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Generative models

Generative models

Goal

@ Learn to generate complex and realistic data

@ Statistical viewpoint : learn a model of the density of data / able to sample with
this density
o Postulate a parametric model : Usually not complex enough
o Postulate a parametric form and perform optimization (e.g. Maximum Likelihood) :

Intractable for complex forms p(x) = ’;(—(XX) with Z(x) = ZX F(x)

ce0 o o0 oo eo o Maximum Likelihood Estimation (MLE)

6" = arg max Einpyara 108 Pmodel (T | 0)
o
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Generative models

Adversarial learning principle

Taxonomy of Generative Models

-

‘ Maximum Likelihood

N /GAN

Explicit density‘ Implicit density
. . . Markov Chai
Tractable density ‘Approxnnate density arkov Lhai

— : GSN
-Fully visible belief nets
NADE AN

_MADE Variational | Markov Chain

Direct ‘

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

(Goodfellow 2016)
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Adversarial learning principle

Principle

@ Use a two player game

o Learn both a generator of artificial samples AND a discriminator that learns to
distinguishes between true and fake samples.
o The generator wants to flue the discriminator

o If an equilibrium is reached the generator produces samples with the true density

T it (), W) el 5 | G 25



Generative models and Adversarial Learning

O@0000000000

GANs

Adversarial Learning: Generator

Determinitic NN as a generative model

Using a deterministic NN as a generative model
@ Let note the function implemented by the model as G
@ Let note the input z — The NN computes G(z)
@ Assume z obeys a prior (noise) distribution, p, e.g. Gaussian distribution

@ then the output x of the NN follows a distribution

= pe(x) = / pz(z)dz
z s.t. G(z)=x
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Le principe de I'adversarial learning [Goodfellow and al., 2014]

Discriminator

Output : Fake / Rea

Principle

o Jeu a deux joueurs: un générateur
et un discriminateur
o le discriminateur veut distinguer
les exemples générés des vrais
exemples
o Le générateur veut tromper le
discriminateur

Input sample

Generator

Real samples

Data Space

Fake sample

Latent Space
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Adversarial Learning criterion

Criterion from [Goodfellow and al., 2014]

@ Generator G and Discriminator D are two NNs
o Whose parameters are noted 0, and 64
@ Distributions

® pyata Stands for the empirical distribution of the data from the training set
e p; is a prior noise distribution, e.g. a Gaussian distribution
o On convergence we want pg = Pdata

o Learning criterion:

mingmaxgv(0g, 0a) = Ex~p,, [l0gD(x)] + Eznp, [log(1 — D(G(2)))]

o Assume G is fixed: D is trained to distinguish between fake and true samples
o Assume D is fixed : G is trained to generate samples as realistic as possible
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Adversarial Learning theory: What happens during Learning

Discriminator“ Data
Model
distribution

A
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Learning algorithm

Algo from [Goodfellow and al., 2014]

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

 Sample minibatch of m noise samples {z(!), ..., 2(™} from noise prior py(2).
o Sample minibatch of m examples {z(),...,2(™} from data generating distribution
Paaa(@)-

o Update the discriminator by ascending its stochastic gradient:

V%Z flog D () +10g (1- D ( (=9)))].
end for
 Sample minibatch of m noise samples {z(1), ..., (™} from noise prior py(2).

o Update the generator by descending its stochastic gradient:

Vo 3oes (-0 (6 (=1))).

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Characterizing the solution

Optimal discriminator

@ G being fixed

DZ (X) o Pdata(X)

~ Paata(x) + pg(x)
o Let note C(G) = maxpV(G, D)

= C(G) = —log(4) + 2 x JSD(pdata|| ps)
@ with: JSD(pdatal|pg) the Jensen-Shanon divergence

Pdata (X) )

JSD(pdatal|Pg) = KL(pdatal| m
ata g

pdata(x)
pdata(X) + pg(X)) * KL(pg”

o with JSD > 0 and JSD = 0 — pgata = pg

T. Artieres (ECM, LIF-AMU) February 15, 2018 12 / 25
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Convergence proof

Convergence proof

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

B npina[108 DG (2)] + B, [log(1 — D())]
then py converges 10 Pyaia

Proof. Consider V(G,D) = U(pg, D) as a function of p, as done in the above criterion. Note
that U(pg, D) is convex in pg. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
SUP,e 4 fo(z) and fo(x) is convex in x for every o, then Ofs(x) € Of if B = argsup,e 4 fo(2).
This is equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding G. supp, U(py, D) is convex in py with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg, p, converges to p,, concluding the proof. O

T. Artiéres (ECM, LIF-AMU) Deep Learning February 15, 2018
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Good Examples
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Bad examples
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Interpolating with GANs [Goodfellow and al., 2014]

Idea
@ The latent code space is fully occupied
@ Any sample drawn by sampling with the generator should be realistic

@ One may interpolate between two latent codes and see

RIS SLEisS|SIsis|IshzIiz|zl212|7|/71717]/

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.
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Original GANs' features

Known problems
o Dilfficult learning
@ Very long learning
@ Missing modes

@ Evaluation measures

Many many variants
o Conditional

@ Disantangling

@ Image editing

T. Artieres (ECM, LIF-AMU) February 15, 2018 17 / 25
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

q(z[x) _
x 7~ q(z)

/ iint4

Draw samples Adversarial cost

from p(z) |4 for distinguishing
™ _@ positive samples p(z)
from negative samples ¢(z)

Learning criterion
@ Few definitions for g(z|x) : simplest = deterministic
@ Learning criterion:
mingmaxav(0g, 0a) = Exmpyyg, [l De(Ec(x)) = x||*] + Eznp, [logD(2)]
+ Expgons [l0g(1 — D(q(2]x)))]

T. Artieres (ECM, LIF-AMU) February 15, 2018 18 / 25
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]

Adversarial Autoencoder Variational Autoencoder

Manifold of
Adversarial Autoencoder

NNSNNRRA AN AB N
e L P P ey
N N L LR Ty
e R et
e
— =SSN LLNLUANNNN®
Y N T Y

Investigating the hidden code space
o Using different (2D) prior noise distributions with AAE and VAE (left)
o Sampling uniformly the Gaussian percentiles along each hidden code dimension z in
the AAE (right)

T. Artieres (ECM, LIF-AMU) February 15, 2018 19 / 25
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Adversarial Autoencoders

Adversarial AE [Makhzani and al., 2014 ou 15]
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Label conditioned Variant

Better shape of the
hidden code space

Goal:
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Adversarial Autoencoders

About using additional discriminators [Ganin et al, ICML 2015]

5L oL,
. 0, @

ol BRI (k-
/\ L4 = label predictor Gy (-;6,)
/)7;0 00 < domain classifier G4(-;04)
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feature extractor Gz (-:05) (9% s, i
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forwardprop  backprop (and produced derivatives)
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Conditional GANs [Mirza and al., 2014]

Learning criterion

o Citerion

mingmaxav(fg, 04) = Ex.y py, [10gD(x, )] + Ez .y p, [log(1 — D(G(2,y),y"))]

Discriminator Dixly)
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B I I X X)) v Figure 2: Generated MNIST digits, each row conditioned on one label
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Image editing with Invertible Conditional GANs [Perarnau and al., 2016]
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Examples

Disentangling factors of variation [Chen et al., 2018]

Generating images under various styles
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Examples

Disentangling factors of variation [Chen et al., 2018]

Transfering styles between images

T. Artidres (ECM, LIF-AMU)
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