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Where is AI?

Constat

The original AI was the General AI (IA forte)
Today 60 years after the Dartmouth meeting

We have achieved some NIA results (IA faible)
We can start thinking more seriously about GAI
These are just the premises.
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At the heart of AI: Machine Learning (and Deep Learning)

Which algorithms to solve these tasks ?
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Machine Learning

What is it for?

Writing programs that solve a task while we don’t even know how to writre the algorithm
Where a program takes some input and produce a corresponding output
The program is learned from labeled data = pairs of (input, output)

What is it?

Algorithms that enable learning a function f : x ∈ X → y ∈ Y from a training dataset of
samples
The function must generalize well to data unseen at training time
x and y may be discrete, continuous, vectors, matrices, tensors, sequences ...
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Main difficulty

Generalization

It is “easy” to learn models that are perfect on training data
But is is useless
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History of Neural Networks

Key dates

1943 : Formal neuron [McCuloch-Pitts]

1950 : Oragnization of neurons and learning rules [Hebb]

1960 : Perceptron [Rosenblatt]

1960 : Update rule [Widrow Hoff]

1969 : Limitations of the Perceptron [Minsky]

1980s : Back-propagation [Rumelhart and Hinton]

1990s : Convolutional Networks [LeCun and al.]

1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]

2006 : Paper on Deep Learning in Nature [Hinton and al.]

2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]

2013 : First edition of ICLR

2013 : Memory networks [Weston and al.]

2014 : Adversarial Networks [Goodfelow and al.]

2014 : Google Net [Szegedy and al.]

2015 : Residual Networks [He et al.]

...
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AI today

Where are we?

The original AI (Dartmouth workshop) was General AI (IA forte)
Today 60 years after Dartmouth

We have achieved NIA results (IA faible)
We can start thinking more seriously about GAI
These are just the premises.

T. Artières (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 10 / 100



Intro Intro2 MLPs Optim Basics Code DL=RL Power of depth Learning DNNs

AI today

Where are we?

The original AI (Dartmouth workshop) was General AI (IA forte)
Today 60 years after Dartmouth

We have achieved NIA results (IA faible)
We can start thinking more seriously about GAI
These are just the premises.

T. Artières (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 10 / 100



Intro Intro2 MLPs Optim Basics Code DL=RL Power of depth Learning DNNs

Deep Learning today

Spectaculary breakthroughs - fast industrial transfer

Images, Videos, Audio, Speech, Texts
Successful setting

Structured data (temporal, spatial...)
Huge volumes of datas
Huge models (millions of parameters)
Huge storage and computing resources (GPU, TPU)
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Machine Learning and Deep Learning today

Spectacular diffusion and activity

Machine Learning and Deep Learning Conferences sold out early
More attendees than ever seen in computer science conferences
Exponential growth
Semantic change in what AI means
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Machine Learning and Deep Learning today

Topics, trends and who’s who?

Mix between academics and companies
Extreme popularity of Deep Learning topics
Birth of the International Conference on Learning Representation (2014)

T. Artières (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 13 / 100



Intro Intro2 MLPs Optim Basics Code DL=RL Power of depth Learning DNNs

DL research is going very fast !!

Example of an emerging topic: Generative Adversarial Networks

First publication : 2014 by Ian J. Goodfellow, and al.
Hundreds of publications (close to a thousand) papers since

New publication mode

Wasserstein GANs, Martin Arjovsky and al.
Published on arXiv : Jan 2017
Published at ICML in Aout 2017

Improved Training of Wasserstein GANs by Ishaan Gulrajani and al.
Published on arXiv : March 2017
Published at NIPS in December 2017

Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual
Effect by Xiang Wei and al.

Published on Openreview : Oct 2017
Accepted as poster at ICLR in 2018 (April 2018)
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Spectaculary breakthrough

Computer vision
Real time Object recognition
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Spectaculary breakthrough

Speech
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Spectaculary breakthrough

Games

BackGammon, Chess, Go
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Spectaculary breakthrough

Image generation
Recent Nvidia results
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Spectaculary breakthrough

Should we still trust what we see?
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Why now ?

