeNet [LeCun and al., 1997]

Crtearomaps  CHITWSIOOIND e
- featu .
INPUT S@oma Uit

32x32 $2: . may
S@iaxid I r ™
| Full connection ‘ Gaussian connections

B i C Full

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 46 / 100



Basics
[e]e]e]e] Iele)
Convolution

Old and new convolutional architectures

Convolution architectures
@ Dit it change so much ? J

LeNet [LeCun and al., 1997]

B ©3:f. maps 16@10x10
: feature may 54: 1. maps 16@5<5
INPUT Sazmas -4

S2: f. may
b@1ad

| Full conection ‘ Gaussian connections
i Full

S VIVh

amat u o \dense

AlexNet [Krizhevsky and al., 2012]

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 46 / 100




Basics
[e]e]e]e] Iele)
Convolution

Old and new convolutional architectures

Convolution architectures
@ Dit it change so much ? J

LeNet [LeCun and al., 1997]

o Ca: f. maps 16@10x10
- feature maps S4:1. maps 16@5x5
INPUT

e 6@28:28

§2: f. may
é@mm:s
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Basics
[e]e]e]e] Iele)
Convolution

Old and new convolutional architectures

Convolution architectures
@ Dit it change so much ? J

LeNet [LeCun and al., 1997]

o Ca: f. maps 16@10x10
- feature maps S4:1. maps 16@5x5
INPUT

e 6@28:28

§2: f. may
G@M}ﬂrs

NetworkInNetwork [Lin and al.,2013]
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Basics

0000080

Convolution

Old and new convolutional architectures

VGG idea

@ Modular design

e 3x3 conv as basis

e Stack the same module

e Same computation for each module
(1/2 spatial size => 2x filters)

T. Artidres (ECM - LIS / AMU ) IAMS - Dakar -

3x3 conv, 64

33 conv, 64, poolj2
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Basics
000000e

Convolution

Old and new convolutional architectures

Inception idea (GoogleNet)

@ Inception modules
e Multiple branchs (1x1, 3x3, 5x5,

pool)

o Shortcuts (stand alone 1x1, merged
by concat)

o Bottleneck (reduce dim by 1x1 before
expensive 3x3/5x5 convs)

Fitar
cancatanation

‘ 33 ‘ 555 i ‘ 11 gonvollilions
131 conuoiutions £}
k_ 1x1 comolutions 11 convolutions B} max pocing
— L < e
Pravious layer
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Code

Outline

e Code
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Code

Plateforms

Large and active community (forums, models are available when published...) for each of these J

F Tensorl

[

Keras

Microsoft

T. Artidres (ECM - LIS / AMU )
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Code

GPU and CPU

I 100l E5.2620v3 M Pascal Tian X (00 GubNN) Pascal Titan X (cUDNN 5.1)
24000

N\
o BBX 67x 71x 64x 76X

o 1N IFSN 18 R

N=16 Fonvard + Baciward time (ms)

=3 vee19 ResNet 18 Res:Net.50 ResNei 200

ata from hpsthud comicionsonie-benenmarks

Model v ] Data is here

If you aren't careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads
to prefetch data

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 51 / 100



Computation graph

Computation graph for a calculus

One may build a computation graph
form the calculus definition

z=Ax+b

Automatic differentiation

From a computation graph one may
automatically compute the backward
differentiation graph !

@ Different rules to apply according
to the operation yielding z from
x and y

T. Artidres (ECM - LIS / AMU )
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Code

Computation graph and Pytorch

import torch

3
from terch.autograd i

Computational Graphs

H, D=3, 4

x=Variable(torch.randn(N,D).cuda(},requires_grad=True)
ariable(torch.randn(N,D).cuda(},requires_grad=Trus)|
z=Variable(torch.randn(N,D).cuda(},reguires_grad=True)

[8] Ty
a+z

c = torch.sum(b)

a

.backward()

print (x.grad.data)
print (y.grad.data)
print (z.grad.data)

[» tensor([[-2.4946, -1.774%, -2.8303, -1.0450],

[ 1.8087, -0.8123, 1.4324, -0.7497],

[ 0.4153, -0.7573, -0.3054, 1.8146]], device='cuda:0')
tensor([[-0.2363, -1.8247, -3.2515, 4.3718],

