	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Introduction au Deep Learning

Thierry Artières

Equipe QARMA d'apprentissage automatique Pole Science des Données - LIS lab Ecole Centrale Marseille

July 2, 2019

	MLPs					
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Intro						
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

Intro2

3 MLPs

4 Optim

5 Basics

6 Code

🕜 DL=RL

8 Power of depth

Icearning DNNs

Intro				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Where is AI?

Constat

- The original AI was the General AI (IA forte)
- Today 60 years after the Dartmouth meeting
 - We have achieved some NIA results (IA faible)
 - We can start thinking more seriously about GAI
 - These are just the premises.

	Intro						
0000000		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

At the heart of AI: Machine Learning (and Deep Learning)

Which algorithms to solve these tasks ?

Intro						
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Machine Learning

What is it for?

- Writing programs that solve a task while we don't even know how to writre the algorithm
- Where a program takes some input and produce a corresponding output
- The program is learned from labeled data = pairs of (input, output)

What is it?

- Algorithms that enable learning a function f : x ∈ X → y ∈ Y from a training dataset of samples
- The function must generalize well to data unseen at training time
- x and y may be discrete, continuous, vectors, matrices, tensors, sequences ...

Intro						
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Main difficulty

Generalization

- It is "easy" to learn models that are perfect on training data
- But is is useless

000 00 0 000000 000000 0 0000 0 00 00000 000000	Intro2						
		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

- Intro
 Intro2
- 3 MLPs
- 🕘 Optim
- 5 Basics
- 6 Code
- 🕜 DL=RL
- 8 Power of depth
- Dearning DNNs

Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

History of Neural Networks

Key dates

- 1943 : Formal neuron [McCuloch-Pitts]
- 1950 : Oragnization of neurons and learning rules [Hebb]
- 1960 : Perceptron [Rosenblatt]
- 1960 : Update rule [Widrow Hoff]
- 1969 : Limitations of the Perceptron [Minsky]
- 1980s : Back-propagation [Rumelhart and Hinton]
- 1990s : Convolutional Networks [LeCun and al.]
- 1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]
- 2006 : Paper on Deep Learning in Nature [Hinton and al.]
- 2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]
- 2013 : First edition of ICLR
- 2013 : Memory networks [Weston and al.]
- 2014 : Adversarial Networks [Goodfelow and al.]
- 2014 : Google Net [Szegedy and al.]
- 2015 : Residual Networks [He et al.]
- ..

Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

AI today

Where are we?

- The original AI (Dartmouth workshop) was General AI (IA forte)
- Today 60 years after Dartmouth
 - We have achieved NIA results (IA faible)
 - We can start thinking more seriously about GAI
 - These are just the premises.

Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

AI today

Where are we?

- The original AI (Dartmouth workshop) was General AI (IA forte)
- Today 60 years after Dartmouth
 - We have achieved NIA results (IA faible)
 - We can start thinking more seriously about GAI
 - These are just the premises.

Source: UBS, as of 15 August 2016

Intro2						
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Deep Learning today

Spectaculary breakthroughs - fast industrial transfer

- Images, Videos, Audio, Speech, Texts
- Successful setting
 - Structured data (temporal, spatial...)
 - Huge volumes of datas
 - Huge models (millions of parameters)
 - Huge storage and computing resources (GPU, TPU)

	VGGNet	DeepVideo	GNMT
Used For	Identifying Image Category	Identifying Video Category	Translation
Input	Image	Video	English Text ≝T
Output	1000 Categories	47 Categories	French Text
Parameters	140M	~100M	380M
Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words
Dataset	ILSVRC-2012	Sports-1M	WMT'14

					Learning Divivs
000 (0 0000 (0	00 0	0 00 0000000	00000	000000000	0 0000000000 00000000

Machine Learning and Deep Learning today

Spectacular diffusion and activity

- Machine Learning and Deep Learning Conferences sold out early
- More attendees than ever seen in computer science conferences
- Exponential growth
- Semantic change in what AI means

Intro Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Machine Learning and Deep Learning today

Topics, trends and who's who?

- Mix between academics and companies
- Extreme popularity of Deep Learning topics
- Birth of the International Conference on Learning Representation (2014)

Rank	Day	Name	Marked	Like
1	1	Tutorials Hall A	2789	287
2	2	Deep Learning, Applications	2364	289
3	3	Deep Learning	1831	163
4	3	Reinforecment Learning, Deep Learning	1592	140
5	1	Optimization	1522	130
6	1	Tutorials Hall C	1344	135
7	1	Algorithms	1307	137
8	2	Theory	1288	83
9	2	Algorithms Optimization	1223	107
10	4	Deep Learning, Algorithms	1202	113
11	4	Deep Reinforcement Learning	1202	43
12	2	Invited talk: Kate Crawford: The Trouble with Bias	1162	71
13	3	Reinforcement Learning, Algorithms, Applications	1156	134
14	3	Invited talk: Pieter Abbeel: Deep Learning for Robotics	1087	61
15	1	Tutorials Grand Ballroom	1082	132

Intro Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

DL research is going very fast !!

