

Réseaux de Neurones Profonds, Apprentissage de Représentations

Thierry Artières

ECM, Equipe QARMA @LIS, AMU, CNRS

October 8, 2018

		00 0000

Gradient Descent

OD variants

Batch Normalization

Regularization

Deep architectures

• Very deep Models

• What makes DNN work?

Gradient Descent		
		00 0000

Outline

GD variants

- 3) Batch Normalization
- 4 Regularization
- 5 Deep architectures

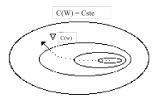
Gradient Descent Optimization

Gradient Descent Optimization

- Initialize Weights (Randomly)
- Iterate (till convergence)

• Restimate
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \epsilon \frac{\partial C(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w}_t}$$

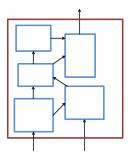
• Note that $\frac{\partial C(\mathbf{w})}{\partial \mathbf{w}}$ is per default noted as $\nabla C(\mathbf{w})$ hereafter



 \Rightarrow Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and from *S. Ruder's blog*

GD for general architectures

Graph of modules (better without cycles...)



Still optimized with Gradient Descent !!

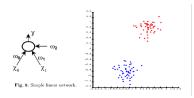
$$W = W - \epsilon \frac{\partial C(W)}{\partial W}$$

- provided functions implemented by blocks are differentiable
- and derivatives $\frac{\partial Out(B)}{\partial ln(B)}$ and $\frac{\partial Out(B)}{\partial W(B)}$ are available for every block

Gradient Descent: Tuning the Learning rate

Weight trajectory for two different gradient step settings.

Two classes Classification problem



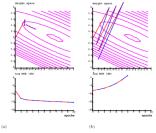


Fig. 11. Weight trajectory and error curve during learning for (a) $\eta=1.5$ and (b) $\eta=2.5.$

Images from [LeCun et al.]

Gradient Descent			Deep architectures 00 0000
Gradient Des	cent: Tuning t	he Learning rate	

Effect of learning rate setting

- Assuming the gradient direction is good, there is an optima value for the learning rate
- Using a smaller value slows the convergence and may prevent from converging
- Using a bigger value makes convergence chaotic and may cause divergence

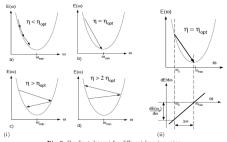


Fig. 6. Gradient descent for different learning rates

Gradient Descent		Deep architectures 00 0000
		0000

Optimal learning rate and convergence speed

Second order point of view

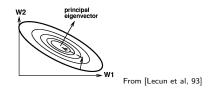
• Taylor expansion, noting $\nabla^2 C(w)$ the Hessian (a $N \times N$ matrix with N a model with parameters)

$$C(w') = C(w) + (w' - w)^{T} \nabla C(w) + \frac{1}{2} (w' - w)^{T} \nabla^{2} C(w) (w' - w)$$
$$\nabla C(w)|_{w'} = \nabla C(w)|_{w} + \nabla^{2} C(w) (w' - w)$$

• Optimum rule (setting $\nabla C(w)|_{w'}$ to 0):

$$w' = w - (\nabla^2 C(w))^{-1} \nabla C(w)$$

- Optimal move not in the direction of the gradient
- Said differntly: Not a identical step in every direction !
- In Order 1 Gradient descent the optimal the optimal value of ϵ depends on eigen values of the Hessian $\nabla^2 C(w)$
- The optimal value depends on the highest eigen value ($\hat{\epsilon} = rac{1}{\lambda_{max}}$) of the Hessian



Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize $C(\mathbf{w}) = \sum_{i=1..N} L_w(i)$ with $L_w(i) = L_w(x^i, y^i, w)$