[-0.6283, 1.9725, -3.6687, -1.4272],

[ 0.8991, -0.2417, -0.2456, -2.4684]], device='cuda:0')
tensor([[2., 2., 2., Z.],

[z., 2., 2., 2.1,

[2., 2., 2., 2.]], device='cuda:0'})

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 53 / 100



Example (pytorch)

Code

Mnist Classifier (model definition)

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init_ ()

self.convl = nn.Conv2d(1, 1@, kernel_size=5)
self.conv2 = nn.Conv2d(1@, 2@, kernel_size=5)
self.convZ_drop = nn.Dropout2d()

self.fcl = nn.Linear(328, 50)

self.fc2 = nn.Linear(5@, 18)

forward(self, x):

= F.relu(F.max_pool2d(self.convl(x), 2))

= F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
= x.view(-1, 320)

F.relu(self.fcl(x))

= F.dropout(x, training=self.training)

self.fc2(x)

return F.log_softmax(x, dim=1)

X X X X X X
"
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Code

Example (pytorch)

Mnist Classifier (model training)

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == @:
print(‘'Train Epoch: {} [{}/{} ({:.ef}%)]\tloss: {:.6f}".format(
epoch, batch_idx * len(data), len(train_loader.dataset),
1808. * batch_idx / len(train_loader), loss.item()))
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DL=RL

Outline

@ DL=RL
@ Learning Representations
@ Embeddings
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DL=RL

Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

h'(x) = g(W' x h'~}(x))

NN(x)

=]
NN

o

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 57 / 100




DL=RL

Shallow vs deep models

From [LeCun tutorial Statlearn] DL

@ Joint learning of a hierarchy of
representations and of a prediction model

Output
Statistical model

New representation
of the data

New representation

@ Neural Networks with one hidden layer are
shallow models

@ SVMs are shallow models J

G(X,0) =Y a; K(X,X)
J

of the data
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DL=RL

Feature hierarchy : from low to high level

What feature hierarchy means ?

@ Low-level features are shared among categories

@ High-level features are more global and more invariant

[

-

Original image ~ RGB channels convo convi convz convd conv4 --+ mixeddfconv -« mixed10/conv -

[From Taigman et al., 2014]
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DL=RL
[ Jolelele}

Learning Representations

Visualizing filters and activations (primary understanding of NNs)

Mnist (toy) dataset J o M

@ Low resolution handwritten digit images

Outputs of first Convolutional layer for above

Weights of first Convolutional layer (32 maps) input
. i
I TL| REEE
WE EECEE
DR Z2E:3 3
’ 2 -

SR T T - R
‘ g 2 - B
. “ : “
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DL=RL
(o] Telele]
Learning Representations

Visualizing filters and activations

R
A

Layer 2

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what
part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations
of the 16 different filters (on the left)

[From Zeiler et Fergus]
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Learning Representations

Visualizing filters and activations
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DL=RL
[e]o]e] e}

Learning Representations

Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks .
Main results

@ Two DNN : Green one learned on Task A - Blue .
on Task B @ Better to reuse DNNA and fine

tune on Task B
@ Reuse DNNA for Task B (and vice versa) o Lower layers learn transferable

@ Study the effect of reusing a DNN up to layer features while higher don't
number j ...

5: Transfer + fine-tuning improves generalization

T e
FEEEFHE
T

T

2: Performance drops
due to fragile
co-adaptation,

‘4: performance
drops due to
representation
specificity

Top-1 accuracy (higher s better)
5 8

7 E] 0 B G 7
Layer n at which network is chopped and retrained
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DL=RL
[e]o]e]e] }

Learning Representations

Learning with few samples

Few shot learning (and zero shot learning)

@ Rely on ability to lean relavant and transferable representations

@ Nearest neighbour-like rules in the learned representation space

training data test set

meta-training

meta-testing

AFRNEE < E

[Ravi Larochelle ‘17]
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DL=RL
@0000

