DL=RL 00000 00000 Power of depth 00 00000000

## Deep Learning

Thierry Artières

Ecole Centrale Marseille

December 9, 2018







| o<br>oo<br>ooooooo<br>oooooooooo | 00000<br>00000 | 00<br>00000000 |
|----------------------------------|----------------|----------------|

| Optim   |                                  |       |                |
|---------|----------------------------------|-------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>0000000000 | 00000 | 00<br>00000000 |

## Outline

### 🚺 Optim

- Computation graph
- Regularization
- 2 Basics
- 3 DL=RL
- 4 Power of depth

| Optim   |                                   |       |                |
|---------|-----------------------------------|-------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>00000000000 | 00000 | 00<br>00000000 |

## Gradient Descent Optimization

### Gradient Descent Optimization

- Initialize Weights (Randomly)
- Iterate (till convergence)

• Restimate 
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \epsilon \frac{\partial C(\mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w}_t}$$



 $\Rightarrow$  Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and from S. Ruder's blog

| Optim |
|-------|
| 00    |
|       |

DL=RL 00000 00000

## Optimal learning rate and convergence speed

### Second order point of view

• Taylor expansion, noting  $\nabla^2 C(w)$  the Hessian (a  $N \times N$  matrix with N a model with parameters )

$$\nabla C(w)|_{w'} = \nabla C(w)|_w + \nabla^2 C(w)(w'-w)$$

•  $\rightarrow$  optimum rule (setting  $\nabla C(w)|_{w'}$  to 0):

$$w' = w - (\nabla^2 C(w))^{-1} \nabla C(w)$$

- Optimal move not in the direction of the gradient
- In Order 1 Gradient descent the optimal the optimal value of ε depends on eigen values of the Hessian ∇<sup>2</sup>C(w)



[Lecun et al, 93]

| im |                                   |                |                |
|----|-----------------------------------|----------------|----------------|
|    | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |

## Gradient Descent: Stochastic, Batch and mini batchs

Objective : Minimize  $C(\mathbf{w}) = \sum_{i=1..N} L_w(i)$  with  $L_w(i) = L_w(x^i, y^i, w)$ 

### Batch vs Stochastic vs Minibatchs

- Batch gradient descent
  - Use  $\nabla C(\mathbf{w})$
  - Every iteration all samples are used to compute the gradient direction and amplitude
- Stochastic gradient
  - Use  $\nabla L_w(i)$
  - Every iteration one sample (randomly chosen) is used to compute the gradient direction and amplitude
  - Introduce randomization in the process.
  - Minimize C(w) by minimizing parts of it successively
  - Allows faster convergence, avoiding local minima etc
- Minibatch

Op

- Use  $\nabla \sum_{\text{few } j} L_w(j)$
- Every iteration a batch of samples (randomly chosen) is used to compute the gradient direction and amplitude
- Introduce randomization in the process.

| Optim   |                                  |       |                |
|---------|----------------------------------|-------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>0000000000 | 00000 | 00<br>00000000 |

### Optimization routines

### Many SGD variants popular in DL

- SGD with Momentum
- Nesterov accelerated gradient
- Adragrad
- Adadelta
- RmsProp
- ...

| Optim           |                                    |                |                |
|-----------------|------------------------------------|----------------|----------------|
| • <b>•</b><br>• | 0<br>00<br>0000000<br>000000000000 | 00000<br>00000 | 00<br>00000000 |
|                 |                                    |                |                |

Computation graph

## Gradient Computation: Chain rule

### Gradient of a function

Equivalent computation with the Chain rule

=

$$z = 2 \times f(x + 3 \times y) + 6 \times g(5 \times x + y)$$
  
$$\Rightarrow \frac{\partial z}{\partial x}|_{x,y} = 2 \times f'(x + 3 \times y) + 30 \times g'(5 \times x + y)$$