Batch vs Stochastic vs Minibatchs

- Batch gradient descent
 - Use $\nabla C(\mathbf{w})$
 - Every iteration all samples are used to compute the gradient direction and amplitude
- Stochastic gradient
 - Use $\nabla L_w(i)$
 - Every iteration one sample (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.
 - Minimize C(w) by minimizing parts of it successively
 - · Allows faster convergence, avoiding local minima etc
- Minibatch
 - Use $\nabla \sum_{\text{few } j} L_w(j)$
 - Every iteration a batch of samples (randomly chosen) is used to compute the gradient direction and amplitude
 - Introduce randomization in the process.
 - Optimize the GPU computation ability

GD variants		Deep architectures 00 0000

Outline

- Batch Normalization
- 4 Regularization
- 5) Deep architectures

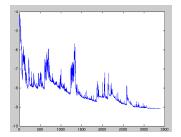
GD variants		Deep architectures 00 0000

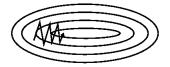
Using Momentum

SGD with Momentum

- Standard Stochastic Gradient descent : $w = w - \epsilon \frac{\partial C(w)}{\partial w}$
- SGD with Momentum:

$$\mathbf{v} = \gamma \mathbf{v} + \epsilon \frac{\partial C(w)}{\partial w}$$





SGD standard

SGD avec momentum

GD variants		Deep architectures 00 0000

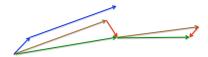
Nesterov Accelerated Gradient

Principle

• Idea: Better anticipate when to slow down by looking forward

$$v_{t+1} = \gamma v_t + \epsilon \nabla C(w)|_{w_t - \gamma v_t}$$

$$w_{t+1} = w_t - v_{t+1}$$



- Blue vectors: standard momentum
- Brown vectors: jump
- Red vectors: correction
- Green vectors: accumulated gradient

GD variants		Deep architectures 00 0000

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

• Define
$$g_{t,i} = \frac{\partial C(w)}{\partial w_i}$$
 the derivative wrt a single weight value w_i

•
$$w_{t+1,i} = w_{t,i} - \frac{\epsilon}{\sqrt{G_{t,ii}+\gamma}}g_{t,i}$$

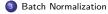
• where $G_{t,ii}$ is a diagonal matrix with i^{th} element equal to $\sum_{t,i} g_{t,i}^2$

- $\bullet \ \gamma$ is a very small value to avoid numerical exceptions
- Standard value $\epsilon=0.01$
- Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and RmsProp

	Batch Normalization	Deep architectures 00 0000

Outline

GD variants



Regularization

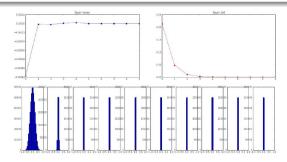
	Batch Normalization	Deep architectures 00 0000

Activity propagation in deep NNs

Few slides from Fei Fei Li

Standard initialization schema for MLPs

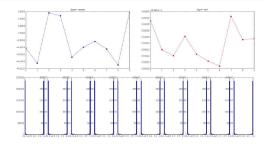
- 10 layers networks (500 neurones each, with tanh)
- Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
- All activations at 0
- What about the gradient ?



Tuning weights initialization

Increasing weights initial values comes with neuron saturation problem

- 10 layers networks (500 neurones each, with tanh)
- Initialization : gaussian random with normal (std=1.0) values
- All neurons saturate
- No gradient backpropagated

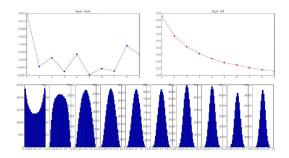


	Batch Normalization	Deep architectures 00 0000

Smarter intialization

Good (but not enough)

- 10 layers networks (500 neurones each, with tanh)
- Xavier initialization : random gaussian with std dev = $\frac{1}{N_{\text{previouslayer}}}$
- Much better behavior but fails with RELU activation (assuming normalized inout data)

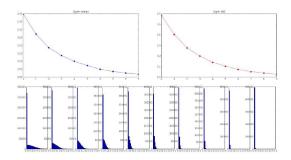


	Batch Normalization	Deep architectures 00 0000

Smarter intialization

Good (but not enough)

