Réseaux de Neurones Profonds, Apprentissage de Représentations

Thierry Artières

ECM, LIF-AMU

December 14, 2017

Introduction

2 MLPs

Oeeper in MLPs

ONNs in brief

Introduction		

Outline

2) MLPs

3 Deeper in MLPs

4 DNNs in brief

Introduction		
History		

Key dates

- 1980s : Back-propagation [Rumelhart and Hinton]
- 1990s : Convolutional Networks [LeCun and al.]
- 1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]
- 2006 : Paper on Deep Learning in Nature [Hinton and al.]
- 2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]
- 2013 : First edition of ICLR
- 2013 : Memory networks [Weston and al.]
- 2014 : Adversarial Networks [Goodfelow and al.]
- 2014 : Google Net [Szegedy and al.]
- 2015 : Residual Networks [He et al.]

Introduction		

Deep Learning today

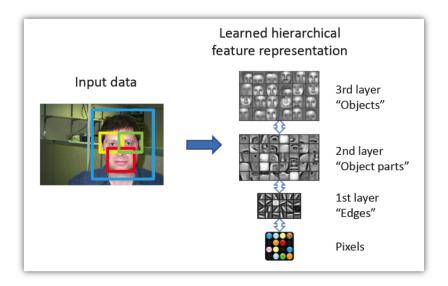
Spectaculary breakthroughs - fast industrial transfer

- Images, Videos, Audio, Speech, Texts
- Successful setting
 - Structured data (temporal, spatial...)
 - Huge volumes of datas
 - Huge models (millions of parameters)

	VGGNet	DeepVideo	GNMT
Used For	Identifying Image Category	Identifying Video Category	Translation
Input	Image	Video	English Text =
Output	1000 Categories	47 Categories	French Text
Parameters	140M	~100M	380M
Data Size	1.2M Images with assigned Category	1.1M Videos with assigned Category	6M Sentence Pairs, 340M Words
Dataset	ILSVRC-2012	Sports-1M	WMT'14

Introduction			DNNs in brief
The Gra	al		
	ai		
		Y LeCur way in the visual cortex has multiple stages PIT - AIT	

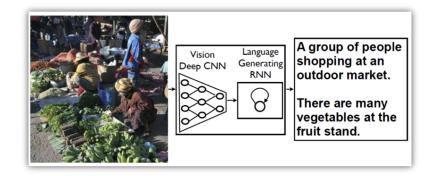
Introduction		
The key: featur	es	



Annotating real visual scenes

[Farabetr et al., 2012]

Automatic captioning



[Honglak et al., 2014]

MLPs	

Outline

2 MLPs

3 Deeper in MLPs

4 DNNs in brief

MLPs	

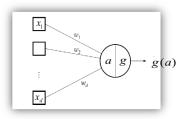
A single Neuron

One Neuron

• Elementary computation

activation =
$$w^T \cdot x = \sum_j w_j x_j + w_0$$

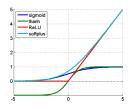
output = $g(a(x))$



Non linearity : g

- Sigmoide, Hyperbolic tangent, Gaussian
- Rectified Linear Unit (RELU)

$$f(x) = 0 \text{ if } x \le 0$$
$$= x \text{ otherwise}$$



Multi Layer Perceptron (MLP)

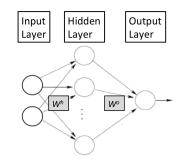
Structure

- Organization in successive layers
 - Input layer
 - Hidden layers
 - Output layer

Function implemented by a MLP

 $g(W^o.g(W^hx))$

• Inference: Forward propagation from input to output layer



MLPs	

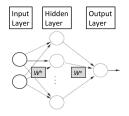
MLP : Forward propagation

Forward propagation of activities, for an input example x

- Fill the input layer with x: $h_0 = x$
- Iterate from the first hidden layer to the last one

•
$$h' = W' \times h'^{-}$$

•
$$h' = g(h')$$



MI D. Lloogo for Degreesion	
MID Haara far Dagraasian	
MLP Usage for Regression	

Notation

- y_{ij} : ideal output of the j^{th} neuron of the output layer when input is example number i
- o_{ij} : real output of the j^{th} neuron of the output layer when input is example number i
- N : number of samples
- O number of outputs of the model = size of the output layer