Example of an emerging topic: Generative Adversarial Networks

- First publication : 2014 by Ian J. Goodfellow, and al.
- Hundreds of publications (close to a thousand) papers since

New publication mode

- Wasserstein GANs, Martin Arjovsky and al.
 - Published on arXiv : Jan 2017
 - Published at ICML in Aout 2017
- Improved Training of Wasserstein GANs by Ishaan Gulrajani and al.
 - Published on arXiv : March 2017
 - Published at NIPS in December 2017
- Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect by Xiang Wei and al.
 - Published on Openreview : Oct 2017
 - Accepted as poster at ICLR in 2018 (April 2018)

					Learning Divivs
00 00	0 00 0000	0000	00000	0000000000	0 0000000000 00000000

Computer vision

Real time Object recognition

Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Speech

FIGURE 2.7 Historical progress on reducing the word error rate in speech recognition systems for different kinds of speech recognition tasks. Recent competency for the "difficult switchboad" task (human conversation in the wild) is marked with the green dot. SOURCE: X. Huang, J. Baker, and R. Reddy, 2014, A historical perspective of speech recognition, *Communications of the ACM* 57(1):94-103, doi:10.1145/2500887. © 2014, Association of Computing Machinery, Inc. Reprinted with permission.

					Learning Divivs
00 00	0 00 0000	0000	00000	0000000000	0 0000000000 00000000

Games

• BackGammon, Chess, Go

FIGURE 2.3 Elo scores—a measure of competency in competitive games showing the chess-playing competency of humans and machines, measured over time. SOURCE: Courtesy of Murray Campbell.

0000000 00000 000000 0000000 000000000	Intro2						
		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Image generation

Recent Nvidia results

Training Data

Samples

000 00 0 000000 000000 0 0000 0 00 00000 000000	Intro2						
		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Should we still trust what we see?

Intro2				
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Why now ?

Huge training resources for huge models

- Huge volumes of training data
- Huge computational ressources (clusters of GPUs)

Advances in understanding optimizing NNs

- Regularization (Dropout...)
- Making gradient flow (ResNets, LSTMs, ...)

Faster diffusion than ever

- Softwares
- Results
 - Publications (arxiv publication model) + codes
 - Architectures, weights (3 python lines for loading a state of the art computer vision model!)

	MLPs					
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

1	Intro
2	Intro2
3	MLPs • Basics • Deeper in MLPs
4	Optim
5	Basics
6	Code
7	DL=RL
8	Power of depth

Learning DNNs

	MLPs					
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Where DL comes from

F. Rosenblatt 1958 : The perceptron

	MLPs			
	• 00 0000	0 00 0000000	00000	0 0000000000 00000000
Basics				

A single Neuron

One Neuron

• Elementary computation

activation =
$$w^T \cdot x = \sum_j w_j x_j + w_0$$

output = $g(a(x))$

Non linearity : g

- Sigmoide, Hyperbolic tangent, Gaussian
- Rectified Linear Unit (RELU)

$$f(x) = 0$$
 if $x \le 0$
= x otherwise

	MLPs			
	000	0 00 0000000	00000	0 0000000000 00000000
Basics				

Multi Layer Perceptron (MLP)

Structure

- Organization in successive layers
 - Input layer
 - Hidden layers
 - Output layer

Function implemented by a MLP

 $g(W^{o}.g(W^{h}x))$

- Inference: Forward propagation from input to output layer
 - Fill the input layer with x: $h_0 = x$
 - Iterate from the first hidden layer to the last one

•
$$h' = W' \times h'^{-1}$$

• $h' = g(h')$

	MLPs			
	000	0 00 0000000	00000	0 0000000000 00000000
Basics				

Learning a MLP

Learning as an optimization problem

• Objective function of parameters set w for a given training set T

$$C(w) = F(w) + R(w) = \sum_{(x,y)\in T} L_w(x, y, w) + ||w||^2$$

• Gradient descent optimization: $w = w - \epsilon \frac{\partial C(w)}{\partial w}$

Backpropagation

• Use chain rule for computing derivative of the loss with respect to all weights in the NN

		MLPs			
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Deeper in	MLPs				

A single ReLU Neuron

One Neuron

• Elementary computation

activation =
$$w^T \cdot x = \sum_j w_j x_j + w_0$$

output = $ReLU(a(x))$

		MLPs			
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Deeper in	MLPs				

A single ReLU Neuron

		MLPs			
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Deeper in	I MLPs				

What a MLP may compute

What does a hidden neuron

• Divides the input space in two

Combining multiple hidden neurons

- Allows identifying complex areas of the input space
- New (distributed) representation of the input

		MLPs			
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Deeper in	n MI Ps				

MLP compute distributed representations

Might be much more efficient than non distributed ones

Somehow the number of regions in which a NN architecture may divide the input space is a measure of its capacity

		MLPs			
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Deeper in	n MLPs				

MLP = Universal approximators

One layer is enough !