- 10 layers networks (500 neurones each, with tanh)
- Xavier initialization : random gaussian with std dev = $\frac{1}{N_{oreviouslaver}}$
- Much better behavior but fails with RELU activation (assuming normalized inout data)



Batch Normalization

Main idea

- Usually inputs to neural networks are normalized to either the range of [0, 1] or [-1, 1] or to mean=0 and variance=1
- BN essentially performs Whitening to the intermediate layers of the networks.
- Usually placed before nonlinearities

From Fei Fei Li's slides

Batch Normalization

BN layer

- Normalizes the output of a layer by scaling neuron's outputs within a minibatch (of size M)
- For one neuron of the input layer, its output is modified according to:

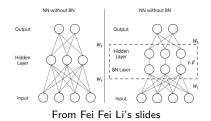
$$\mu_B = \frac{1}{M} \sum_{i=1}^M x_i \tag{1}$$

$$\sigma_B^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu_B)^2$$
(2)

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \tau}} \tag{3}$$

$$y_i = \gamma x_i + \beta \tag{4}$$

• Use a different computation at inference time (empirical mean and variance computed on the full training set)



	Regularization	Deep architectures 00 0000

Outline

GD variants

4 Regularization

Deep architectures

	Regularization	
		00 0000

Guiding the learning through reguarization

Regularization

- Constraints on weights (L1 or L2)
- Constraints on activities (of neurons in a hidden layer)
 - L1 or L2
 - Push useless weights to 0
 - · Mean activity constraint (Sparse autoencoders, [Ng et al.])
 - Sparsity constraint (in a layer and/or in a batch)
 - Winner take all like strategies
- Disturb learning for avoiding learning by heart the training set
 - Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
 - Noisy labels

	Regularization	Deep architectures 00 0000

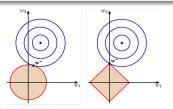
Constraints on weights

L2 norm on weights (known as Weight Decay)

- Penalizing the weights through adding a weighted L2 norm $\lambda \|w\|^2$ to the loss
- It is equivalent to defining a family of models such that $||w||^2 leqC_\lambda$ with C_λ increasing when λ decreases
- \bullet L2 norm penalization \leftrightarrow diminishing the space of functions implemented with the network architecture

L2 and L1 norms

- L2 norm move useless weights to 0 (without reaching 0)
- L1 norm set useless weights to 0



Guiding the learning

Improved representations with denoising autoencoders and Deep Belief Networks

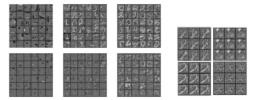


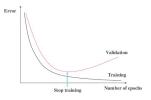
Figure 1: Activation maximization applied on MNIST. On the left side: visualization of 36 units from the first (1st column), second (2nd column) and third (3rd column) hidden layers of a DBN (top) and SDAE (bottom), using the technique of maximizing the activation of the hidden unit. On the right side: 4 examples of the solutions to the optimization problem for units in the 3rd layer of the SDAE, from 9 random initializations.

• Examples of learned filters with Denoising Autoencoders (top)

	Regularization	
		00 0000

Early stopping and callbacks

Principle

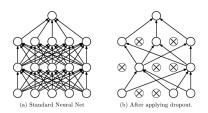


- Early stopping monitors performance (loss) on validation set
- Stopes before it reaches a plateau and starts increasing
- Related to the idea that the implemented model's capacity increases with the number of iteration
 - Think of small weights initialization and sigmoid activation
 - $\bullet \ \Rightarrow$ at the beginning the model is a linear one !

	Regularization	Deep architectures 00 0000

Dropout

Principle



- First method that allowed learning rellay deep networks without pretraining and smart initialization
- Related to ensemble of models
- Weights are normalized at inference time

		Deep architectures
		00 0000

Outline

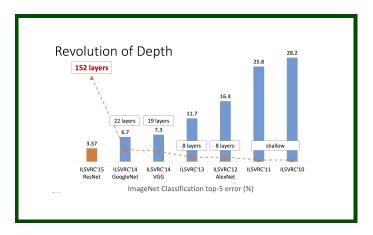
GD variants

Regularization

- Very deep Models
- What makes DNN work?