Training

- Criterion:
 - Mean Squared Error $\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{O}\|y_{ij}-o_{ij}\|^2$

Inference

- Forward propagation from the input layer to the output layer
- Output: $(o_{ij})_{j=1..O}$

	MLPs	Deeper in MLPs	
MLP Usage for	Classification		

Training

- One-hot encoding of outputs: As many outputs as there are classes
- MSE criterion as for Regression problems
- Cross Entropy criterion
 - transformation of outputs sij in a probability distribution

• Softmax :
$$p_{ij} = \frac{exp^{-o_{ij}}}{\sum_{k=1}^{O} exp^{-o_{ik}}}$$

- New ouputs of the model : $p_{ij} =$ output of the j^{th} neuron of the output layer when input is example number i
- Criterion:

• Cross-entropy
$$-\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{O}y_{ij}\log(p_{ij})$$

Training

- Forward propagation from the input layer to the output layer
- Decision based on the maximum value amongst output cells $c = argmax_{j=1..op_{ij}}$

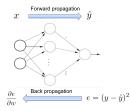
	MLPs		
Learning a MLF)		
Learning as an opt	1	t w for a given training set T	1
	ction of parameters set	w for a given training set 7	
	C(w) = F(v)	w) + R(w)	

$$= \sum_{(x,y)\in T} L_w(x,y,w) + ||w||^2$$

• Gradient descent optimization: $w = w - \epsilon \frac{\partial C(w)}{\partial w}$

Backpropagation

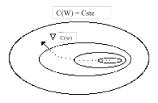
• Use chain rule for computing derivative of the loss with respect to all weights in the NN



Gradient Descent Optimization

Gradient Descent Optimization

- Initialize Weights (Randomly)
- Iterate (till convergence)
 - Restimate $\mathbf{w}_{t+1} = \mathbf{w}_t \epsilon \frac{\partial C(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w}_t}$

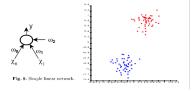


MLPs	

Gradient Descent: Tuning the Learning rate

Weight trajectory for two different gradient step settings.

Two classes Classification problem



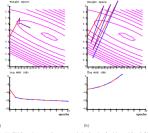


Fig. 11. Weight trajectory and error curve during learning for (a) $\eta=1.5$ and (b) $\eta=2.5.$

Images from [LeCun et al.]

MLPs	

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting

- Assuming the gradient direction is good, there is an optima value fir the learning rate
- Using a smaller value slows the convergence and may prevent from converging
- Using a bigger value makes convergence chaotic and may cause divergence

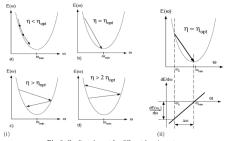


Fig. 6. Gradient descent for different learning rates.

Introduction	MLPs	Deeper in MLPs	DNNs in brief

Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize $C(\mathbf{w}) = \sum_{i=1..N} L_w(i)$ with $L_w(i) = L_w(x^i, y^i, w)$

Batch vs Stochastic vs Minibatchs

- Batch gradient descent
 - Use $\nabla C(\mathbf{w})$
 - Every iteration all samples are used to compute the gradient direction and amplitude
- Stochastic gradient
 - Use $\nabla L_w(i)$
 - Every iteration one sample (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.
 - Minimize C(w) by minimizing parts of it successively
 - Allows faster convergence, avoiding local minima etc
- Minibatch
 - Use $\nabla \sum_{\text{few } j} L_w(j)$
 - Every iteration a batch of samples (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.
 - Optimize the GPU computation ability

MLPs	

Gradient Computation: Chain rule

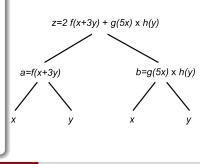
Gradient of a function

$$z = 2 \times f(x + 3 \times y) + 6 \times g(5 \times x) \times h(y)$$

$$\Rightarrow \frac{\partial z}{\partial x}|_{x,y} = 2 \times f'(x + 3 \times y) + 30 \times g'(5 \times x) \times h(y)$$