• Theorem [Cybenko 1989]: Let $\phi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0, 1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon > 0$, there exists an integer N, such that for any function $f \in C(I_m)$, there exist real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$, where $i = 1, \dots, N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \phi \left(w_i^T x + b_i \right)$$

as an approximate realization of the function f where f is independent of ϕ ; that is : $|F(x) - f(x)| < \epsilon$ for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

- Existence theorem only
- Many reasons for not getting good results in practice

		Optim				
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

- 🕜 DL=RL
- 8 Power of depth
- 9 Learning DNNs

		Optim				
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Gradient Descent Optimization

Gradient Descent Optimization

- Initialize Weights (Randomly)
- Iterate (till convergence)

• Restimate
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \epsilon \frac{\partial C(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w}_t}$$

 \Rightarrow Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and from S. Ruder's blog

		Optim				
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Optimal learning rate and convergence speed

Second order point of view

• Taylor expansion, noting $\nabla^2 C(w)$ the Hessian (a $N \times N$ matrix with N a model with parameters)

$$\nabla C(w)|_{w'} = \nabla C(w)|_w + \nabla^2 C(w)(w'-w)$$

• \rightarrow optimum rule (setting $\nabla C(w)|_{w'}$ to 0):

$$w' = w - (\nabla^2 C(w))^{-1} \nabla C(w)$$

- Optimal move not in the direction of the gradient
- In Order 1 Gradient descent the optimal the optimal value of ε depends on eigen values of the Hessian ∇²C(w)

[Lecun et al, 93]

	Optim			
000		0 00 0000000	00000	0 0000000000 00000000

Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize $C(\mathbf{w}) = \sum_{i=1..N} L_w(i)$ with $L_w(i) = L_w(x^i, y^i, w)$

Batch vs Stochastic vs Minibatchs

- Batch gradient descent
 - Use $\nabla C(\mathbf{w})$
 - Every iteration all samples are used to compute the gradient direction and amplitude
- Stochastic gradient
 - Use $\nabla L_w(i)$
 - Every iteration one sample (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.
 - Minimize C(w) by minimizing parts of it successively
 - Allows faster convergence, avoiding local minima etc
- Minibatch
 - Use $\nabla \sum_{\text{few } j} L_w(j)$
 - Every iteration a batch of samples (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.

000 00 0 000000 000000 0 0000 0 00 00000 000000			Optim				
		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Optimization routines

Many SGD variants popular in DL

- SGD with Momentum
- Nesterov accelerated gradient
- Adragrad
- Adadelta
- RmsProp
- ...
| | | | Optim | | | |
|---------|------------|-------------|--------|--------------------|-------|-----------------------------|
| | | 000
0000 | 0
0 | 0
00
0000000 | 00000 | 0
0000000000
00000000 |
| Computa | tion graph | | | | | |

Gradient Computation: Chain rule

Gradient of a function

Equivalent computation with the Chain rule

$$z = 2 \times f(x + 3 \times y) + 6 \times g(5 \times x + y)$$

$$\Rightarrow \frac{\partial z}{\partial x}|_{x,y} = 2 \times f'(x + 3 \times y) + 30 \times g'(5 \times x + y)$$

Set
$$a = f(x + 3 \times y)$$
 and $b = g(5 \times x + y)$
 $\Rightarrow z = 2 \times a + 6 \times b$
 $\Rightarrow \frac{\partial z}{\partial a} = \frac{\partial z}{\partial a} \times \frac{\partial a}{\partial a} + \frac{\partial z}{\partial b} \times \frac{\partial b}{\partial x}$
With:
 $\frac{\partial z}{\partial a} = 2$ and $\frac{\partial z}{\partial b} = 6$
 $\frac{\partial a}{\partial x} = f'(a \times x + 3 \times y)$
 $\frac{\partial b}{\partial x} = 5 \times g'(5 \times x + y)$
 $\frac{\partial a}{\partial y} = 3 \times f'(a \times x + 3 \times y)$
 $\frac{\partial b}{\partial y} = xg'(5 \times x + y)$

			Optim			
		000 0000	00	0 00 0000000	00000	0 0000000000 00000000
Computa	tion graph					

BackPropagation

			Optim			
		000 0000	00	0 00 0000000	00000	0 0000000000 00000000
Computat	tion graph					

BackPropagation

			Optim			
		000 0000	00	0 00 0000000	00000	0 0000000000 00000000
D. 1.1	100					

Guiding the learning through regularization

Regularization

- Constraints on weights (L1 or L2)
- Constraints on activities (of neurons in a hidden layer) \rightarrow induces sparsity
 - L1 or L2
 - Mean activity constraint (Sparse autoencoders, [Ng et al.])
 - Sparsity constraint (in a layer and/or in a batch)
 - Winner take all like strategies
- Disturb learning for avoiding learning by heart the training set
 - Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
 - Noisy labels
- Early stopping

		Basics		
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Outline

7) DL=RL

- 8 Power of depth
- 9 Learning DNNs

		Basics		
	000 0000	00 0000000	00000	0 0000000000 00000000
Dense				

Dense architecture

			Basics		
		000 0000	0 • 0 0000000	00000	0 0000000000 00000000
Autoenco	ders				

Autoencoders

Principal Component Analysis

- Unsupervised standard (Linear) Data Analysis technique
 - Visualization, dimension reduction
- Aims at finding principal axes of a dataset

NN with Diabolo shape

- Reconstruct the input at the output via an intermediate (small) layer
- Unsupervised learning
- Non linear projection, distributed representation
- Hidden layer may be larger than input/output layers