Embeddings

- “ - " H
One goal: learning “universal” representations

Motivation : learn representations for any task

@ Unsupervised or supervised
@ For images, text, speech etc

o The last layer of a CNN encodes most relevant information on the input (image)
o The last hidden state of a RNN encodes most relevant information on the processed
input sequence (e.g. sentence, signal)
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Embeddings

Word embeddings

Embeddings for words

@ When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate

estimation from tractable corpus

@ When one wants to infer some continuous representations of the input values to get insight

on similarities between them

Word 4

~ouput bias

1

hid_to_outplut_weights

Hidden Layer

g bas

‘embed_to_hid_weights 1

[ worsemnesang 1 | worsmaansz | woa smeaans s |

word_embed

ing_weights word_embedding_weights ~ word_embi

dding_weights

naecorvoa1 | [ naexorvon |

st |

T. Artidres (ECM - LIS / AMU )
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«] w(t+1)

4

W(t+2)
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DL=RL
[e]e] le]e}

Embeddings

A particular interesting effect: compositionality

Idea

o Emb(’'King’) + Emb(’ Woman') — Emb('Man’) ~ Emb(’ Queen")

@ It is an observed phenomenon which is not actually favored by the model design the learning
criterion

@ Similar effect reported on images (with DCGAN from [Radford et al.])

WOMAN , e wosmo |
AUNT QUEENS o S
/’ / 0s
MAN KINGS
UNCLE o
QUEEN QUEEN os| %
oL s S "
KING KING
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Embeddings

Extension of the embedding idea

More generally one call embedding a new representation space for any input data (image, text,
signal...)

/ Low level High level \

New

hidden layer 1 hidden layer 2 hidden layer 3 Representations
of the input
image in the
hidden layers

input layer

output layer

I 4
\ L | Forward propagation |/
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DL=RL
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Embeddings

Extension of the embedding idea for images

Forward propagation New

representations

(51) 4 fexure maps
(1) 4 feature maps (52)6

comeluton ayer | sbsampinglyer | convoudonyer | subsamplng ayer | fullycomnected MLP

Main interest
@ Many very deep architectures have been proposed by major actors (Google, Microsoft,
Facebook...)

o Using huge training corpora
o Using huge computing resources
o Architecture and Weights are often made publicly available

@ It is better to use such models for computing high features from which one may design a

classifier
o With fine tuning (of upper layers) if enough training data are available on the target

task
o As a preprocessing if not
v
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Power of depth

Outline

e Power of depth
@ Capacity!
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Power of depth
®000000000

Capacity!

Depth in RNNs

Depth in Feedforward nets

@ Stacked layers in a feed forward or more complex manner (e.g. multiple paths)

@ Gradient vanishing or exploding problems when backpropagating

Depth in RNNs

@ Stacked hidden layers as in traditional deep NNs : usual in many arhcitectures

@ Long sequences — deep in time

@ Both structural depths yield similar optimization problems (gradient flow)
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Power of depth
0@00000000

Capacity!

Deep networks are powerful

Revolution of Depth 22 CIFAR-10 ResNets

eror (%)

152 layers %:\E-?'?
3
A — Rt
\ — RedNer 36
N L [— R 11
\ ) 20-layer
\ 11.7
22tayers | [ 19 \ayers ] 1,-\/\ 32-layer
A \
er oy 44-layer

3 57 I I 8 Izvers 8 layers shanow "\#‘K\{}‘ 55_|aye|—
-l f\ 110-layer

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet  GoogleNet VGG AlexNet T ) 3 4 3 [

ImageNet Classification top-5 error (%)

[Kaiming He]
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Power of depth
00@0000000

Capacity!

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

@ There is a simple function expressible by a 3-layer network that may not be approximated by
a 2-layer network to more than a certain accuracy unless its width is exponential in the
input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

@ DNNs with RELU activation function = piecewise linear function
@ Capacity as a function of the number of linear regions one may divide the input space
@ Exponentially more regions per parameter in terms of number of HL

o Case of pg inputs and p = 2pg hidden cells per HL (with k HL) :

@ Maximum number of regions at least : 2(k=1)po ;_’00 (270)
=
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Power of depth

000@000000

Capacity!