Equivalent computation with the Chain rule

Set
$$a(x) = f(x + 3 \times y)$$
 and $b(x, y) = g(5 \times x)$
 $\Rightarrow z = 2 \times a(x) + 6 \times b(x) \times h(y)$
 $\Rightarrow \frac{\partial z}{\partial x}|_{x,y} = \frac{\partial z}{\partial a}|_{x,y} \times \frac{\partial a}{\partial x}|_{x,y} + \frac{\partial z}{\partial b}|_{x,y} \times \frac{\partial b}{\partial x}|_{x,y}$
With:
 $\frac{\partial y}{\partial a}|_{x,y} = 2$ and $\frac{\partial a}{\partial x}|_{x,y} = f'(a \times x + 3 \times y)$
 $\frac{\partial y}{\partial b}|_{x,y} = 6 \times h(y)$ and $\frac{\partial b}{\partial x}|_{x,y} = 5 \times g'(5 \times x)$
 $\frac{\partial a}{\partial x}|_{x,y} = g'(a \times x)$
 $\frac{\partial b}{\partial x}|_{x,y} = 5 \times g'(5 \times x)$



T. Artières (ECM, LIF-AMU)

Gradient computation in MLPs: Stochastic case

Notations

- Activation function on every layer: g Number of layer : L
- Activity of neuron *i* in layer *l*, a_i^l Output of neuron *i* in layer *l*, $h_i^l = g(a_i^l)$, and $o_i^l = g(a_i^l)$
- Weight from a neuron j of layer l 1 to neuron i in layer $l : w_{ii}^{l}$
- Example considered for computing gradient (x, y)
- Squarred loss : $C(w) = \|\mathbf{o}^L \mathbf{y}\|^2$

Gradient wrt. last layer weights

- Gradient wrt cell's ouput $\frac{\partial C(w)}{\partial o_i^L} = 2(o_i^L y_i)$
- Gradient wrt cell's activity $\delta_i^L = \frac{\partial C(w)}{\partial a_i^L} = \frac{\partial C(w)}{\partial o_i^L} \frac{\partial o_i^L}{\partial a_i^L} = 2(o_i^L y_i)g'(a_i^L)$
- Gradient wrt weights arriving to output cells

$$\frac{\partial C(w)}{\partial w_{ij}^{L}} = \frac{\partial C(w)}{\partial a_{i}^{L}} \frac{\partial a_{i}^{L}}{\partial w_{ij}^{L}} = \delta_{i}^{L} \times h_{j}^{L-1}$$

MLPs	

Gradient computation in MLPs: Stochastic case (continues)

Gradient wrt. last hidden layer (LHL) weights

- Gradient wrt LHL cell's activity $\delta_{j}^{L-1} = \frac{\partial C(w)}{\partial a_{i}^{L-1}} = \sum_{i} \frac{\partial C(w)}{\partial a_{i}^{L}} \frac{\partial a_{j}^{L}}{\partial a_{j}^{L-1}} = \sum_{i} \delta_{i}^{L} w_{ij}^{L} g'(a_{j}^{L-1})$
- Gradient wrt weights arriving to a LHL cell

$$\frac{\partial C(w)}{\partial w_{jk}^{L-1}} = \delta_j^{L-1} \times h_k^{L-2}$$

	MLPs	
Gradient compu	tation in MLPs	

Forward propagation of activities, for an input example x

- Fill the input layer with x: $h^0 = x$
- Iterate from the first hidden layer to the last one
 - $h' = W' \times h'^{-1}$

•
$$h' = a(h')$$

Backward computation of the error

- Compute the output error $\delta^{\rm L}$
- Iterate from the last hidden layer to the first one
 - Compute δ^L from δ^{L-1}

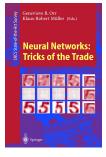
Computing gradient

• For each weight w'_{jk} of every layer compute the gradient using δ'_j and o'^{l-1}_k

Lots of tricks to favor convergence

And more ...