			Basics		
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Autoenco	ders				

Deep autoencoders

Deep NN with Diabolo shape

- Extension of autoencoders (figure [Hinton et al., Nature 2006])
- Pioneer work that started the Deep Learning wave

			Basics		
		000 0000	0 00 ●000000	00000	0 0000000000 00000000
Convoluti	on				

Convolutional architectures

Convolutional layers

- Exploit a structure in the data
 - Images : spatial structure
 - Texts, audio ; temporal structure
 - videos : spatio-temporal structure
- Use shared weigths

Dense vs. Locally connected

[LeCun and Ranzato Tutorial, DL, 2015]

			Basics		
		000 0000	0 00 0●00000	00000	0 0000000000 00000000
Convolutio	on				

Convolution of multiple inputs with several small filter yields several activation maps

[From Fei Feil Li slides]

			Basics		
		000 0000	0 00 0●00000	00000	0 0000000000 00000000
Convoluti	on				

[From Fei Feil Li slides]

			Basics		
		000 0000	0 00 0●00000	00000	0 0000000000 00000000
Convolutio	on				

Convolution of multiple inputs with several small filter yields several activation maps

[From Fei Feil Li slides]

			Basics		
		000 0000	0 00 0●00000	00000	0 0000000000 00000000
Convolutio	on				

			Basics		
		000 0000	0 00 0●00000	00000	0 0000000000 00000000
Convoluti	on				

Convolution of multiple inputs with several small filter yields several activation maps

[From Fei Feil Li slides]

Very few free parameters but intensive computation

- Input : N_m input maps of size $H \times W$
- Output N_f filters with filter size $= h \times w$
- Parameters : $h \times w \times N_m \times N_f$
- Fwd computation :
 ≈ H × W × N_f × N_m × h × w
- For instance (very small case) :
 - From 3 32 \times 32 input maps \rightarrow 6 filters with filter size 3 \times 3
 - $3 \times 3 \times 3 \times 6 = 48$ parameters
 - 165 888 operations

			Basics		
		000 0000	0 00 00●0000	00000	0 0000000000 00000000
Convolution	on				

Aggregation layer

- Subsampling layer (one per activation map) with aggregation operator
- $\bullet~\mbox{Max}$ pooling $\rightarrow~\mbox{brings}$ invariance and robustness

Complexity

- No parameters
- Moderate computation

			Basics		
		000 0000	0 00 000●000	00000	0 0000000000 00000000
Convoluti	on				

Convolution architectures

- Most often a mix of (convolutional + pooling) layers followed by dense layers
- Most computation effort are in propagating through convolution layers
- Most parameters are in final fully connected layers

			Basics		
		000 0000	0 00 0000●00	00000	0 0000000000 00000000
Convoluti	on				

Convolution architectures

• Dit it change so much ?

		Basics		
	000 0000	0 00 0000●00	00000	0 0000000000 00000000
Convertient				

Convolution architectures

• Dit it change so much ?

		Basics		
	000 0000	0 00 0000●00	00000	0 0000000000 00000000
Convertient				

Convolution architectures

• Dit it change so much ?

		Basics		
	000 0000	0 00 0000●00	00000	0 0000000000 00000000
Convertient				

Convolution architectures

• Dit it change so much ?

IAMS - Dakar 2019

			Basics		
		000 0000	0 00 00000●0	00000	0 0000000000 00000000
C	e				

VGG idea

- Modular design
 - 3x3 conv as basis
 - Stack the same module
 - Same computation for each module (1/2 spatial size => 2x filters)

			Basics		
		000 0000	0 00 000000●	00000	0 0000000000 00000000
Convoluti	on				

Inception idea (GoogleNet)

- Inception modules
 - Multiple branchs (1x1, 3x3, 5x5, pool)
 - Shortcuts (stand alone 1x1, merged by concat)
 - Bottleneck (reduce dim by 1x1 before expensive 3x3/5x5 convs)

				Code			
	000 0000	00 0	0 00 0000000		00000	0000000000	0 0000000000 00000000

Outline

1	Intro
2	Intro2
3	MLPs
4	Optim
5	Basics
6	Code
7	DL=RL
8	Power of de

Dearning DNNs

				Code			
	000 0000	00 0	0 00 0000000		00000	0000000000	0 0000000000 00000000

Plateforms

Large and active community (forums, models are available when published...) for each of these

000 00		Code		Power of depth	Learning DNNs
	0 00 0000000		00000		0 0000000000 00000000

GPU and CPU

Data from https://github.com/jcjohnson/crm-benchmarks

Model is here

Data is here

If you aren't careful, training can bottleneck on reading data and transferring to GPU!

Solutions:

- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data

				Code			
	000 0000	00 0	0 00 0000000		00000	0000000000	0 0000000000 00000000

Computation graph

Computation graph for a calculus

One may build a computation graph form the calculus definition

z = Ax + b

Automatic differentiation

From a computation graph one may automatically compute the backward differentiation graph !

