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History

Key dates
1980s : Back-propagation [Rumelhart and Hinton]
1990s : Convolutional Networks [LeCun and al.]
1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]
2006 : Paper on Deep Learning in Nature [Hinton and al.]
2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]
2013 : First edition of ICLR
2013 : Memory networks [Weston and al.]
2014 : Adversarial Networks [Goodfelow and al.]
2014 : Google Net [Szegedy and al.]
2015 : Residual Networks [He et al.]
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Deep Learning today

Spectaculary breakthroughs - fast industrial transfer
Images, Videos, Audio, Speech, Texts
Successful setting

Structured data (temporal, spatial...)
Huge volumes of datas
Huge models (millions of parameters)
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The Graal
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The key: features
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Annotating real visual scenes

[Farabetr et al., 2012]
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Automatic captioning

[Honglak et al., 2014]
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A single Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = g(a(x))

Non linearity : g

Sigmoide, Hyperbolic tangent, Gaussian
Rectified Linear Unit (RELU)

f (x) = 0 if x ≤ 0
= x otherwise
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Multi Layer Perceptron (MLP)

Structure

Organization in successive layers
Input layer
Hidden layers
Output layer

Function implemented by a MLP

g(W o .g(W hx))

Inference: Forward propagation from input
to output layer
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MLP : Forward propagation

Forward propagation of activities, for an input example x
Fill the input layer with x : h0 = x
Iterate from the first hidden layer to the last one

hl = W l × hl−1

hl = g(hl )
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MLP Usage for Regression

Notation

yij : ideal output of the j th neuron of the output layer when input is example number
i
oij : real output of the j th neuron of the output layer when input is example number i
N : number of samples
O number of outputs of the model = size of the output layer

Training
Criterion:

Mean Squared Error 1
N
∑N

i=1

∑O
j=1 ‖yij − oij‖2

Inference
Forward propagation from the input layer to the output layer
Output: (oij )j=1..O
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MLP Usage for Classification

Training
One-hot encoding of outputs: As many outputs as there are classes
MSE criterion as for Regression problems
Cross Entropy criterion

transformation of outputs sij in a probability distribution

Softmax : pij = exp−oij∑O
k=1

exp−oik

New ouputs of the model : pij = output of the jth neuron of the output layer when input is
example number i

Criterion:
Cross-entropy − 1

N

∑N
i=1

∑O
j=1

yij log(pij )

Training
Forward propagation from the input layer to the output layer
Decision based on the maximum value amongst output cells c = argmaxj=1..Opij
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Learning a MLP

Learning as an optimization problem
Objective function of parameters set w for a given training set T

C(w) =F (w) + R(w)

=
∑

(x,y)∈T

Lw (x , y ,w) + ||w ||2

Gradient descent optimization: w = w − ε ∂C(w)
∂w

Backpropagation
Use chain rule for computing derivative
of the loss with respect to all weights in
the NN
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Gradient Descent Optimization

Gradient Descent Optimization
Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt
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Gradient Descent: Tuning the Learning rate

Two classes Classification problem

Weight trajectory for two different gradient
step settings.

Images from [LeCun et al.]
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Gradient Descent: Tuning the Learning rate

Effect of learning rate setting
Assuming the gradient direction is good, there is an optima value fir the learning rate
Using a smaller value slows the convergence and may prevent from converging
Using a bigger value makes convergence chaotic and may cause divergence

Images from [LeCun et al.]
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Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize C(w) =
∑

i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs
Batch gradient descent

Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j Lw (j)

Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Optimize the GPU computation ability
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Gradient Computation: Chain rule

Gradient of a function

z = 2× f (x + 3× y) + 6× g(5× x)× h(y)

⇒
∂z
∂x
|x,y = 2× f ′(x + 3× y) + 30× g ′(5× x)× h(y)

Equivalent computation with the Chain rule

Set a(x) = f (x + 3 × y) and b(x, y) = g(5 × x)

⇒ z = 2 × a(x) + 6 × b(x) × h(y)

⇒
∂z

∂x
|x,y =

∂z

∂a
|x,y ×

∂a

∂x
|x,y +

∂z

∂b
|x,y ×

∂b

∂x
|x,y

With:

∂y

∂a
|x,y = 2 and

∂a

∂x
|x,y = f ′(a × x + 3 × y)