Set 
$$a = f(x + 3 \times y)$$
 and  $b = g(5 \times x + y)$   
 $\Rightarrow z = 2 \times a + 6 \times b$   
 $\Rightarrow \frac{\partial z}{\partial x} = \frac{\partial z}{\partial a} \times \frac{\partial a}{\partial x} + \frac{\partial z}{\partial b} \times \frac{\partial b}{\partial x}$   
With:  
 $\frac{\partial z}{\partial a} = 2$  and  $\frac{\partial z}{\partial b} = 6$   
 $\frac{\partial a}{\partial x} = f'(a \times x + 3 \times y)$   
 $\frac{\partial b}{\partial x} = 5 \times g'(5 \times x + y)$   
 $\frac{\partial a}{\partial y} = 3 \times f'(a \times x + 3 \times y)$ 

| Optim             |                                     |                |                |
|-------------------|-------------------------------------|----------------|----------------|
| <b>○●</b><br>○    | 0<br>00<br>0000000<br>0000000000000 | 00000<br>00000 | 00<br>00000000 |
| Computation graph |                                     |                |                |

### BackPropagation



| Optim             |                                  |                |                |
|-------------------|----------------------------------|----------------|----------------|
| <b>○●</b><br>○    | 0<br>00<br>0000000<br>0000000000 | 00000<br>00000 | 00<br>00000000 |
| Computation graph |                                  |                |                |

## BackPropagation



| Optim   |                                   |                |                |
|---------|-----------------------------------|----------------|----------------|
| 00<br>● | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                   |                |                |

#### Regularization

## Guiding the learning through regularization

#### Regularization

- Constraints on weights (L1 or L2)
- Constraints on activities (of neurons in a hidden layer)  $\rightarrow$  induces sparsity
  - L1 or L2
  - Mean activity constraint (Sparse autoencoders, [Ng et al.])
  - Sparsity constraint (in a layer and/or in a batch)
  - Winner take all like strategies
- Disturb learning for avoiding learning by heart the training set
  - Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
  - Noisy labels
- Early stopping

| Basics                            |       |                |
|-----------------------------------|-------|----------------|
| 0<br>00<br>0000000<br>00000000000 | 00000 | 00<br>00000000 |

## Outline



3 DL=RL

4 Power of depth

|       | Basics                           |                |                |
|-------|----------------------------------|----------------|----------------|
|       | •<br>00<br>0000000<br>0000000000 | 00000<br>00000 | 00<br>00000000 |
| Dense |                                  |                |                |

### Dense architecture



| Basics                        |                |                |
|-------------------------------|----------------|----------------|
| 0<br>•0<br>0000000<br>0000000 | 00000<br>00000 | 00<br>00000000 |
|                               |                |                |

#### Autoencoders

### Autoencoders

### Principal Component Analysis

- Unsupervised standard (Linear) Data Analysis technique
  - Visualization, dimension reduction
- Aims at finding principal axes of a dataset

### NN with Diabolo shape

- Reconstruct the input at the output via an intermediate (small) layer
- Unsupervised learning
- Non linear projection, distributed representation
- Hidden layer may be larger than input/output layers





| Basics                                         |                |                |
|------------------------------------------------|----------------|----------------|
| 0<br>⊙●<br>○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ | 00000<br>00000 | 00<br>00000000 |

#### Autoencoders

### Deep autoencoders

#### Deep NN with Diabolo shape

- Extension of autoencoders (figure [Hinton et al., Nature 2006])
- Pioneer work that started the Deep Learning wave



|         | Basics                            |                |                |
|---------|-----------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>●000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                   |                |                |

### Convolutional architectures

#### Convolutional layers

- Exploit a structure in the data
  - Images : spatial structure
  - Texts, audio ; temporal structure
  - videos : spatio-temporal structure
- Use shared weigths



Dense vs. Locally connected

### [LeCun and Ranzato Tutorial, DL, 2015]

|         | Basics                                    |                |                |
|---------|-------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>0●00000</b><br>000000000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                           |                |                |

### Convolution layer

# Convolution of multiple inputs with several small filter yields several activation maps



[From Fei Feil Li slides]

| Basics                                    |                |                |
|-------------------------------------------|----------------|----------------|
| 0<br>00<br><b>0●00000</b><br>000000000000 | 00000<br>00000 | 00<br>00000000 |
|                                           |                |                |

### Convolution layer

Convolution of multiple inputs with several small filter yields several activation maps



[From Fei Feil Li slides]

| Basics                                   |                |                |
|------------------------------------------|----------------|----------------|
| 0<br>00<br><b>0●00000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|                                          |                |                |

### Convolution layer

Convolution of multiple inputs with several small filter yields several activation maps



[From Fei Feil Li slides]

|         | Basics                                   |                |                |
|---------|------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>0●00000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                          |                |                |

