
Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Réseaux de Neurones Profonds, Apprentissage de Représentations

Thierry Artières

ECM, Equipe QARMA @LIS, AMU, CNRS

October 8, 2018

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 1 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

1 Gradient Descent

2 GD variants

3 Batch Normalization

4 Regularization

5 Deep architectures
Very deep Models
What makes DNN work?

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 2 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Outline

1 Gradient Descent
2 GD variants
3 Batch Normalization
4 Regularization
5 Deep architectures

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 3 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Gradient Descent Optimization

Gradient Descent Optimization

Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt

Note that ∂C(w)
∂w is per default noted as ∇C(w) hereafter

⇒ Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 4 / 32

http://ruder.io/optimizing-gradient-descent/

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

GD for general architectures

Graph of modules (better without
cycles...)

Still optimized with Gradient Descent !!

W = W − ε
∂C(W)
∂W

provided functions implemented by blocks
are differentiable
and derivatives ∂Out(B)

∂In(B) and ∂Out(B)
∂W (B) are

available for every block

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 5 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Gradient Descent: Tuning the Learning rate

Two classes Classification problem

Weight trajectory for two different gradient step
settings.

Images from [LeCun et al.]

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 6 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting
Assuming the gradient direction is good, there is an optima value for the learning rate
Using a smaller value slows the convergence and may prevent from converging
Using a bigger value makes convergence chaotic and may cause divergence

Images from [LeCun et al.]

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 7 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Optimal learning rate and convergence speed

Second order point of view

Taylor expansion, noting ∇2C(w) the Hessian (a N × N matrix with N a model with parameters)

C(w′) = C(w) + (w′ − w)T∇C(w) +
1
2

(w′ − w)T∇2C(w)(w′ − w)

∇C(w)|w′ = ∇C(w)|w +∇2C(w)(w′ − w)

Optimum rule (setting ∇C(w)|w′ to 0):

w′ = w − (∇2C(w))−1∇C(w)

Optimal move not in the direction of the gradient

Said differntly: Not a identical step in every direction !

In Order 1 Gradient descent the optimal the optimal value of ε depends on eigen values of the Hessian ∇2C(w)

The optimal value depends on the highest eigen value (ε̂ = 1
λmax

) of the Hessian

From [Lecun et al, 93]

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 8 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize C(w) =
∑

i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs
Batch gradient descent

Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient direction and
amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j

Lw (j)
Every iteration a batch of samples (randomly chosen) is used to compute the gradient direction and
amplitude
Introduce randomization in the process.
Optimize the GPU computation ability

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 9 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Outline

1 Gradient Descent
2 GD variants
3 Batch Normalization
4 Regularization
5 Deep architectures

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 10 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Using Momentum

SGD with Momentum
Standard Stochastic Gradient descent :
w = w − ε ∂C(w)

∂w
SGD with Momentum:

v = γv + ε
∂C(w)
∂w

w = w − v

SGD standard SGD avec momentum

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 11 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Nesterov Accelerated Gradient

Principle
Idea: Better anticipate when to slow down by looking forward

vt+1 = γvt + ε∇C(w)|wt−γvt

wt+1 = wt − vt+1

Blue vectors: standard momentum
Brown vectors: jump
Red vectors: correction
Green vectors: accumulated gradient

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 12 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

Define gt,i = ∂C(w)
∂wi

the derivative wrt a single weight value wi

wt+1,i = wt,i − ε√
Gt,ii +γ

gt,i

where Gt,ii is a diagonal matrix with i th element equal to
∑

t
g2

t,i
γ is a very small value to avoid numerical exceptions
Standard value ε = 0.01

Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and
RmsProp

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 13 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Outline

1 Gradient Descent
2 GD variants
3 Batch Normalization
4 Regularization
5 Deep architectures

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 14 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Activity propagation in deep NNs
Few slides from Fei Fei Li

Standard initialization schema for MLPs

10 layers networks (500 neurones each, with tanh)
Initialization : gaussian random with small (std=0.01) values (what if all null initialization?)
All activations at 0
What about the gradient ?

From Fei Fei Li’s slides
T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 15 / 32

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Tuning weights initialization

Increasing weights initial values comes with neuron saturation problem

10 layers networks (500 neurones each, with tanh)
Initialization : gaussian random with normal (std=1.0) values
All neurons saturate
No gradient backpropagated

From Fei Fei Li’s slides

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 16 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Smarter intialization

Good (but not enough)

10 layers networks (500 neurones each, with tanh)
Xavier initialization : random gaussian with std dev = 1

Npreviouslayer

Much better behavior but fails with RELU activation (assuming normalized inout data)

From Fei Fei Li’s slides

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 17 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Smarter intialization

Good (but not enough)

10 layers networks (500 neurones each, with tanh)
Xavier initialization : random gaussian with std dev = 1

Npreviouslayer

Much better behavior but fails with RELU activation (assuming normalized inout data)

From Fei Fei Li’s slides
T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 17 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Batch Normalization

Main idea
Usually inputs to neural networks are
normalized to either the range of [0, 1] or
[-1, 1] or to mean=0 and variance=1
BN essentially performs Whitening to the
intermediate layers of the networks.
Usually placed before nonlinearities