Huge training resources for huge models

Huge volumes of training data
Huge computational ressources (clusters of GPUs)

Advances in understanding optimizing NNs

Regularization (Dropout...)
Making gradient flow (ResNets, LSTMs, ...)

Faster diffusion than ever

Softwares
Results

Publications (arxiv publication model) + codes
Architectures, weights (3 python lines for loading a state of the art computer vision
model!)
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Where DL comes from

F. Rosenblatt 1958 : The perceptron
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Basics

A single Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = g(a(x))

Non linearity : g

Sigmoide, Hyperbolic tangent, Gaussian
Rectified Linear Unit (RELU)

f (x) = 0 if x ≤ 0
= x otherwise
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Basics

Multi Layer Perceptron (MLP)

Structure

Organization in successive layers
Input layer
Hidden layers
Output layer

Function implemented by a MLP

g(W o .g(W hx))

Inference: Forward propagation from input
to output layer

Fill the input layer with x : h0 = x
Iterate from the first hidden layer to
the last one

hl = W l × hl−1

hl = g(hl )
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Basics

Learning a MLP

Learning as an optimization problem

Objective function of parameters set w for a given training set T

C(w) =F (w) + R(w)

=
∑

(x,y)∈T

Lw (x , y ,w) + ||w ||2

Gradient descent optimization: w = w − ε ∂C(w)
∂w

Backpropagation

Use chain rule for computing derivative of
the loss with respect to all weights in the
NN
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Deeper in MLPs

A single ReLU Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = ReLU(a(x))
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Deeper in MLPs

What a MLP may compute

What does a hidden neuron

Divides the input space in two

Combining multiple hidden neurons

Allows identifying complex areas
of the input space
New (distributed) representation
of the input
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Deeper in MLPs

MLP compute distributed representations

Might be much more efficient than non distributed ones
Somehow the number of regions in which a NN architecture may divide the input space is a
measure of its capacity
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Deeper in MLPs

MLP = Universal approximators

One layer is enough !

Theorem [Cybenko 1989]: Let φ(·) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m. The space of continuous functions on Im is denoted by C(Im). Then,
given any ε > 0, there exists an integer N, such that for any function f ∈ C(Im), there exist
real constants vi , bi ∈ R and real vectors wi ∈ Rm, where i = 1, · · · ,N, such that we may
define:

F (x) =
N∑

i=1

viφ
(

wT
i x + bi

)
as an approximate realization of the function f where f is independent of φ ; that is :
|F (x)− f (x)| < ε for all x ∈ Im. In other words, functions of the form F (x) are dense in
C(Im).
Existence theorem only
Many reasons for not getting good results in practice
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Gradient Descent Optimization

Gradient Descent Optimization

Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt

⇒ Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog
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Optimal learning rate and convergence speed

Second order point of view

Taylor expansion, noting ∇2C(w) the Hessian (a N × N
matrix with N a model with parameters )

∇C(w)|w′ = ∇C(w)|w +∇2C(w)(w ′ − w)

→ optimum rule (setting ∇C(w)|w′ to 0):

w ′ = w − (∇2C(w))−1∇C(w)

Optimal move not in the direction of the gradient
In Order 1 Gradient descent the optimal the optimal value of ε
depends on eigen values of the Hessian ∇2C(w)

From
[Lecun et al, 93]
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Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize C(w) =
∑

i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs

Batch gradient descent
Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j Lw (j)

Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
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Optimization routines

Many SGD variants popular in DL

SGD with Momentum
Nesterov accelerated gradient
Adragrad
Adadelta
RmsProp
...