### Convolution layer



## Convolution layer

# Convolution of multiple inputs with several small filter yields several activation maps



[From Fei Feil Li slides]

# Very few free parameters but intensive computation

- Input :  $N_m$  input maps of size  $H \times W$
- Output  $N_f$  filters with filter size =  $h \times w$
- Parameters :  $h \times w \times N_m \times N_f$
- Fwd computation :  $\approx H \times W \times N_f \times N_m \times h \times w$
- For instance (very small case) :
  - From 3 32  $\times$  32 input maps  $\rightarrow$  6 filters with filter size 3  $\times$  3
  - $3 \times 3 \times 3 \times 6 = 48$  parameters
  - 165 888 operations

|    | Basics                                  |                |                |
|----|-----------------------------------------|----------------|----------------|
| 00 | 0<br>00<br><b>000000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|    |                                         |                |                |

### Convolution layer

### Aggregation layer

- Subsampling layer (one per activation map) with aggregation operator
- $\bullet~\mbox{Max}$  pooling  $\rightarrow~\mbox{brings}$  invariance and robustness



### Complexity

- No parameters
- Moderate computation

|         | Basics                                   |                |                |
|---------|------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>0000000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

### Convolution architectures

- Most often a mix of (convolutional + pooling) layers followed by dense layers
- Most computation effort are in propagating through convolution layers
- Most parameters are in final fully connected layers



|         | Basics                            |                |                |
|---------|-----------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |

Old and new convolutional architectures

### Convolution architectures

• Dit it change so much ?



|         | Basics                                   |                |                |
|---------|------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>0000000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

#### Convolution architectures

• Dit it change so much ?



Deep Learning - ECM - UE IA

|         | Basics                           |                |                |
|---------|----------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>0000●00<br>0000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

#### Convolution architectures

• Dit it change so much ?



19 / 58

|         | Basics                                                |                |                |
|---------|-------------------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>00000000</b><br>00000000000000000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

#### Convolution architectures

• Dit it change so much ?



|         | Basics                                   |                |                |
|---------|------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br><b>0000000</b><br>00000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

### VGG idea

- Modular design
  - 3x3 conv as basis
  - Stack the same module
  - Same computation for each module (1/2 spatial size => 2x filters)



|         | Basics                            |                |                |
|---------|-----------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>000000●<br>00000000000 | 00000<br>00000 | 00<br>00000000 |

### Old and new convolutional architectures

### Inception idea (GoogleNet)

- Inception modules
  - Multiple branchs (1x1, 3x3, 5x5, pool)
  - Shortcuts (stand alone 1x1, merged by concat)
  - Bottleneck (reduce dim by 1x1 before expensive 3x3/5x5 convs)





|           | Basics                             |                |                |
|-----------|------------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>●00000000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                    |                |                |

### Recurrent NNs

#### RNNs in general

- A recurrent neural network is a NN with cycles in its connections
- Today RNNs are specific recurrent architectures. Not all architectures work well.
- Shared parameters in time (whereas in space in Convolutional architectures)



|   | Basics                             |                |                |
|---|------------------------------------|----------------|----------------|
| D | 0<br>00<br>0000000<br>0●0000000000 | 00000<br>00000 | 00<br>00000000 |
|   |                                    |                |                |

## Inference and learning through unfolding the RNN



Inference: Forward propagation in the FeedForward unfolded RNN

- Start with null state h(0) = 0
- Iterate

$$h(t) = g(V \times h(t-1) + U \times x(t))$$
$$y(t) = g(W \times h(t))$$

•  $\Rightarrow$  The final state h(T) resumes the whole input

T. Artières (ECM - LIS / AMU )

Deep Learning - ECM - UE IA

|   | Basics                             |                |                |
|---|------------------------------------|----------------|----------------|
| D | 0<br>00<br>0000000<br>0●0000000000 | 00000<br>00000 | 00<br>00000000 |
|   |                                    |                |                |

## Inference and learning through unfolding the RNN



### Learning: Back-propagation in the FeedForward unfolded RNN

- Unfold the model
- Backpropagate the gradient in the whole network
- Sum the gradient corresponding to all shared parameters and unshared parameters (possibily the last layer)
- Apply Gradient Optimization Update rule on all parameters

Deep Learning - ECM - UE IA

|           | Basics                            |                |                |
|-----------|-----------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>00●00000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                   |                |                |