DNNs are overparameterized

Large DNNs may even learn noise

@ For instance : Learn after random permutation of the labels of the training samples
@ It learns, but it takes more time...

@ Note that the same (large) architectures that may learn random labels generalize well when
trained on non perturbated data

25 - -
true labels
random labels
shuffled pixels
random pixels
gaussian

N
o
'II

*

=
%)
F

average_loss
I
o

I
n

©
o

0 5 10 15 20 25
thousand steps

[Zhang and al., 2017]
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Power of depth
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Capacity!

DNNs and overfitting

Actually NNs do not easily overfit

@ The more you learn the better it generalizes

@ Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size H) NNs
without any regularization — no overfitting observed

CIFAR-10

I
e

MNIST [ Training
n.og) e Teat m convergence; |
| Tost fearly stoppiny ag

T8 i w6 1 = 82 K 2K K
H

[Neyshabur 2017]
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Power of depth
00000e0000

Capacity!

Capacity

Vapnik dimension J

3 points shattered 4 points impossible

Rademacher capacity
n
Ro(H) = E, [supheH% Z oih(x;)]
i=1
with o; € {—1,1}
@ Clearly looks like the randomization test

@ Trivial upperbound (=1): useless
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Power of depth
000000e000

Capacity!

DNNSs' capacity

Vapnik dimension of deep NNs with ReLU
@ With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is h = ©(L2p?)
@ Considering classical generalization bound : R(w) < Remp(w) + O( L,fz)

@ This does not explain generalization behavior

Error

Deep Leaming
model

Optimal
bias-variance
trade-off

Training

Capacity

[O. Bousquet, tutorial 2017]
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Power of depth
0000000800

Capacity!

Deep nets do not actually need to be huge

Size helps learning but one may simplify once
learned !

@ Low rank tensor approximation (CP,
Tucker, TensorTrain) of layer weight
matrices (FC, Conv, RNN) [Novikov et al.
2015]

@ Distillation strategy [Hinton et al., 2015]

o Learn a deep and complex model fyy
(or en ensemble of deep models) on a
dataset D

o Create a new learning task by
computing the output vectors o of
fun for samples in D (better use
logits than outputs of the softmax)

e Learn a narrower model to predict o
vectors for samples in D

T. Artidres (ECM - LIS / AMU )
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—32x 32
AxBxBx4
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= = = matrix rank.

& uncompressed

test error %

number of parameters in the weight matrix of the first layer

== =

Distillation

input
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Power of depth
0000000080

Capacity!

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer
@ Knowledge distillation + intermediate distillation losses J

Teacher Meraork Fitser

= argmin Lypiw,_, W) w, = argmin £y (wy)
W S Wiy
i [ |
Sl =
(a) Teacher and Student Networks (b) Hints Training () Knowledge Distillation
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Power of depth
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Capacity!

DL vs standard ML

Traditional Machine Learning

@ Overfitting is the enemy
@ One may control generalization with appropriate regularization

@ Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

Huge capacity without overfitting
The size helps learning
Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?

Regularization may slightly improve performance but is not THE answer for improving
generalization

Not clear what in the DNN may allow to predict its generalization ability
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Learning DNNs

Outline

9 Learning DNNs
@ Learning is not so easy!
@ SGD for DNNs
@ Architecture design
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Learning DNNs
[

Learning is not so easy!

From shalow to deep

V6619 34-layer plain 34-layer residual

Simply stacking layers does not work (CIFAR

results) ! (figures form [He and al., 2015])
[ o | [y [emwei ]
i i i

ouput

w6

¥
[oomse ] [tema | [ 3acome ]
u »
[ewmms ] [ saeome | [oome |
—~ 2
o e e
) s 56-layer
= g
2 °
5. g 20-layer
w g =
E S6-layer O 00,1
] 7
| g a2t 38 o, 128

S e
20-layer

o S
— ; 0

g

S EEE B
iter. (le4) iter. (le4)

Sacon512 e
S con 512 B

3,128

3w, 128

Saeom 128
S eon, 128

e
jert ot 2
et e .
[Cowas ]
Serwm e e
o Ceem

S om, 256

S, 256
38 com, 255
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Learning DNNs
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SGD for DNNs

