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Dense Architectures

Dense architecture
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Autoencoders

Autoencoders

Principal Component Analysis
Unsupervised standard (Linear) Data Analysis
technique

Visualization, dimension reduction

Aims at finding principal axes of a dataset

NN with Diabolo shape
Reconstruct the input at the output via an
intermediate (small) layer
Unsupervised learning
Non linear projection, distributed representation
Hidden layer may be larger than input/output
layers
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Autoencoders

Deep autoencoders

Deep NN with Diabolo shape
Extension of autoencoders (figure [Hinton
et al., Nature 2006])
Pioneer work that started the Deep Learning
wave
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Convolutional NNs

Convolutional layer

Motivation
Exploit a structure in the data

Images : spatial structure
Texts, audio ; temporal structure
videos : spatio-temporal structure

Fully connected layers vs locally connected layers

( [LeCun and Ranzato Tutorial, DL, 2015])
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Convolutional NNs

Convolution layer

Convolution layer Example of a filter
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Convolutional NNs

Convolution layer

Use of multiple maps

([LeCun and Ranzato Tutorial, DL, 2015])

Aggregation layers
Subsampling layers with aggregation
operator
Max pooling → brings robustness

T. Artières (ECM, LIF-AMU) Deep Learning January 15, 2018 9 / 31



Main architectures Learning Deep architectures

Convolutional NNs

Convolutional models

LeNet architecture [LeCun 1997]
Most often a mix of (convolutional + pooling) layers followed by dense layers
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SGD

Learning deep networks

Gradient descent optimization as for MLPs
SGD
With momentum
Adagrad, Adam, Adadelta etc
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SGD

Gradient Descent Optimization

Gradient Descent Optimization
Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε
∂C(w)

∂w |wt
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SGD

Gradient Descent: Tuning the Learning rate

Two classes Classification problem

Weight trajectory for two different gradient
step settings.

Images from [LeCun et al.]
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SGD

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting
Assuming the gradient direction is good, there is an optima value fir the learning rate
Using a smaller value slows the convergence and may prevent from converging
Using a bigger value makes convergence chaotic and may cause divergence

Images from [LeCun et al.]
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SGD

Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize C(w) =
∑

i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs
Batch gradient descent

Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j Lw (j)

Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Optimize the GPU computation ability

T. Artières (ECM, LIF-AMU) Deep Learning January 15, 2018 16 / 31



Main architectures Learning Deep architectures

Optimization variants

Using Momentum

SGD with Momentum

Standard Stochastic Gradient descent : w = w − ε ∂C(w)
∂w

SGD with Momentum:

v = γv + ε
∂C(w)
∂w

w = w − v
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Optimization variants

Guiding the learning

Regularization
Constraints on weights (L1 or L2)

Constraints on activities (of neurons in a hidden layer)
L1 or L2
Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)
Winner take all like strategies

Disturb learning for avoiding learning by heart the training set
Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
Noisy labels
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Optimization variants

Guiding the learning

Denoising autoencoders and Deep Belief Networks

Examples of learned filters with Denoising Autoencoders (top)
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Optimization variants

Guiding the learning

Dropout

First method that allowed learning rellay deep networks without pretraining and
smart initialization
Related to ensemble of models
Weights are normalized at inference time
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Learning DNNs

Learning deep networks: Strategies

Few strategies (considering large volumes of unlabeled data)
Very large labeled training dataset : Fully supervised setting
Too few labeled training samples for supervised training : Unsupervised feature
learning (each layer one after the other) + fine tuning with a classifier on top
Very few labeled training samples : Unsupervised feature learning (each layer one
after the other) + flat classifier learning
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Learning DNNs

Learning deep networks

Unsupervised feature learning layer by layer
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Learning DNNs

Learning more general architectures

Graph of modules (better without
cycles...)

Still optimized with Gradient Descent !!

W = W − ε∂C(W )
∂W

provided functions implemented by
blocks are differentiable
and derivatives ∂Out(B)

∂In(B) and ∂Out(B)
∂W (B) are

available for every block
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Very deep Models

The Times They Are A Changing

(slide from [Kaiming He])
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Very deep Models

From shalow to deep

Simply stacking layers does not work (CIFAR
results) ! (figures form [He and al., 2015])

(source [He et al. 2016])
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What makes DNN work?

Deep vs Shalow ?

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]
DNNs with RELU activation function ⇒ piecewise linear function
Complexity of DNN function as the Number of linear regions on the input data
Case of n0 inputs and n = 2n0 hidden cells per HL (k HL) :

Maximum number of regions : 2(k−1)n0
∑n0

j=0

(2n0
j

)
Example: n0 = 2

Shallow model: 4n0 units → 37 regions
Deep model with 2 hidden layers with 2n0 units each → 44 regions
Shallow model: 6n0 units → 79 regions
Deep model with 3 hidden layers with 2n0 units each → 176 regions

Exponentially more regions per parameter in terms of number of HL
At least order (k-2) polynomially more regions per parameter in terms of width of
HL n
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What makes DNN work?

Deep vs Shalow ?

From [Pascanu and al., 2014]
Left: Regions computed by a layer with 8 RELU hidden neurons on the input space
of two dimensions (i.e. the output of previous layer)
Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2
hidden layers of width 4, and one linear output unit. Black lines delimit regions of
linearity of the function
Right: Heat map of a function computed by a 4 layer model with a total of 24
hidden units. It takes at least 137 hidden units on a shallow model to represent the
same function.
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What makes DNN work?

The depth alone is not enough

Making gradient flow for learning deep models
Main mechanism : Include the identity mapping as a possible path from the input to
the output of a layers
ResNet building block [He and al., 2015]]

LSTM (deep in time) [Hochreichter and al., 1998]
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What makes DNN work?

About generalization, overtraining, local minimas etc

Traditional Machine Learning
Overfiting is the enemy
One may control generalization with appropriate regularization

Recent results in DL
The Overfit idea should be revised for DL [Zhand and al., 2017]

Deep NN may learn noise !
Regularization may slightly improve performance but is not THE answer for improving
generalization

Objective function do not exhibit lots of saddle points and most local minima are
good and close to globale minimas [Choromanska et al., 2015]

Not clear what in the DNN may allow to predict its generalization ability
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What makes DNN work?

Favorable context

Huge training resources for huge models
Huge volumes of training data
Huge computing ressources (clusters of GPUs)

Advances in understanding optimizing NNs
Regularization (Dropout...)
Making gradient flow (ResNets, LSTM, ...)

Faster diffusion than ever
Softwares

Tensorflow, Theano, Torch, Keras, Lasagne, ...
Results

Publications (arxiv publication model) + codes
Architectures, weights (3 python lines for loading a state of the art computer vision
model!)
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