### Various settings



- One to One : MLP, CNN ...
- One to Many : Generation of a sequential process (speech, handwriting ...)
- Many to one : Sequence classification (e.g. activity recognition)
- Asynchronous Many to many : Machine Translation
- Synchronous Many to Many : POS tagging, Speech recognition...

|           | Basics                            |                |                |
|-----------|-----------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>000€0000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                   |                |                |

## One To ManyText example



### Text generation

• Example of a generation model as a one to Many model

|         | Basics                             |                |                |
|---------|------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>0000●0000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                    |                |                |

## Many to many example



#### Machine translation

- Example of a translation model as a asynchronous Many to Many model
- The nature of language and of complex grammatical forms require to first "understand" the sentence, encoding it in a small dimensional hidden space, then to reconstruct the sentence in the target language.

|         | Basics                                         |                |                |
|---------|------------------------------------------------|----------------|----------------|
| 00<br>0 | 0<br>00<br>0000000<br>000000000000000000000000 | 00000<br>00000 | 00<br>00000000 |
|         |                                                |                |                |



#### New units for RNNs

- Motivation:
  - Optimization problems in Recurrent Neural Networks (gradient explosion / vanishing)
  - Difficulty to capture long term dependencies
- New types of hidden cells
  - Long Short Term Memory (LSTM) [Hochreichetr 98]
  - Gated Recurrent Unit (GRU) [Cho and al., 2014]

|           | Basics                        |                |                |
|-----------|-------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>0000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                               |                |                |



### Motivation

- Units that include few gates (forget, input, output ) which allow to :
  - Stop capitilizing in the state the information about the past
  - Decide if it is worth using the information in the new input
- Depending on the input and on previous state
  - Reset the state, Update the state, Copy previous state
  - Ignore new input or fully use it to compute a new state

|           | Basics                        |                |                |
|-----------|-------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>0000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                               |                |                |

### Notations

- Cell state ct
- Forget gate f<sub>t</sub>
- Input gate it

- Output ot
- Hidden state to propagate to upper layers  $h_t$

### How does it work ? in words...

Formulas

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}$$
$$h_t = o_t \odot tanh(c_t)$$

#### Interpretation

- If  $f_t == 1$  and  $i_t == 0$  use previous cell state
- If  $f_t == 0$  and  $i_t == 1$  ignore previous cell sate
- If  $o_t == 1$  output ois set to cell sate
- If  $o_t == 0$  output is set to 0

|           | Basics                                         |                |                |
|-----------|------------------------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>000000000000000000000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                                |                |                |



### • LSTM vs traditional RNN cells

T. Artières (ECM - LIS / AMU )

|           | Basics                                      |                |                |
|-----------|---------------------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br><b>00000000000000</b> | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                             |                |                |



 $f_t = \sigma \left( W_f \cdot [h_{t-1}, x_t] + b_f \right)$ 

 $i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$  $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ 

- Forget gate ft
- Input gate *i*<sub>t</sub>
- Alternative cell state  $\tilde{c}_t$

|           | Basics                                       |                |                |
|-----------|----------------------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br><b>000000000000</b> 00 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                              |                |                |



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$p_t = \sigma \left( W_o \left[ h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left( C_t \right)$$

- Cell state c<sub>t</sub>
- Output o<sub>t</sub>
- Hidden state to propagate h<sub>t</sub>

|           | Basics                            |                |                |
|-----------|-----------------------------------|----------------|----------------|
|           | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |
| Recurrent |                                   |                |                |

### Recursive models

### Principle

- Allows dealing with other structured data such as trees
- The model may still be unfolded and gradient may easily be computed
- Used to compute a representation using data structure (e.g. text with parse tree structure)



|         |                                 | DL=RL          |                |
|---------|---------------------------------|----------------|----------------|
| 00<br>0 | o<br>oo<br>ooooooo<br>ooooooooo | 00000<br>00000 | 00<br>00000000 |

## Outline



|   |                                   | DL=RL          |                |
|---|-----------------------------------|----------------|----------------|
| 0 | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |

### Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

$$h^i(x) = g(W^i \times h^{i-1}(x))$$



| Optim |  |
|-------|--|
| 00    |  |
|       |  |

## Shallow vs deep models

### From [LeCun tutorial Statlearn]

- Neural Networks with one hidden layer are shallow models
- SVMs are shallow models