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

@ ... but expectation of generalized results to

other activation functions Ww31,22
@ With ReLu and MaxPooling operators one @ )

may formalize what happens on a path

from an input to the output W22,14
@ The output may be computed as : Q@ @ )

y= Z dp(W, X)( H WU))(jstan Wi4,3
P (i)eP (OO @
@ 5p(W, X) : 1if active path, 0 otherwise Z3

@ Implemented function is piece-wise linear

v
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Learning DNNs
®000000000

SGD for DNNs

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

L. ) ) A ) ‘W31,22
@ Objective function : piece wise polynomial

(degree = number of hidden layers) with () ()
partially random coefficients

W22,14
cw) =Y "o, Y. W)([] wa) 000 ®@
i (ieP wi14,3
@ Hint from results on distribution of critical ;
points for polynomials with random @ @ @
coefficients z3
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Learning DNNs
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SGD for DNNs

Deep RelLu networks

Easier analysis... [LeCun Statlearn tutorial]
@ Experiments by [Choromanska and al., 2015]: Train 2-layers nets on Mnist from multiple
initializations and measure loss on the test set
@ Many close local minimas for large nets

@ Objective function do not exhibit lots of saddle points and most local minima are good and
close to globale minimas

nhidden
25
50

100
250
500

count

- T

loss
[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]
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Learning DNNs
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SGD for DNNs

Yet the depth alone is not enough

While SGD works well for NNs, the optimization of DNNs requires careful design and tricks

@ Make the gradient flow with activation normalization (Batch Normalization)
@ Make the gradient flow with structural constraints (Identity mapping)

@ Regularization (Dropout)
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Learning DNNs
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SGD for DNNs

Problems with activity propagation in deep NNs [He et al., 2016]

Few slides from Fei Fei Li
Standard initialization schema for MLPs

@ 10 layers networks (500 neurones each, with tanh)
@ Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
@ All activations at 0

@ What about the gradient ?
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Learning DNNs
0O000@00000

SGD for DNNs

Batch Normalization

Main idea

@ Usually inputs to neural networks are
normalized to either the range of [0, 1] or

[-1, 1] or to mean=0 and variance=1
F
@ BN essentially performs Whitening to the

intermediate layers of the networks.

@ Usually placed before nonlinearities

-

From Fei Fei Li's slides
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SGD for DNNs

Identity mapping in Residual Networks

Principle

@ Include identity mapping in the model
@ ResNet building block [He and al., 2015]]

@ Every layer becomes close to the output (= not far in the backpropagation process)

weight layer

X
identity
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Learning DNNs

0O0000e0000

SGD for DNNs

Identity mapping in Residual Networks

Principle

@ Include identity mapping in the model
@ ResNet building block [He and al., 2015]]
@ Every layer becomes close to the output (= not far in the backpropagation process)

CIFAR-10 plain nets CIFAR-10 ResNets
¥ Resiet-20
/ 56-layer :§:E
44-layer |—Echein
g R o~ 32-layer g \A A 20-layer
== S W 32-layer
20-layer \ Y
5 ' Ty ye E i 44-lay
T - Ev § 56-layer
— s solid: test 110-layer
b i 3 3 B ¢ dashed: train o i ) 3 0 B 3
itar. {le4) iter (led)

T. Artiéres (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 88 / 100



Learning DNNs
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SGD for DNNs

Identity mapping with LSTM units in RNNs

With...

What it does
@ Cell state ¢

@ Main behaviour

@ Forget gate f;
o If ff ==1 and ir == 0 use previous cell state o Input gate i
e If f == 0 and it == 1 ignore previous cell sate
o If o == 1 output ois set to cell sate © Output o
o If oy == 0 output is set to 0 @ Hidden state to propagate to

upper layers h

1 ‘f[
& ® &)
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Learning DNNs
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SGD for DNNs

Auxiliary loss on intermediate layers

Google net J

@ Auxiliary loss brings some gradient to first layers
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Learning DNNs
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SGD for DNNs

Regularizing with Dropout [Hinton 2012]

Principle

(a) Standard Neural Net (b) After applying dropout

@ First method that actually allowed learning deep networks without pretraining and smart
initialization

@ Related to ensemble of models

@ Weights are normalized at inference time
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Learning DNNs

000000000 e

SGD for DNNs

Dropout [Hinton 2012]

Do not ever fear overfitting !