∂y

∂b
|x,y = 6 × h(y) and

∂b

∂x
|x,y = 5 × g′(5 × x)

∂a

∂x
|x,y = g′(a × x)

∂b

∂x
|x,y = 5 × g′(5 × x)
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Gradient computation in MLPs: Stochastic case

Notations

Activation function on every layer: g — Number of layer : L
Activity of neuron i in layer l , al

i — Output of neuron i in layer l , hl
i = g(al

i ), and
oL

i = g(aL
i )

Weight from a neuron j of layer l − 1 to neuron i in layer l : w l
ij

Example considered for computing gradient (x , y)
Squarred loss : C(w) = ‖oL − y‖2

Gradient wrt. last layer weights

Gradient wrt cell’s ouput ∂C(w)
∂oL

i
= 2(oL

i − yi )

Gradient wrt cell’s activity δL
i = ∂C(w)

∂aL
i

= ∂C(w)
∂oL

i

∂oL
i

∂aL
i

= 2(oL
i − yi )g ′(aL

i )

Gradient wrt weights arriving to output cells

∂C(w)
∂wL

ij
=
∂C(w)
∂aL

i

∂aL
i

∂wL
ij

= δL
i × hL−1

j
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Gradient computation in MLPs: Stochastic case (continues)

Gradient wrt. last hidden layer (LHL) weights

Gradient wrt LHL cell’s activity δL−1
j = ∂C(w)

∂aL−1
j

=
∑

i
∂C(w)

∂aL
i

∂aL
i

∂aL−1
j

=
∑

i δ
L
i wL

ij g ′(aL−1
j )

Gradient wrt weights arriving to a LHL cell
∂C(w)
∂wL−1

jk
= δL−1

j × hL−2
k
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Gradient computation in MLPs

Forward propagation of activities, for an input example x

Fill the input layer with x : h0 = x
Iterate from the first hidden layer to the last one

hl = W l × hl−1

hl = a(hl )

Backward computation of the error

Compute the output error δL

Iterate from the last hidden layer to the first one
Compute δL from δL−1

Computing gradient

For each weight w l
jk of every layer compute the gradient using δl

j and ol−1
k
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Lots of tricks to favor convergence

And more...
Weight Initialization
Gradient step setting
...
⇒ Despite appearances NN are still not
fully usable by non experts
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A single Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = g(a(x))

Non linearity : g

Sigmoide, Hyperbolic tangent, Gaussian
Rectified Linear Unit (RELU)

f (x) = 0 if x ≤ 0
= x otherwise
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What a MLP may compute

What does a hidden neuron
Divides the input space in two

Combining multiple hidden neurons
Allows identifying complex
areas of the input space
New (distributed)
representation of the input
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Distributed representations

Might be much more efficient than non distributed ones
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MLP = Universal approximators

One layer is enough !
Theorem [Cybenko 1989]: Let φ(·) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m. The space of continuous functions on Im is denoted by C(Im).
Then, given any ε > 0, there exists an integer N, such that for any function
f ∈ C(Im), there exist real constants vi , bi ∈ R and real vectors wi ∈ Rm, where
i = 1, · · · ,N, such that we may define:

F (x) =
N∑

i=1

viφ
(

wT
i x + bi

)
as an approximate realization of the function f where f is independent of φ ; that is
: |F (x)− f (x)| < ε for all x ∈ Im. In other words, functions of the form F (x) are
dense in C(Im).
Existence theorem only
Many reasons for not getting good results in practice
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What are deep models ?

NNs with more than one hidden layer !
A series of hidden layers
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What are deep models ?

NNs with more than one hidden layer !
Computes a complex function of the input

y = g(W k × g(W k−1 × g(...g(W 1 × x))))
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What are deep models ?

NNs with more than one hidden layer !
Computes new representations of the input

hi (x) = g(W i × hi−1(x))
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Machine Learning vs. Deep Learning
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Feature hierarchy : from low to high level

What feature hierarchy means ?
Low-level features are shared among categories
High-level features are more global and more invariant

([Krizhevsky and al., 2012])
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Examples of architectures

AlexNet [Krizhevsky and al., 2012] (top) and NetworkInNetwork [Lin and al.,2013]
(bottom)
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