• Different rules to apply according to the operation yielding *z* from *x* and *y*

From Fei Fei Li slides

			Code		
	000 0000	0 00 0000000		00000	0 0000000000 00000000

Computation graph and Pytorch

Computational Graphs

[3] import torch from torch.autograd import Variable

N, D = 3, 4 x=Variable(torch.randn(N,D).cuda(),requires_grad=True) y=Variable(torch.randn(N,D).cuda(),requires_grad=True) z=Variable(torch.randn(N,D).cuda(),requires_grad=True)

```
[6] a = x* y
     b = a + z
     c = torch.sum(b)
     c.backward()
     print (x.grad.data)
     print (v.grad.data)
     print (z.grad.data)
Es.
    tensor([[-2,4946, -1.7749, -2.8303, -1.0450],
            [ 1.8087, -0.8123, 1.4324, -0.7497],
            [ 0.4153, -0.7573, -0.3054, 1.81461], device='cuda:0')
    tensor([[-0.2363, -1.8247, -3.2515, 4.3729],
            [-0.6283, 1.9725, -3.6697, -1.4272],
            [ 0.8991, -0.2417, -0.2456, -2.468411, device='cuda:0')
    tensor([[2., 2., 2., 2.],
            [2., 2., 2., 2.],
            [2., 2., 2., 2.]], device='cuda:0')
```

			Code		
	000 0000	0 00 0000000		00000	0 0000000000 00000000

Example (pytorch)

Mnist Classifier (model definition)

```
class Net(nn.Module):
   def __init__(self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2 drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
   def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log softmax(x, dim=1)
```

			Code		
	000 0000	0 00 0000000		00000	0 0000000000 00000000

Example (pytorch)

```
Mnist Classifier (model training)
```

				DL=RL		
	000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

- 🕕 Intro
- 2 Intro2
- 3 MLPs
- 4 Optim
- 5 Basics
- 6 Code
- 🕖 DL=RL
 - Learning Representations
 - Embeddings
- Power of depth
- Learning DNNs

			DL=RL		
000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

$$h^i(x) = g(W^i \times h^{i-1}(x))$$

			DL=RL		
000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Shallow vs deep models

From [LeCun tutorial Statlearn]

- Neural Networks with one hidden layer are shallow models
- SVMs are shallow models

DL

• Joint learning of a hierarchy of representations and of a prediction model

			DL=RL	
	000 0000	0 00 0000000	00000	0 0000000000 00000000

Feature hierarchy : from low to high level

What feature hierarchy means ?

- Low-level features are shared among categories
- High-level features are more global and more invariant

[From Taigman et al., 2014]

				DL=RL	
		000 0000	0 00 0000000	• 0000 00000	0 0000000000 00000000
Learning Rep	resentations				

Visualizing filters and activations (primary understanding of NNs)

Mnist (toy) dataset

• Low resolution handwritten digit images

Weights of first Convolutional layer (32 maps)

Outputs of first Convolutional layer for above input

				DL=RL	
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Learning Repr	esentations				

Visualizing filters and activations

Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations of the 16 different filters (on the left)

[From Zeiler et Fergus]

				DL=RL			
		000 0000	0 00 0000000	00000	0 0000000000 00000000		
Learning F	Representations						

Visualizing filters and activations

10000	10000	200			11	100	100000		Constant of	1111111	10100	500	COM N	10.00	-	1000		2 BBA				D.
外									1			$\dot{\Delta}$	122	88		-			1	51	1	Č,
160									4	24		33	\otimes	54	P	100	1	200	4 -1		-	
R.						N.					4	226		ĤĤ	10		r			CU.		-
240	000	18	9	-	-	101	15.6		~	No.	80	62	2	11		-	-	<u>28</u> 1		2	68 A	
														m	\$	3	<u>} -</u>		-	and f	and Branch	
*														1	61	0-	18	C.		-	interest in succession	1
3	-												T	AP.	10	W ¹¹	5		3			Ĩ.
*		1.0	J=	12.50	115	~	-				0	125		12	0-		-					
160						d.	10						1.1	1	Tenes				1	-		2
													R.	L.			2	19.7	2			e
Lay	yer :	3										COST					Æ	1	1		45	
100	15	44	1		14				18.0		1			107	21007	_		anna a	-	181 C		7
1					B		5	9	1		-	100									10	-
۲	2				N.	A	12	1	C		and the second	127								1	1.	8
	1				ġ.	6	1	4	1	0	2	24					2	0	N.	10		
			10		die .		ĩ		0	0		-					-	COLOR AUX		17-1	2	5
					1	f an	4	1	(2)	•												
					1	9	T			\mathbf{O}	2	- Care					×.		- 200	m,	10	
					*		-	~		12	6	9					36		19	and.	1	1
					1		H			-	0.0	10					89	来》	1	6		
								-			2.518						(49)	and the		1	~	
						_	1	100	mill		£.,	8 1						Contraction of the local division of the loc	100	1		Δ.
					32		Next	51			1	-202					- E		a de la constante	-0	8	ł
					¥.			2			-	.9					1	8.6	130	7		
					-	-74		1	-		-	10					N.	R 6	Sin'	ten l	2.0	1
					100	1	-	2		Sin.	1	de.					1					
1	-	R.	16	E	1	.	1	1	Y			- 20					100		12		1	
					R.	m 1		-		Q'	1	6					8	8 6	0	3	21	į
					14	1	Anal	126	Tank		-					100	100	1000	72	10	00 50	