### DL

• Joint learning of a hierarchy of representations and of a prediction model



| Optim |  |
|-------|--|
| 00    |  |
|       |  |

DL=RL 00000 00000

## Feature hierarchy : from low to high level

### What feature hierarchy means ?

- Low-level features are shared among categories
- High-level features are more global and more invariant



[From Taigman et al., 2014]

|                                    | DL=RL          |                |
|------------------------------------|----------------|----------------|
| 0<br>00<br>0000000<br>000000000000 | •0000<br>00000 | 00<br>00000000 |
|                                    |                |                |

#### Learning Representations

## Visualizing filters and activations (primary understanding of NNs)

### Mnist (toy) dataset

• Low resolution handwritten digit images





Outputs of first Convolutional layer for above input



|                                    | DL=RL          |                |
|------------------------------------|----------------|----------------|
| 0<br>00<br>0000000<br>000000000000 | 00000<br>00000 | 00<br>00000000 |
|                                    |                |                |

Learning Representations

## Visualizing filters and activations



Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations of the 16 different filters (on the left)

[From Zeiler et Fergus]

| Ор |  |
|----|--|
| 00 |  |
|    |  |

DL=RL 00000 00000

Power of depth 00 00000000

Learning Representations

## Visualizing filters and activations

| Contraction of the local division of the loc | The Party of the | 1000 |    |   |     |      |     | -  |     |      | and the second second | 1000  | 10000     | 1  |   | -     | -  |    |                |      |      |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|----|---|-----|------|-----|----|-----|------|-----------------------|-------|-----------|----|---|-------|----|----|----------------|------|------|------------|
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |      |    |   |     |      |     |    | 1   |      |                       | ζŧ,   | 123       |    |   |       |    |    |                |      | n r  | - 14       |
| 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |      |    |   |     | A    |     |    | X   | 14   |                       |       | $\otimes$ | z  | P | 100 M | R. | 20 |                | 1    | -    | 1          |
| St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -00              |      |    |   |     |      |     |    | *   |      |                       | 3     |           | 14 | U | 1     | ľ  | 2  |                | ٩Ŋ   | 5    | 1          |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |      |    |   |     |      |     |    |     |      |                       |       |           |    | * | 2 H   |    | 1  |                |      | ii   | 17 Miles 1 |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |      |    |   |     | 3    |     |    | -   |      |                       |       |           | 1  | 8 | p-    | R. | C  | Z.             |      | aiii | Diana -    |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                |      |    |   |     | 2    |     |    |     |      |                       | 1     | T         |    | 0 | M.    | 1  |    | and the second | 2 11 | -    |            |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |      |    |   |     | 1    |     |    |     |      |                       | - Set |           | 1  |   | 1     | 1  | 1  |                |      |      | 1          |
| Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |      |    |   |     | - 16 |     |    | 32  |      |                       |       | R         | T  |   | 1     | 1  | 1  | N <sup>e</sup> | 9    |      | 1          |
| Lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yer              | 3    |    |   |     | 1    |     |    |     |      |                       | COIT  |           |    |   | -     | 1  | 1  | T.             |      | 1    |            |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                | 16   | 1  |   | 6   | ø    | of  | 8  | W.  |      | 1                     |       | 1         | 1  | 1 | -     | 1  |    | 1              |      | 1    |            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |      |    |   | R.  | A    | R   | -  | 0   | 6    | -                     | 147   |           |    |   |       |    | 1  |                |      |      | Beer       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a)              |      |    |   | ų.  | 0    | 4   |    | C   | 0    | 2                     |       |           |    |   |       |    | C  | DV.            | T    | 17   | 11         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ٠    | -  |   | 100 |      |     | 16 | 0   | 0    | 13                    |       |           |    |   |       |    |    | Tan C          | 31   |      | 18         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | -   | 0    |     | 1  |     | 6    | 01                    | 4     |           |    |   |       |    |    | -              |      | 2    | 12         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | 4   | -    |     | ~  | 3   | 180  | â                     | 0     |           |    |   |       |    |    | 60             | 14   | 1    | T          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | 11  | -    | F   | -  |     | -    | 0.0                   | 10    |           |    |   |       |    | *  |                |      | 1    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | 7   |      | 1   | 2  | -   | 1000 | -                     | *     |           |    |   |       |    | C. |                |      |      | 8          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | 1   | -    | 8   | 5  |     |      | 1                     | 10    |           |    |   |       |    |    | T              | 0    |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      | *  | 1 | ×   |      | Ŧ   | 2  |     | 1    |                       | - 9   |           |    |   |       |    |    | 1              | 3 7  |      | 14         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | Ŵ   | -71  | -   |    | 100 |      | 2                     | -27   |           |    |   |       |    | 5  | 13             | i a  | 1    | 1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      | W. |   | ¥   | -    | 100 | 4  | 1   | \$   | Non                   | #     |           |    |   |       |    | a  | S.P            | -    | 1    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |      |    |   | ÷.  | -    | 119 | T  |     | 9    | 1                     | 6     |           |    |   |       |    | 8  | 8              | ŝ    |      | 211        |

