Réseaux de Neurones Profonds, Apprentissage de Représentations J

Thierry Artiéres
ECM, LIF-AMU

January 15, 2018

 LABORATOIRE — CENTRALE
AL e®9, — 77 MARSHILLE

T i (), W) Ty i e 1 5

T i (), W) Ty 1 0 2 5

Main architectures

Outline

e Main architectures
@ Dense Architectures
@ Autoencoders
@ Convolutional NNs

T i (), W) TRV

Main architectures
o

Dense Architectures

Dense architecture

Hidden Hidden Hidden Hidden
Layer1 Layer 2 Layer 3 Layer 4

O O
Input \/“
Layer \'Il/
/ v//; \\w
\‘ I
AN 4\’ 4!;.4\‘»*43;

V/ VA ‘\" “‘ ‘\‘

.W
A\\ f.fn;m A"M‘m. é"‘ \\.‘\‘~
l;‘A :\\\\ 7/ “\\ "If .
e\
./\g/\y//\ P

/

T. Artiéres (ECM, LIF-AMU) Deep Learning

January 15, 2018 4 /31

Main architectures

[Jo}

Autoencoders

Autoencoders

Principal Component Analysis

@ Unsupervised standard (Linear) Data Analysis
technique
e Visualization, dimension reduction

@ Aims at finding principal axes of a dataset

NN with Diabolo shape

@ Reconstruct the input at the output via an
intermediate (small) layer

@ Unsupervised learning
@ Non linear projection, distributed representation

o Hidden layer may be larger than input/output
layers

v

e T Ty 1 0t B 5

Main architectures

oe

Autoencoders

Deep autoencoders

Decoder

Deep NN with Diabolo shape

o Extension of autoencoders (figure [Hinton
et al., Nature 2006])

@ Pioneer work that started the Deep Learning
wave

T i (), W) Ty 1 s G 5

Main architectures
[Jelele]

Convolutional NNs

Convolutional layer

Motivation

@ Exploit a structure in the data
o Images : spatial structure
o Texts, audio ; temporal structure
o videos : spatio-temporal structure

Fully connected layers vs locally connected layers J

([LeCun and Ranzato Tutorial, DL, 2015])

T i (G, W) ey 1 A0t 7 3

Main architectures
[e] Je]e]

Convolutional NNs

Convolution layer

Convolution layer J
O
S \33
O 0Q
000000
000000

T it (), W) Ty 1 0t B 5

Main architectures
[e] Je]e]

Convolutional NNs

Convolution layer

Convolution layer J

00 a
Q0 Q
00 Q
00000Q
000000

T it (), W) Ty 1 0t B 5

Main architectures
[e] Je]e]

Convolutional NNs

Convolution layer

Convolution layer J

00
00O

0] 0d

8 (0)0

0Q

000000

000000

T i (G, W) Ty 1 0 B 5

Main architectures
[e] Je]e]

Convolutional NNs

Convolution layer

Convolution layer J

Filterl Filter2 Filter3

Q0 Q0
8838 338 8838
(OXO)

eJele/0le)
0 O00

@)
0000
0000

T i (), W) Ty 1 0t B 5

Main architectures

[e] Je]e]

Convolutional NNs

Convolution layer

. Example of a filter
Convolution layer xamp :

o

Filter weights
Filterl Filter2 Filter3

1 0|1
O 00 N
@88@ 388 tfol

Q0e

0 8 o = Positive output
ooe

O

00O
00O
000
00O

eJele/0le)
oJelele)

@)
0000 000 =Null output
Q000

T. Artiéres (ECM, LIF-AMU) Deep Learning January 15, 2018 8 /31

Main architectures
[e]e] le]

Convolutional NNs

Convolution layer

Use of multiple maps Aggregation layers

@ Subsampling layers with aggregation
operator

@ Max pooling — brings robustness

([LeCun and Ranzato Tutorial, DL, 2015])

T i (G, W) Ty 1 0 O 5

Main architectures

Convolutional NNs

Convolutional models

LeNet architecture [LeCun 1997]

@ Most often a mix of (convolutional + pooling) layers followed by dense layers

Bt C3: f. maps 16@10x10
: feature may S54:1. maps 16@5x5
INPUT 2 =

32x32 S2: f. maps

‘ Full oonAactiun ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

T it (G, W) ey i | 0

Learning

Outline

e Learning

@ SGD
@ Optimization variants
@ Learning DNNs

T i (), W) Ty 1 A 1 81

Learning
[Jelelele}

SGD

Learning deep networks

Gradient descent optimization as for MLPs
e SGD
o With momentum
o Adagrad, Adam, Adadelta etc

T it (), W) Ty 1 A 1281

Learning
[e] lele]e}

SGD

Gradient Descent Optimization

Gradient Descent Optimization

o Initialize Weights (Randomly)

o lterate (till convergence)

9C(w) ‘
ow Wt

o Restimate wey; = we — €

C(W) = Cste

T it (G, W) Ty o A 1881

Learning
[e]e] lele}

SGD

Gradient Descent: Tuning the Learning rate

Weight trajectory for two different gradient
step settings.