T. Artières (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 34 / 100



Intro Intro2 MLPs Optim Basics Code DL=RL Power of depth Learning DNNs

Computation graph

Gradient Computation: Chain rule

Gradient of a function

z = 2× f (x + 3× y) + 6× g(5× x + y)

⇒
∂z
∂x
|x,y = 2× f ′(x + 3× y) + 30× g ′(5× x + y)

Equivalent computation with the Chain rule

Set a = f (x + 3 × y) and b = g(5 × x + y)

⇒ z = 2 × a + 6 × b

⇒
∂z

∂x
=

∂z

∂a
×

∂a

∂x
+

∂z

∂b
×

∂b

∂x
With:

∂z

∂a
= 2 and

∂z

∂b
= 6

∂a

∂x
= f ′(a × x + 3 × y)

∂b

∂x
= 5 × g′(5 × x + y)

∂a

∂y
= 3 × f ′(a × x + 3 × y)

∂b

∂y
= ×g′(5 × x + y)
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Computation graph

BackPropagation

Forward pass
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Computation graph

BackPropagation

Backward pass
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Regularization

Guiding the learning through regularization

Regularization

Constraints on weights (L1 or L2)
Constraints on activities (of neurons in a hidden layer) → induces sparsity

L1 or L2
Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)
Winner take all like strategies

Disturb learning for avoiding learning by heart the training set
Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
Noisy labels

Early stopping
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Dense

Dense architecture
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Autoencoders

Autoencoders

Principal Component Analysis

Unsupervised standard (Linear) Data Analysis
technique

Visualization, dimension reduction
Aims at finding principal axes of a dataset

NN with Diabolo shape

Reconstruct the input at the output via an
intermediate (small) layer
Unsupervised learning
Non linear projection, distributed representation
Hidden layer may be larger than input/output layers
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Autoencoders

Deep autoencoders

Deep NN with Diabolo shape

Extension of autoencoders (figure [Hinton et al.,
Nature 2006])
Pioneer work that started the Deep Learning
wave
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Convolution

Convolutional architectures

Convolutional layers

Exploit a structure in the data
Images : spatial structure
Texts, audio ; temporal structure
videos : spatio-temporal structure

Use shared weigths

Dense vs. Locally connected

[LeCun and Ranzato Tutorial, DL, 2015]
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Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]
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Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

Example of a filter
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Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

Very few free parameters but intensive
computation

Input : Nm input maps of size H ×W
Output Nf filters with filter size = h×w
Parameters : h × w × Nm × Nf

Fwd computation :
≈ H ×W × Nf × Nm × h × w
For instance (very small case) :

From 3 32× 32 input maps → 6
filters with filter size 3× 3
3× 3× 3× 6 = 48 parameters
165 888 operations
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Convolution

Convolution layer

Aggregation layer

Subsampling layer (one per activation map) with aggregation operator
Max pooling → brings invariance and robustness

Complexity

No parameters
Moderate computation
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Convolution

Old and new convolutional architectures

Convolution architectures

Most often a mix of (convolutional + pooling) layers followed by dense layers
Most computation effort are in propagating through convolution layers
Most parameters are in final fully connected layers

LeNet [LeCun and al., 1997]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]

AlexNet [Krizhevsky and al., 2012]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]

GoogleNet
2014
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]

NetworkInNetwork [Lin and al.,2013]
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Convolution

Old and new convolutional architectures

VGG idea

Modular design
3x3 conv as basis
Stack the same module
Same computation for each module
(1/2 spatial size => 2x filters)
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Convolution

Old and new convolutional architectures

Inception idea (GoogleNet)

Inception modules
Multiple branchs (1x1, 3x3, 5x5,
pool)
Shortcuts (stand alone 1x1, merged
by concat)
Bottleneck (reduce dim by 1x1 before
expensive 3x3/5x5 convs)
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Plateforms

Large and active community (forums, models are available when published...) for each of these
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GPU and CPU
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Computation graph

Computation graph for a calculus
One may build a computation graph
form the calculus definition

z = Ax + b

Automatic differentiation
From a computation graph one may
automatically compute the backward
differentiation graph !