From Fei Fei Li’s slides

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 18 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Batch Normalization

BN layer

Normalizes the output of a layer by scaling
neuron’s outputs within a minibatch (of size M)
For one neuron of the input layer, its output is
modified according to:

µB =
1
M

M∑
i=1

xi (1)

σ
2
B =

1
M

M∑
i=1

(xi − µB)2 (2)

x̂i =
xi − µB√
σ2

B + τ
(3)

yi = γxi + β (4)

Use a different computation at inference time
(empirical mean and variance computed on the
full training set)

From Fei Fei Li’s slides

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 19 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Outline

1 Gradient Descent
2 GD variants
3 Batch Normalization
4 Regularization
5 Deep architectures

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 20 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Guiding the learning through reguarization

Regularization

Constraints on weights (L1 or L2)
Constraints on activities (of neurons in a hidden layer)

L1 or L2
Push useless weights to 0

Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)
Winner take all like strategies

Disturb learning for avoiding learning by heart the training set
Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
Noisy labels

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 21 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Constraints on weights

L2 norm on weights (known as Weight Decay)

Penalizing the weights through adding a weighted L2 norm λ‖w‖2 to the loss
It is equivalent to defining a family of models such that ‖w‖2leqCλ with Cλ increasing when
λ decreases
L2 norm penalization ↔ diminishing the space of functions implemented with the network
architecture

L2 and L1 norms

L2 norm move useless weights to 0 (without reaching 0)
L1 norm set useless weights to 0

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 22 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Guiding the learning

Improved representations with denoising autoencoders and Deep Belief Networks

Examples of learned filters with Denoising Autoencoders (top)

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 23 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Early stopping and callbacks

Principle

Early stopping monitors performance (loss) on validation set
Stopes before it reaches a plateau and starts increasing
Related to the idea that the implemented model’s capacity increases with the number of
iteration

Think of small weights initialization and sigmoid activation
⇒ at the beginning the model is a linear one !

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 24 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Dropout

Principle

First method that allowed learning rellay deep networks without pretraining and smart
initialization
Related to ensemble of models
Weights are normalized at inference time

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 25 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Outline

1 Gradient Descent
2 GD variants
3 Batch Normalization
4 Regularization
5 Deep architectures

Very deep Models
What makes DNN work?

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 26 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Very deep Models

The Times They Are A Changing

(slide from [Kaiming He])

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 27 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

Very deep Models

From shalow to deep

Simply stacking layers does not work (CIFAR
results) ! (figures form [He and al., 2015])
...

(source [He et al. 2016])

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 28 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

What makes DNN work?

Deep vs Shalow ?

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

DNNs with RELU activation function ⇒ piecewise linear function
Complexity of DNN function as the Number of linear regions on the input data
Case of n0 inputs and n = 2n0 hidden cells per HL (k HL) :

Maximum number of regions : 2(k−1)n0
∑n0

j=0

(
2n0

j

)
Example: n0 = 2

Shallow model: 4n0 units → 37 regions
Deep model with 2 hidden layers with 2n0 units each → 44 regions
Shallow model: 6n0 units → 79 regions
Deep model with 3 hidden layers with 2n0 units each → 176 regions

Exponentially more regions per parameter in terms of number of HL
At least order (k-2) polynomially more regions per parameter in terms of width of HL n

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 29 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

What makes DNN work?

Deep vs Shalow ?

From [Pascanu and al., 2014]

Left: Regions computed by a layer with 8 RELU hidden neurons on the input space of two
dimensions (i.e. the output of previous layer)
Middle: Heat map of a function computed by a rectifier network with 2 inputs, 2 hidden
layers of width 4, and one linear output unit. Black lines delimit regions of linearity of the
function
Right: Heat map of a function computed by a 4 layer model with a total of 24 hidden units.
It takes at least 137 hidden units on a shallow model to represent the same function.

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 30 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

What makes DNN work?

The depth alone is not enough

Making gradient flow for learning deep models
Main mechanism : Include the identity mapping as a possible path from the input to the
output of a layers
ResNet building block [He and al., 2015]]

LSTM (deep in time) [Hochreichter and al., 1998]

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 31 / 32

Gradient Descent GD variants Batch Normalization Regularization Deep architectures

What makes DNN work?

About generalization, overtraining, local minimas etc

Traditional Machine Learning
Overfiting is the enemy
One may control generalization with appropriate regularization

Recent results in DL

The Overfit idea should be revised for DL [Zhand and al., 2017]
Deep NN may learn noise !
Regularization may slightly improve performance but is not THE answer for improving generalization

Objective function do not exhibit lots of saddle points and most local minima are good and
close to globale minimas [Choromanska et al., 2015]

Not clear what in the DNN may allow to predict its generalization ability

T. Artières (ECM, Equipe QARMA @LIS, AMU, CNRS) Deep Learning October 8, 2018 32 / 32

	Gradient Descent
	GD variants
	Batch Normalization
	Regularization
	Deep architectures
	Very deep Models
	What makes DNN work?