Two classes Classification problem

Images from [LeCun et al.]

T it (G, W) Ty 1 A 181

Learning

[e]e]e] e}

SGD

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting

@ Assuming the gradient direction is good, there is an optima value fir the learning rate

@ Using a smaller value slows the convergence and may prevent from converging

@ Using a bigger value makes convergence chaotic and may cause divergence

E(o) E()

(i) (ii)

Fig. 6. Gradient descent for different learning rates.

Images from [LeCun et al.]

T it (), W) Ttz 15, 208

15 / 31

Learning
[e]e]e]e] }

SGD

Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize C(w) =" Lo (i) with Ly (i) = Lu(x',y', w)

i=1..N =W

Batch vs Stochastic vs Minibatchs

o Batch gradient descent

e Use VC(w)

o Every iteration all samples are used to compute the gradient direction and amplitude
@ Stochastic gradient

e Use VL (/)

o Every iteration one sample (randomly chosen) is used to compute the gradient

direction and amplitude

o Introduce randomization in the process.

o Minimize C(w) by minimizing parts of it sucessively

o Allows faster convergence, avoiding local minima etc

@ Minibatch

o Use szewj Lw(j)

o Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude

o Introduce randomization in the process.

o Optimize the GPU computation ability

v

A (G L) Ty

Learning
[Jelele]

Optimization variants

Using Momentum

SGD with Momentum

@ Standard Stochastic Gradient descent : w = w — e%(ww)
@ SGD with Momentum:
oC(w)
V=9v+e—(——
ow
w=w-—v

T i (G, W) Ty 1 A 17 81

Learning
[e] le]e]

Optimization variants

Guiding the learning

Regularization

@ Constraints on weights (L1 or L2)

w,

PG

o Constraints on activities (of neurons in a hidden layer)
o Llorl2
o Mean activity constraint (Sparse autoencoders, [Ng et al.])
e Sparsity constraint (in a layer and/or in a batch)
o Winner take all like strategies
@ Disturb learning for avoiding learning by heart the training set

o Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
o Noisy labels

A (G L) Ty

Learning

[e]e] Te]

Optimization variants

Guiding the learning

Denoising autoencoders and Deep Belief Networks

Figure 1: Activation maximization applied on MNIST. On the left side: visualization of 36
units from the first (1st column), second (2nd column) and third (3rd column) hidden layers of a
DBN (top) and SDAE (bottom), using the technique of maximizing the activation of the hidden

unit. On the right side: 4 examples of the solutions to the optimization problem for units in the
3rd layer of the SDAE, from 9 random initializations.

o Examples of learned filters with Denoising Autoencoders (top)

T i (), W) ey i | 0 5

Learning

[eJe]e])

Optimization variants

Guiding the learning

Dropout

a) Standard Neural Net (b) After applying dropout

o First method that allowed learning rellay deep networks without pretraining and
smart initialization

o Related to ensemble of models

@ Weights are normalized at inference time

T i (G, W) Ttz 15, A8

20 / 31

Learning

@00
Learning DNNs

Learning deep networks: Strategies

Few strategies (considering large volumes of unlabeled data)
@ Very large labeled training dataset : Fully supervised setting

o Too few labeled training samples for supervised training : Unsupervised feature
learning (each layer one after the other) + fine tuning with a classifier on top

o Very few labeled training samples : Unsupervised feature learning (each layer one
after the other) + flat classifier learning

T i (G, W) T o A 3l 8]

Learning

[e] e}

Learning DNNs

Learning deep networks

Unsupervised feature learning layer by layer J

(]

Add decision layer on top

Use HL1 to process Data Add on top of HL1

Learn AE 2 on processed data
Cut the top: It remains HL2

T i (G, W) Ty o A 281

Learning

[e]e] J

Learning DNNs

Learning more general architectures

Still optimized with Gradient Descent !!

_ oc(w)
W=Ww-— 687

Graph of modules (better without
cycles...) J

@ provided functions implemented by
|, blocks are differentiable
@ and derivatives aaoh‘:;g?) and %%t((:)) are
available for every block
v
! 0
/] I
B
+ AW
| I

T it (), W) ey i 2 5

Deep architectures

Outline

e Deep architectures
@ Very deep Models
@ What makes DNN work?