Different rules to apply according
to the operation yielding z from
x and y

From Fei Fei Li slides
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Computation graph and Pytorch
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Example (pytorch)

Mnist Classifier (model definition)
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Example (pytorch)

Mnist Classifier (model training)
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9 Learning DNNs
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Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

hi (x) = g(W i × hi−1(x))
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Shallow vs deep models

From [LeCun tutorial Statlearn]

Neural Networks with one hidden layer are
shallow models
SVMs are shallow models

DL

Joint learning of a hierarchy of
representations and of a prediction model
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Feature hierarchy : from low to high level

What feature hierarchy means ?

Low-level features are shared among categories
High-level features are more global and more invariant

[From Taigman et al., 2014]
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Learning Representations

Visualizing filters and activations (primary understanding of NNs)

Mnist (toy) dataset

Low resolution handwritten digit images

Weights of first Convolutional layer (32 maps)
Outputs of first Convolutional layer for above

input
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Learning Representations

Visualizing filters and activations

[From Zeiler et Fergus]
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Learning Representations

Visualizing filters and activations

[From Zeiler et Fergus]
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Learning Representations

Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks

Two DNN : Green one learned on Task A - Blue
on Task B
Reuse DNNA for Task B (and vice versa)
Study the effect of reusing a DNN up to layer
number i ...

Main results

Better to reuse DNNA and fine
tune on Task B
Lower layers learn transferable
features while higher don’t
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Learning Representations

Learning with few samples

Few shot learning (and zero shot learning)

Rely on ability to lean relavant and transferable representations
Nearest neighbour-like rules in the learned representation space

[Ravi Larochelle ‘17]
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Embeddings

One goal: learning “universal” representations

Motivation : learn representations for any task

Unsupervised or supervised
For images, text, speech etc

The last layer of a CNN encodes most relevant information on the input (image)
The last hidden state of a RNN encodes most relevant information on the processed
input sequence (e.g. sentence, signal)
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Embeddings

Word embeddings

Embeddings for words

When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate
estimation from tractable corpus
When one wants to infer some continuous representations of the input values to get insight
on similarities between them
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Embeddings

A particular interesting effect: compositionality

Idea

Emb(′King ′) + Emb(′Woman′)− Emb(′Man′) ≈ Emb(′Queen′)
It is an observed phenomenon which is not actually favored by the model design the learning
criterion
Similar effect reported on images (with DCGAN from [Radford et al.])
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Embeddings

Extension of the embedding idea

More generally one call embedding a new representation space for any input data (image, text,
signal...)
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Embeddings

Extension of the embedding idea for images

Main interest

Many very deep architectures have been proposed by major actors (Google, Microsoft,
Facebook...)

Using huge training corpora
Using huge computing resources
Architecture and Weights are often made publicly available

It is better to use such models for computing high features from which one may design a
classifier

With fine tuning (of upper layers) if enough training data are available on the target
task
As a preprocessing if not
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Outline
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Capacity!
9 Learning DNNs
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Capacity!

Depth in RNNs

Depth in Feedforward nets

Stacked layers in a feed forward or more complex manner (e.g. multiple paths)
Gradient vanishing or exploding problems when backpropagating

Depth in RNNs

Stacked hidden layers as in traditional deep NNs : usual in many arhcitectures
Long sequences → deep in time
Both structural depths yield similar optimization problems (gradient flow)
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Capacity!

Deep networks are powerful

[Kaiming He]
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Capacity!

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

There is a simple function expressible by a 3-layer network that may not be approximated by
a 2-layer network to more than a certain accuracy unless its width is exponential in the
input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

DNNs with RELU activation function ⇒ piecewise linear function
Capacity as a function of the number of linear regions one may divide the input space
Exponentially more regions per parameter in terms of number of HL

Case of p0 inputs and p = 2p0 hidden cells per HL (with k HL) :
Maximum number of regions at least : 2(k−1)p0

∑p0
j=0

(
2p0

j

)
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Capacity!

DNNs are overparameterized

Large DNNs may even learn noise

For instance : Learn after random permutation of the labels of the training samples
It learns, but it takes more time...
Note that the same (large) architectures that may learn random labels generalize well when
trained on non perturbated data

[Zhang and al., 2017]

T. Artières (ECM - LIS / AMU ) IAMS - Dakar 2019 July 2, 2019 74 / 100



Intro Intro2 MLPs Optim Basics Code DL=RL Power of depth Learning DNNs

Capacity!