T. Artières (ECM - LIS / AMU)
				DL=RL	
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Learning Re	epresentations				

Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks

- Two DNN : Green one learned on Task A Blue on Task B
- Reuse DNNA for Task B (and vice versa)
- Study the effect of reusing a DNN up to layer number *i* ...

	bach
	boeB
	208 and 338
èèè₽₽₽₽₽	A2B acd A2S

Main results

- Better to reuse DNNA and fine tune on Task B
- Lower layers learn transferable features while higher don't

				DL=RL	
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Learning Re	epresentations				

Learning with few samples

Few shot learning (and zero shot learning)

- Rely on ability to lean relavant and transferable representations
- Nearest neighbour-like rules in the learned representation space

[Ravi Larochelle '17]

				DL=RL	
		000 0000	0 00 0000000	00000 00000	0 0000000000 00000000
Embeddin	igs				

One goal: learning "universal" representations

Motivation : learn representations for any task

- Unsupervised or supervised
- For images, text, speech etc
 - The last layer of a CNN encodes most relevant information on the input (image)
 - The last hidden state of a RNN encodes most relevant information on the processed input sequence (e.g. sentence, signal)

				DL=RL	
		000 0000	0 00 0000000	00000 00000	0 0000000000 00000000
Embeddin	igs				

Word embeddings

Embeddings for words

- When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate estimation from tractable corpus
- When one wants to infer some continuous representations of the input values to get insight on similarities between them

				DL=RL	
		000 0000	0 00 0000000	00000 00000	0 0000000000 00000000
Embeddin	igs				

A particular interesting effect: compositionality

Idea

- $Emb('King') + Emb('Woman') Emb('Man') \approx Emb('Queen')$
- It is an observed phenomenon which is not actually favored by the model design the learning criterion
- Similar effect reported on images (with DCGAN from [Radford et al.])

				DL=RL	
		000 0000	0 00 0000000	00000 00000	0 0000000000 00000000
Embeddin	igs				

Extension of the embedding idea

More generally one call embedding a new representation space for any input data (image, text, signal...)

				DL=RL	
		000 0000	0 00 0000000	00000 00000	0 0000000000 00000000
Embeddin	age				

Extension of the embedding idea for images

Main interest

- Many very deep architectures have been proposed by major actors (Google, Microsoft, Facebook...)
 - Using huge training corpora
 - Using huge computing resources
 - Architecture and Weights are often made publicly available
- It is better to use such models for computing high features from which one may design a classifier
 - With fine tuning (of upper layers) if enough training data are available on the target task
 - As a preprocessing if not

000 00 0 000000 0 000 00 000000 0 000000						Power of depth	
		000 0000	00	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

- Intro
- 2 Intro2
- 3 MLPs
- 4 Optim
- 6 Basics
- 6 Code
- 🕖 DL=RL
- Power of depth
 Capacity!
 - Learning DNN

				Power of depth	
	000 0000	0 00 0000000	00000	●000000000	0 0000000000 00000000
Capacity!					

$\mathsf{Depth} \text{ in } \mathsf{RNNs}$

Depth in Feedforward nets

- Stacked layers in a feed forward or more complex manner (e.g. multiple paths)
- Gradient vanishing or exploding problems when backpropagating

Depth in RNNs

- Stacked hidden layers as in traditional deep NNs : usual in many arheitectures
- $\bullet~$ Long sequences $\rightarrow~$ deep in time
- Both structural depths yield similar optimization problems (gradient flow)

				Power of depth	
	000 0000	0 00 0000000	00000	000000000	0 0000000000 00000000
Capacity!					

Deep networks are powerful

				Power of depth	
	000	0 00 0000000	00000	000000000	0 0000000000 00000000
Capacity!					

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

• There is a simple function expressible by a 3-layer network that may not be approximated by a 2-layer network to more than a certain accuracy unless its width is exponential in the input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

- $\bullet\,$ DNNs with RELU activation function \Rightarrow piecewise linear function
- Capacity as a function of the number of linear regions one may divide the input space
- Exponentially more regions per parameter in terms of number of HL
 - Case of p_0 inputs and $p = 2p_0$ hidden cells per HL (with k HL) :
 - Maximum number of regions at least : $2^{(k-1)p_0} \sum_{i=0}^{p_0} {2p_0 \choose i}$

				Power of depth	
	000 0000	0 00 0000000	00000	000000000	0 0000000000 00000000
Capacity					

DNNs are overparameterized

Large DNNs may even learn noise

- For instance : Learn after random permutation of the labels of the training samples
- It learns, but it takes more time...
- Note that the same (large) architectures that may learn random labels generalize well when trained on non perturbated data

						Power of depth		
		000 0000		0 00 0000000	00000	000000000	0 0000000000 00000000	
Capacity!								

DNNs and overfitting

Actually NNs do not easily overfit

- The more you learn the better it generalizes
- Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size *H*) NNs without any regularization → no overfitting observed

[Neyshabur 2017]

				Power of depth		
	000 0000	0 00 0000000	00000	0000000000	0 0000000000 00000000	
Capacity!						