3.
1 Test Error

3.0 #—4 Training Error
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Learning DNNs
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Architecture design

Examples of architectures

AlexNet [Krizhevsky and al., 2012] (top) and NetworklnNetwork [Lin and al.,2013] (bottom) J

Hﬁ

2538 w 538 \d

| L'M L

i
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Learning DNNs
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Architecture design

Looking for a good architecture: Lego game

How to reach such an architecture (GoogleNet 2014) ?

A A

< . ,"_V %

Searching for a good architecture requires making choices !!
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Architecture design

Looking for a good architecture: Lego game

Gridsearch

@ Standard Machine Learning models

Very few hyperparameters (regularization tradeoff, kernel width or degree etc)
Easier optimization problem

Usually much less data and much simpler models

= Quite exhaustive gridsearch

© 6 6 o

@ Large deep networks

e Many choices (sequence of layers, width of layers, convolution kernel’s size and strides,
activation function, optimization routine and its parameters...): Not many theoretical
hints

Harder optimization problem

Each try is expensive

= Reuse of others’ architectures whenever possible

= Gain experience on how to design
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Learning DNNs
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Architecture design

Looking for a good architceture

Activation function Criterion Optimization
@ Relu @ MSE @ sGD
@ Sigmoid @ L2reg @ Adam
@ Tanh @ Cross entropy @ Adagrad
@ Linear @ Binary cross entropy @ Adadelta
@ GrU @ Likelihood ) @ RMSProp
@ LsTM™ ) @ Learning rate
Sizes @ Decay
@ Batch size
Connectivty @ Layers' sizes -
@ Fully connected @ Dropout rate y
@ Convolutional, Pooling
@ Dilated
@ Recurrent
@ Recursive
@ Skip/ Residual
v

=
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Architecture design

Looking for a good architceture

lllustration [Verbeek 2017]

@ Simple search (but for a large network)

e 19 convolution layers and 5 pooling layers to set

o Question: where to put the poooling layers? — 40 000 architectures !!

o No question about layers’ dimensions, activation function, kernels’ size, pooling type
etc

@ Remember

o 1 hour GPU on AWS =1 §%
o Learning 1 model = Few hours
= Expensive design !!!

@ Not much alternatives

(s+1) ®

(s) o

(s1) @

Internal Node

)
Layers Output
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Architecture design

Looking for a good architecture: use others’ !!

Deep Models for High resolution images [Radford 2015]

Historical attempts to scale up GANs using CNNs to model images have been unsuccessful. This
motivated the authors of LAPGAN (Denton et al., 2015) to develop an alternative approach to it-
eratively upscale low resolution generated images which can be modeled more reliably, We also
encountered difficulties attempting to scale GANs using CNN architectures commonly used in the
supervised literature. However, after extensive model exploration we identified a family of archi-
tectures that resulted in stable training across a range of datasets and allowed for training higher
resolution and deeper generative models.

|

100z «HJ =p?
I

Project and reshape

Stride 2 16

CONV 2

G(2)
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Architecture design

Architecture design from prior knowledge (HEP example)

FHE)
What if unstructured data: is DNN useful ? T
@ Modeling collision at CERN : features = physical /7&\

features of jets during the collision (speed, energy,
angle with collision axis...)

@ Main approaches W

e Use non deep machine learning models
o Represent data as images and use Deep NNs ]h.;n[tj)
o Design DNN architecture from knowledge on

Classifier

the considered process 2 NN
@ Example : Learn to aggregate features of jets using a E A
tree structure inspired from data knowledge [Louppe E 1

et al., 2018] > : Al
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Architecture design

Architecture design from prior knowledge (HEP example)

Ziyu Guo’s thesis (with Y. Coadou at CPPM)
@ Deep learning in the search for ttH with the ATLAS experiment at the Large Hadron Collider

@ Rely on the physical process to design the NN structure
@ Better results than DNN, on par with state of the art models in HEP (BDTs)
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