DNNs and overfitting

Actually NNs do not easily overfit

The more you learn the better it generalizes
Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size H) NNs
without any regularization → no overfitting observed

[Neyshabur 2017]
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Capacity!

Capacity

Vapnik dimension

Rademacher capacity

Rn(H) = Eσ[suph∈H
1
n

n∑
i=1

σi h(xi )]

with σi ∈ {−1, 1}
Clearly looks like the randomization test
Trivial upperbound (=1): useless
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Capacity!

DNNs’ capacity

Vapnik dimension of deep NNs with ReLU

With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is h = Θ(L2p2)

Considering classical generalization bound : R(w) ≤ Remp(w) + Õ(
√

L2p2
n )

This does not explain generalization behavior

[O. Bousquet, tutorial 2017]
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Capacity!

Deep nets do not actually need to be huge

Size helps learning but one may simplify once
learned !

Low rank tensor approximation (CP,
Tucker, TensorTrain) of layer weight
matrices (FC, Conv, RNN) [Novikov et al.
2015]
Distillation strategy [Hinton et al., 2015]

Learn a deep and complex model fNN
(or en ensemble of deep models) on a
dataset D
Create a new learning task by
computing the output vectors o of
fNN for samples in D (better use
logits than outputs of the softmax)
Learn a narrower model to predict o
vectors for samples in D
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Capacity!

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer

Knowledge distillation + intermediate distillation losses
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Capacity!

DL vs standard ML

Traditional Machine Learning

Overfitting is the enemy
One may control generalization with appropriate regularization
Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

Huge capacity without overfitting
The size helps learning
Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
Regularization may slightly improve performance but is not THE answer for improving
generalization
Not clear what in the DNN may allow to predict its generalization ability
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Learning is not so easy!
SGD for DNNs
Architecture design
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Learning is not so easy!

From shalow to deep

Simply stacking layers does not work (CIFAR
results) ! (figures form [He and al., 2015])
...

(source [He et al. 2016])
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SGD for DNNs

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

... but expectation of generalized results to
other activation functions
With ReLu and MaxPooling operators one
may formalize what happens on a path
from an input to the output
The output may be computed as :

ŷ =
∑

P

δP (W ,X)(
∏

(ij)∈P

wij )xjstart

δP (W ,X) : 1 if active path, 0 otherwise
Implemented function is piece-wise linear
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SGD for DNNs

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun
Statlearn tutorial]

Objective function : piece wise polynomial
(degree = number of hidden layers) with
partially random coefficients

C(W ) =
∑

P

CP (X ,Y ,W )(
∏

(ij)∈P

wij )

Hint from results on distribution of critical
points for polynomials with random
coefficients
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SGD for DNNs

Deep ReLu networks

Easier analysis... [LeCun Statlearn tutorial]

Experiments by [Choromanska and al., 2015]: Train 2-layers nets on Mnist from multiple
initializations and measure loss on the test set
Many close local minimas for large nets
Objective function do not exhibit lots of saddle points and most local minima are good and
close to globale minimas
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SGD for DNNs

Yet the depth alone is not enough

While SGD works well for NNs, the optimization of DNNs requires careful design and tricks

Make the gradient flow with activation normalization (Batch Normalization)
Make the gradient flow with structural constraints (Identity mapping)
Regularization (Dropout)
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SGD for DNNs

Problems with activity propagation in deep NNs [He et al., 2016]
Few slides from Fei Fei Li

Standard initialization schema for MLPs

10 layers networks (500 neurones each, with tanh)
Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
All activations at 0
What about the gradient ?
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SGD for DNNs

Batch Normalization

Main idea

Usually inputs to neural networks are
normalized to either the range of [0, 1] or
[-1, 1] or to mean=0 and variance=1
BN essentially performs Whitening to the
intermediate layers of the networks.
Usually placed before nonlinearities