T i (), W) T o A 2581

Deep architectures
(1o}

Very deep Models

The Times They Are A Changing

Revolution of Depth 22
152 layers

. 16.4

22 layers | | 19 layers
([Z2layers || 19 layers |
\ 6.7 73

i I_ 8 layers 8 layers shallow

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

(slide from [Kaiming He])

T i (), W) T TRy E

Deep architectures

oe

Very deep Models

From shalow to deep

. . VGG-19 34-layer plain 34-layer residual
Simply stacking layers does not work (CIFAR

results) ! (figures form [He and al., 2015]) = -
e =_M
= A A

Smom | [meme] [ememer |

Sacom e

s

0 ()
= T
1 . Sotayer
2 S6-layer 2 S St -

£ 4 .

g 20-layer

acon 512

EEI EEE PR
iter. (le4) iter. (1e4)

oupt

e pook 12
e [ssemm]
[]

oo 256
0w, 255

T i (), W) e e Z)

Deep architectures
[Jelele]e}

What makes DNN work?

Deep vs Shalow ?

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

o DNNs with RELU activation function = piecewise linear function

Complexity of DNN function as the Number of linear regions on the input data
Case of ng inputs and n = 2ng hidden cells per HL (k HL) :

o Maximum number of regions : 2(k—=1)mo Z;:o (2}’0)

Example: np =2
o Shallow model: 4ng units — 37 regions
o Deep model with 2 hidden layers with 2ng units each — 44 regions
e Shallow model: 6ng units — 79 regions
o Deep model with 3 hidden layers with 2ng units each — 176 regions

Exponentially more regions per parameter in terms of number of HL

At least order (k-2) polynomially more regions per parameter in terms of width of
HL n

T it (), W) T 1 A 2 81

What makes DNN work?

Deep vs Shalow 7

‘v SISNZSZS]
XXXRXY
0’0’0
0’0’0
0’0’0
0’0’0
0‘0‘0
020‘0

4

X

From [Pascanu and al., 2014]

o Left: Regions computed by a layer with 8 RELU hidden neurons on the input space

of two dimensions (i.e. the output of previous layer)

o Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2
hidden layers of width 4, and one linear output unit. Black lines delimit regions of

linearity of the function

@ Right: Heat map of a function computed by a 4 layer model with a total of 24
hidden units. It takes at least 137 hidden units on a shallow model to represent the

same function.

v

T i (G, W)

28 / 31

Deep architectures
[e]e] lele}

What makes DNN work?

The depth alone is not enough

Making gradient flow for learning deep models

@ Main mechanism : Include the identity mapping as a possible path from the input to
the output of a layers

@ ResNet building block [He and al., 2015]]

weight layer
weight layer

Flx)+x @

F(x)

x
identity

@ LSTM (deep in time) [Hochreichter and al., 1998]

® ® ()
t 1 t

N
A @ EE A E
[- l
(3} ® (2]

T. Artiéres (ECM, LIF-AMU) Deep Learning January 15, 2018 29 /31

Deep architectures
[e]e]e] o}

What makes DNN work?

About generalization, overtraining, local minimas etc

Traditional Machine Learning
o Overfiting is the enemy

@ One may control generalization with appropriate regularization

Recent results in DL
@ The Overfit idea should be revised for DL [Zhand and al., 2017]

o Deep NN may learn noise !
o Regularization may slightly improve performance but is not THE answer for improving
generalization
@ Objective function do not exhibit lots of saddle points and most local minima are
good and close to globale minimas [Choromanska et al., 2015]
o Not clear what in the DNN may allow to predict its generalization ability

T i (G, W) Ty o A g0 81

Deep architectures
[e]e]e]e] }

What makes DNN work?

Favorable context

Huge training resources for huge models
@ Huge volumes of training data

@ Huge computing ressources (clusters of GPUs)

Advances in understanding optimizing NNs

o Regularization (Dropout...)
@ Making gradient flow (ResNets, LSTM, ...)

Faster diffusion than ever

o Softwares
o Tensorflow, Theano, Torch, Keras, Lasagne, ...
o Results

o Publications (arxiv publication model) + codes
o Architectures, weights (3 python lines for loading a state of the art computer vision
model!)

v

T A (G LD Ty o A 18]

	Main architectures
	Dense Architectures
	Autoencoders
	Convolutional NNs

	Learning
	SGD
	Optimization variants
	Learning DNNs

	Deep architectures
	Very deep Models
	What makes DNN work?