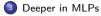
- Weight Initialization
- Gradient step setting
- ...
- ⇒ Despite appearances NN are still not fully usable by non experts



	Deeper in MLPs	

Outline

2) MLP



4 DNNs in brief

	Deeper in MLPs	

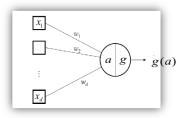
A single Neuron

One Neuron

• Elementary computation

activation =
$$w^T \cdot x = \sum_j w_j x_j + w_0$$

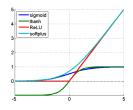
output = $g(a(x))$



Non linearity : g

- Sigmoide, Hyperbolic tangent, Gaussian
- Rectified Linear Unit (RELU)

$$f(x) = 0 \text{ if } x \le 0$$
$$= x \text{ otherwise}$$



	Deeper in MLPs	

A single Neuron

One Neuron

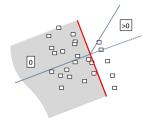
• Elementary computation

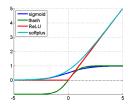
activation =
$$w^T \cdot x = \sum_j w_j x_j + w_0$$

output = $g(a(x))$

- Sigmoide, Hyperbolic tangent, Gaussian
- Rectified Linear Unit (RELU)

$$f(x) = 0 \text{ if } x \le 0$$
$$= x \text{ otherwise}$$

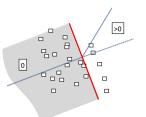




What a MLP may compute

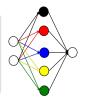
What does a hidden neuron

• Divides the input space in two



Combining multiple hidden neurons

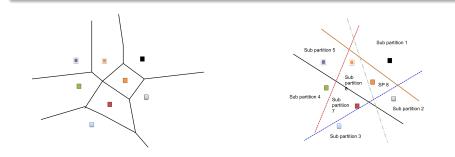
- Allows identifying complex areas of the input space
- New (distributed) representation of the input



	Deeper in MLPs	

Distributed representations

Might be much more efficient than non distributed ones



One layer is enough !

• Theorem [Cybenko 1989]: Let $\phi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon > 0$, there exists an integer N, such that for any function $f \in C(I_m)$, there exist real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$, where $i = 1, \dots, N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \phi \left(w_i^T x + b_i \right)$$

as an approximate realization of the function f where f is independent of ϕ ; that is : $|F(x) - f(x)| < \epsilon$ for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

- Existence theorem only
- Many reasons for not getting good results in practice

	DNNs in brief

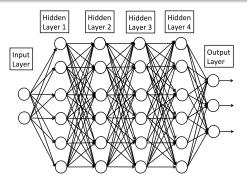
Outline

2) MLPs

What are deep models ?

NNs with more than one hidden layer !

A series of hidden layers

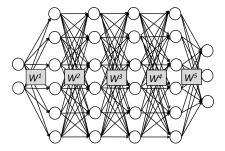


What are deep models ?

NNs with more than one hidden layer !

Computes a complex function of the input

$$y = g(W^k \times g(W^{k-1} \times g(...g(W^1 \times x))))$$



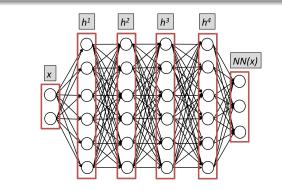
	DNNs in brief

What are deep models ?

NNs with more than one hidden layer !

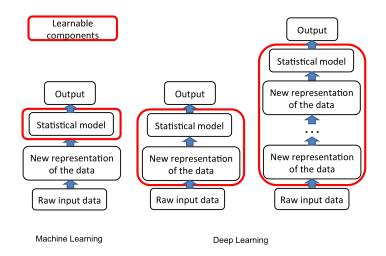
Computes new representations of the input

$$h^{i}(x) = g(W^{i} \times h^{i-1}(x))$$



	DNNs in brief

Machine Learning vs. Deep Learning

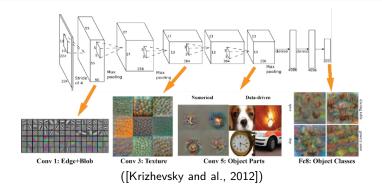


	DNNs in brief

Feature hierarchy : from low to high level

What feature hierarchy means ?

- Low-level features are shared among categories
- High-level features are more global and more invariant



Examples of architectures

AlexNet [Krizhevsky and al., 2012] (top) and NetworkInNetwork [Lin and al.,2013] (bottom)