			Deep architectures ●O ○○○○
Ver	ry deep Models		

The Times They Are A Changing



(slide from [Kaiming He])

		Regularization Deep a	Deep architectures
			0000
Very deep Models			

34-laver residual

7x7 corv, 64, /2

pcol, /2

+

3x3 conv, 64

¥

3x3 conv. 64

3x3 corrs, 64

3x3 corrv, 64 3x3 corrv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

\$ 3x3 corre, 128

3x3 corrs, 128

3x3 corre, 128

3x3 corv, 256, /2

¥ 3x3 conv, 256

3x3 conv, 256

3x3 conv. 256

3x3 conv, 256 \$

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

October 8, 2018

28 / 32

warmer,

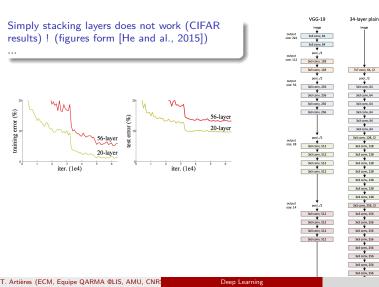
¥—

+----

+

+-----

From shalow to deep

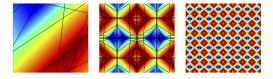


			Deep architectures ○○ ●○○○
What makes DNN work?			
Deen vs Shalov	N 7		

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

- $\bullet~{\sf DNNs}$ with RELU activation function $\Rightarrow~{\sf piecewise}$ linear function
- Complexity of DNN function as the Number of linear regions on the input data
- Case of n_0 inputs and $n = 2n_0$ hidden cells per HL (k HL) :
 - Maximum number of regions : $2^{(k-1)n_0} \sum_{j=0}^{n_0} {2n_0 \choose j}$
- Example: $n_0 = 2$
 - Shallow model: $4n_0$ units \rightarrow 37 regions
 - Deep model with 2 hidden layers with $2n_0$ units each \rightarrow 44 regions
 - Shallow model: $6n_0$ units \rightarrow 79 regions
 - Deep model with 3 hidden layers with $2n_0$ units each ightarrow 176 regions
- Exponentially more regions per parameter in terms of number of HL
- At least order (k-2) polynomially more regions per parameter in terms of width of HL n

			Deep architectures ○○ ○●○○
What makes DNN work?			
Deep vs Shale	ow ?		



From [Pascanu and al., 2014]

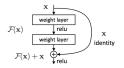
- Left: Regions computed by a layer with 8 RELU hidden neurons on the input space of two dimensions (i.e. the output of previous layer)
- Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2 hidden layers of width 4, and one linear output unit. Black lines delimit regions of linearity of the function
- Right: Heat map of a function computed by a 4 layer model with a total of 24 hidden units. It takes at least 137 hidden units on a shallow model to represent the same function.

		Deep architectures ○○ ○○●○
What makes DNN work?		

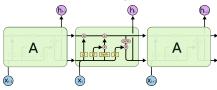
The depth alone is not enough

Making gradient flow for learning deep models

- Main mechanism : Include the identity mapping as a possible path from the input to the output of a layers
- ResNet building block [He and al., 2015]]



• LSTM (deep in time) [Hochreichter and al., 1998]



		Deep architectures
		00 000●
What makes DNN work?		

About generalization, overtraining, local minimas etc

Traditional Machine Learning

- Overfiting is the enemy
- One may control generalization with appropriate regularization

Recent results in DL

- The Overfit idea should be revised for DL [Zhand and al., 2017]
 - Deep NN may learn noise !
 - Regularization may slightly improve performance but is not THE answer for improving generalization
- Objective function do not exhibit lots of saddle points and most local minima are good and close to globale minimas [Choromanska et al., 2015]
 - Not clear what in the DNN may allow to predict its generalization ability