From Fei Fei Li’s slides
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SGD for DNNs

Identity mapping in Residual Networks

Principle

Include identity mapping in the model
ResNet building block [He and al., 2015]]
Every layer becomes close to the output (⇒ not far in the backpropagation process)
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SGD for DNNs

Identity mapping in Residual Networks

Principle

Include identity mapping in the model
ResNet building block [He and al., 2015]]
Every layer becomes close to the output (⇒ not far in the backpropagation process)
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SGD for DNNs

Identity mapping with LSTM units in RNNs

What it does

Main behaviour
If ft == 1 and it == 0 use previous cell state
If ft == 0 and it == 1 ignore previous cell sate
If ot == 1 output ois set to cell sate
If ot == 0 output is set to 0

With...

Cell state ct

Forget gate ft

Input gate it
Output ot

Hidden state to propagate to
upper layers ht
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SGD for DNNs

Auxiliary loss on intermediate layers

Google net

Auxiliary loss brings some gradient to first layers
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SGD for DNNs

Regularizing with Dropout [Hinton 2012]

Principle

First method that actually allowed learning deep networks without pretraining and smart
initialization
Related to ensemble of models
Weights are normalized at inference time
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SGD for DNNs

Dropout [Hinton 2012]

Do not ever fear overfitting !
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Architecture design

Examples of architectures

AlexNet [Krizhevsky and al., 2012] (top) and NetworkInNetwork [Lin and al.,2013] (bottom)
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Architecture design

Looking for a good architecture: Lego game

How to reach such an architecture (GoogleNet 2014) ?

Searching for a good architecture requires making choices !!
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Architecture design

Looking for a good architecture: Lego game

Gridsearch

Standard Machine Learning models
Very few hyperparameters (regularization tradeoff, kernel width or degree etc)
Easier optimization problem
Usually much less data and much simpler models
⇒ Quite exhaustive gridsearch

Large deep networks
Many choices (sequence of layers, width of layers, convolution kernel’s size and strides,
activation function, optimization routine and its parameters...): Not many theoretical
hints
Harder optimization problem
Each try is expensive
⇒ Reuse of others’ architectures whenever possible
⇒ Gain experience on how to design
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Architecture design

Looking for a good architceture

Activation function

ReLu

Sigmoid

Tanh

Linear

GRU

LSTM

Connectivty

Fully connected

Convolutional, Pooling

Dilated

Recurrent

Recursive

Skip/ Residual

Criterion

MSE

L2 reg

Cross entropy

Binary cross entropy

Likelihood

Sizes

Layers’ sizes

Dropout rate

Optimization

SGD

Adam

Adagrad

Adadelta

RMSProp

Learning rate

Decay

Batch size
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Architecture design

Looking for a good architceture

Illustration [Verbeek 2017]

Simple search (but for a large network)
19 convolution layers and 5 pooling layers to set
Question: where to put the poooling layers? → 40 000 architectures !!
No question about layers’ dimensions, activation function, kernels’ size, pooling type
etc

Remember
1 hour GPU on AWS = 1 $
Learning 1 model = Few hours
⇒ Expensive design !!!

Not much alternatives
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Architecture design

Looking for a good architecture: use others’ !!

Deep Models for High resolution images [Radford 2015]
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Architecture design

Architecture design from prior knowledge (HEP example)

What if unstructured data: is DNN useful ?

Modeling collision at CERN : features = physical
features of jets during the collision (speed, energy,
angle with collision axis...)
Main approaches

Use non deep machine learning models
Represent data as images and use Deep NNs
Design DNN architecture from knowledge on
the considered process

Example : Learn to aggregate features of jets using a
tree structure inspired from data knowledge [Louppe
et al., 2018]
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Architecture design

Architecture design from prior knowledge (HEP example)

Ziyu Guo’s thesis (with Y. Coadou at CPPM)

Deep learning in the search for ttH with the ATLAS experiment at the Large Hadron Collider
Rely on the physical process to design the NN structure
Better results than DNN, on par with state of the art models in HEP (BDTs)
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