Capacity

Vapnik dimension

Rademacher capacity

$$R_n(H) = E_{\sigma}[sup_{h \in H} \frac{1}{n} \sum_{i=1}^n \sigma_i h(x_i)]$$

with $\sigma_i \in \{-1, 1\}$

- Clearly looks like the randomization test
- Trivial upperbound (=1): useless

				Power of depth	
	000	0 00 0000000	00000	00000000000	0 0000000000 00000000
Capacity!					

DNNs' capacity

Vapnik dimension of deep NNs with ReLU

- With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is $h = \Theta(L^2 p^2)$
- Considering classical generalization bound : $R(w) \leq R_{emp}(w) + \tilde{O}(\sqrt{\frac{L^2 \rho^2}{n}})$
- This does not explain generalization behavior

				Power of depth	
	000 0000	0 00 0000000	00000	00000000000	0 0000000000 00000000
Capacity!					

Deep nets do not actually need to be huge

Size helps learning but one may simplify once learned !

- Low rank tensor approximation (CP, Tucker, TensorTrain) of layer weight matrices (FC, Conv, RNN) [Novikov et al. 2015]
- Distillation strategy [Hinton et al., 2015]
 - Learn a deep and complex model *f_{NN}* (or en ensemble of deep models) on a dataset *D*
 - Create a new learning task by computing the output vectors o of f_{NN} for samples in D (better use logits than outputs of the softmax)
 - Learn a narrower model to predict *o* vectors for samples in *D*

number of parameters in the weight matrix of the first layer

						Power of depth		
		000 0000		0 00 0000000	00000	00000000000	0 0000000000 00000000	
Capacity!								

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer

• Knowledge distillation + intermediate distillation losses

(a) Teacher and Student Networks

W1 W2

 $\mathbf{w}_{i} = \underset{\mathbf{W}_{S}}{\operatorname{argmin}} \mathcal{L}_{DK} (\mathbf{w}_{i})$

(b) Hints Training

(c) Knowledge Distillation

						Power of depth	
		000 0000		0 00 0000000	00000	000000000	0 0000000000 00000000
Capacity!							

DL vs standard ML

Traditional Machine Learning

- Overfitting is the enemy
- One may control generalization with appropriate regularization
- Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

- Huge capacity without overfitting
- The size helps learning
- Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
- Regularization may slightly improve performance but is not THE answer for improving generalization
- Not clear what in the DNN may allow to predict its generalization ability

000 00 0 00000 00000 0 00000 0 00000 000000							Learning DNNs
		000 0000	00 0	0 00 0000000	00000	0000000000	0 0000000000 00000000

Outline

- 1 Intro
- 2 Intro2
- 3 MLPs
- 🕘 Optim
- 5 Basics
- 6 Code
- 🕜 DL=RL
- Power of depth

9 Learning DNNs

- Learning is not so easy!
- SGD for DNNs
- Architecture design

					Learning DNNs
		000 0000	0 00 0000000	00000	
Learning i	is not so easy!				

From shalow to deep

					Learning DNNs
		000 0000	0 00 0000000	00000	0 •000000000 00000000
SCD for	DNNe				

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun Statlearn tutorial]

- ... but expectation of generalized results to other activation functions
- With ReLu and MaxPooling operators one may formalize what happens on a path from an input to the output
- The output may be computed as :

$$\hat{y} = \sum_{P} \delta_{P}(W, X) (\prod_{(ij) \in P} w_{ij}) x_{j_{start}}$$

- $\delta_P(W, X)$: 1 if active path, 0 otherwise
- Implemented function is piece-wise linear

					Learning DNNs
		000 0000	0 00 0000000	00000	0 •000000000 00000000
SGD for	DNNs				

While NN optimization is reasonably easy

(Easier) analysis for ReLU DNNs [LeCun Statlearn tutorial]

 Objective function : piece wise polynomial (degree = number of hidden layers) with partially random coefficients

$$C(W) = \sum_{P} C_{P}(X, Y, W)(\prod_{(ij) \in P} w_{ij})$$

 Hint from results on distribution of critical points for polynomials with random coefficients

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
SGD for	DNNs				

Deep ReLu networks

Easier analysis... [LeCun Statlearn tutorial]

- Experiments by [Choromanska and al., 2015]: Train 2-layers nets on Mnist from multiple initializations and measure loss on the test set
- Many close local minimas for large nets
- Objective function do not exhibit lots of saddle points and most local minima are good and close to globale minimas

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
SGD for I	DNNs				

Yet the depth alone is not enough

While SGD works well for NNs, the optimization of DNNs requires careful design and tricks

- Make the gradient flow with activation normalization (Batch Normalization)
- Make the gradient flow with structural constraints (Identity mapping)
- Regularization (Dropout)

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
SCD for	DNNe				

Problems with activity propagation in deep NNs [He et al., 2016]

Few slides from Fei Fei Li

Standard initialization schema for MLPs

- 10 layers networks (500 neurones each, with tanh)
- Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
- All activations at 0
- What about the gradient ?

T. Artières (ECM - LIS / AMU)

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
SGD for I	DNNs				

Batch Normalization

Main idea

- Usually inputs to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1
- BN essentially performs Whitening to the intermediate layers of the networks.
- Usually placed before nonlinearities

					Learning DNNs
		000 0000	0 00 0000000	00000	0 00000000000 00000000
SGD for I	DNNs				

Identity mapping in Residual Networks

Principle

- Include identity mapping in the model
- ResNet building block [He and al., 2015]]
- Every layer becomes close to the output (\Rightarrow not far in the backpropagation process)

					Learning DNNs
		000 0000	0 00 0000000	00000	0 00000000000 00000000
SGD for I	DNNs				

Identity mapping in Residual Networks

Principle

- Include identity mapping in the model
- ResNet building block [He and al., 2015]]
- Every layer becomes close to the output (\Rightarrow not far in the backpropagation process)

					Learning DNNs
		000 0000	0 00 0000000	00000	0 000000000000 000000000
SGD for	DNNs				

Identity mapping with LSTM units in RNNs

What it does

- Main behaviour
 - If $f_t == 1$ and $i_t == 0$ use previous cell state
 - If $f_t == 0$ and $i_t == 1$ ignore previous cell sate
 - If $o_t == 1$ output ois set to cell sate
 - If $o_t == 0$ output is set to 0

With...

- Cell state ct
- Forget gate f_t
- Input gate it
- Output ot
- Hidden state to propagate to upper layers *h*_t

		MLPs			Learning DNNs
		000 0000	0 00 0000000	00000	0 00000000000 000000000
SGD for I	DNNs				

Auxiliary loss on intermediate layers

Google net

• Auxiliary loss brings some gradient to first layers

					Learning DNNs
		000 0000	0 00 0000000	00000	0 00000000000 000000000
SGD for	DNNs				

Regularizing with Dropout [Hinton 2012]

Principle

- First method that actually allowed learning deep networks without pretraining and smart initialization
- Related to ensemble of models
- Weights are normalized at inference time

						Learning DNNs	
		000 0000		0 00 0000000	00000	0 000000000 00000000	
SGD for D	ONNs						

Dropout [Hinton 2012]

Do not ever fear overfitting !

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 0000000
Architect	ure design				

Examples of architectures

AlexNet [Krizhevsky and al., 2012] (top) and NetworkInNetwork [Lin and al., 2013] (bottom)

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 0●000000
Architectu	ure design				

Looking for a good architecture: Lego game

How to reach such an architecture (GoogleNet 2014) ?

Searching for a good architecture requires making choices !!

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00●00000
Architect	ure design				

Looking for a good architecture: Lego game

Gridsearch

- Standard Machine Learning models
 - Very few hyperparameters (regularization tradeoff, kernel width or degree etc)
 - Easier optimization problem
 - Usually much less data and much simpler models
 - $\bullet \ \Rightarrow \mathsf{Quite \ exhaustive \ gridsearch}$
- Large deep networks
 - Many choices (sequence of layers, width of layers, convolution kernel's size and strides, activation function, optimization routine and its parameters...): Not many theoretical hints
 - Harder optimization problem
 - Each try is expensive
 - $\bullet \Rightarrow$ Reuse of others' architectures whenever possible
 - \Rightarrow Gain experience on how to design

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Architecture	e design				

Looking for a good architceture

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 000000000
Architect	ure design				

Looking for a good architceture

Illustration [Verbeek 2017]

- Simple search (but for a large network)
 - 19 convolution layers and 5 pooling layers to set
 - Question: where to put the poooling layers? \rightarrow 40 000 architectures !!
 - No question about layers' dimensions, activation function, kernels' size, pooling type etc

Remember

- 1 hour GPU on AWS = 1 $\$
- Learning 1 model = Few hours
 ⇒ Expensive design !!!
- Not much alternatives

					Learning DNNs
		000	0 00 0000000	00000	0 0000000000 000000000
Architectu	ure design				

Looking for a good architecture: use others' !!

Deep Models for High resolution images [Radford 2015]

Historical attempts to scale up GANs using CNNs to model images have been unsuccessful. This motivated the authors of LAPGAN (Denton et al.) (2015) to develop an alternative approach to iteratively upscale low resolution generated images which can be modeled more reliably. We also encountered difficulties attempting to scale GANs using CNN architectures commonly used in the supervised literature. However, after extensive model exploration we identified a family of architectures that resulted in stable training across a range of datasets and allowed for training higher resolution and decere generative models.

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 00000000
Architectu	ure design				

Architecture design from prior knowledge (HEP example)

What if unstructured data: is DNN useful ?

- Modeling collision at CERN : features = physical features of jets during the collision (speed, energy, angle with collision axis...)
- Main approaches
 - Use non deep machine learning models
 - Represent data as images and use Deep NNs
 - Design DNN architecture from knowledge on the considered process
- Example : Learn to aggregate features of jets using a tree structure inspired from data knowledge [Louppe et al., 2018]

					Learning DNNs
		000 0000	0 00 0000000	00000	0 0000000000 0000000 ●
Architect	ure design				

Architecture design from prior knowledge (HEP example)

Ziyu Guo's thesis (with Y. Coadou at CPPM)

- Deep learning in the search for ttH with the ATLAS experiment at the Large Hadron Collider
- Rely on the physical process to design the NN structure
- Better results than DNN, on par with state of the art models in HEP (BDTs)