T. Artières (ECM - LIS / AMU )

Deep Learning - ECM - UE IA

| 0 |  |
|---|--|
|   |  |
|   |  |

DL=RL 00000 Power of depth 00 00000000

#### Learning Representations

## Genericity of representations [Yozinski and al., 2014]

#### Experiments on two similar tasks

- Two DNN : Green one learned on Task A Blue on Task B
- Reuse DNNA for Task B (and vice versa)
- Study the effect of reusing a DNN up to layer number *i* ...

### Main results

- Better to reuse DNNA and fine tune on Task B
- Lower layers learn transferable features while higher don't





|                          |                   | DL=RL                  |               |
|--------------------------|-------------------|------------------------|---------------|
|                          | 0<br>00<br>000000 | <b>0000</b> ●<br>00000 | 00<br>0000000 |
|                          | 00000000000       |                        |               |
| Learning Representations |                   |                        |               |

### Learning with few samples

### Few shot learning (and zero shot learning)

- Rely on ability to lean relavant and transferable representations
- Nearest neighbour-like rules in the learned representation space



[Ravi Larochelle '17]

T. Artières (ECM - LIS / AMU )

|                                  | DL=RL          |                |
|----------------------------------|----------------|----------------|
| 0<br>00<br>0000000<br>0000000000 | 00000<br>00000 | 00<br>00000000 |
|                                  |                |                |

#### Embeddings

## Extension of the embedding idea

More generally one call embedding a new representation space for any input data (image, text, signal...)



|                                   | DL=RL          |                |
|-----------------------------------|----------------|----------------|
| 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>00000000 |
|                                   |                |                |

#### Embeddings

## Extension of the embedding idea for images



#### Main interest

- Many very deep architectures have been proposed by major actors (Google, Microsoft, Facebook...)
  - Using huge training corpora
  - Using huge computing resources
  - Architecture and Weights are often made publicly available
- It is better to use such models for computing high features from which one may design a classifier
  - With fine tuning (of upper layers) if enough training data are available on the target task
  - As a preprocessing if not

|            |                             | DL=RL |         |
|------------|-----------------------------|-------|---------|
|            |                             | 00000 | 00      |
|            | 00<br>0000000<br>0000000000 | 00000 | 0000000 |
| Embeddings |                             |       |         |

## One goal: learning "universal" representations

Motivation : learn representations for any task

- Unsupervised or supervised
- For images, text, speech etc
  - The last layer of a CNN encodes most relevant information on the input (image)
  - The last hidden state of a RNN encodes most relevant information on the processed input sequence (e.g. sentence, signal)



|            |                       | DL=RL                   |               |
|------------|-----------------------|-------------------------|---------------|
|            |                       | 00000<br>000 <b>0</b> 0 | 00<br>0000000 |
|            | 0000000<br>0000000000 |                         |               |
| Embeddings |                       |                         |               |

## Word embeddings

### Embeddings for words

- When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate estimation from tractable corpus
- When one wants to infer some continuous representations of the input values to get insight on similarities between them



|                                | DL=RL          |                |
|--------------------------------|----------------|----------------|
| 0<br>00<br>0000000<br>00000000 | 00000<br>0000● | 00<br>00000000 |
|                                |                |                |

#### Embeddings

## A particular interesting effect: compositionality

### Idea

- Emb('King') + Emb('Woman') − Emb('Man') ≈ Emb('Queen')
- It is an observed phenomenon which is not actually favored by the model design the learning criterion
- Similar effect reported on images (with DCGAN from [Radford et al.])





|                                   |       | Power of depth |
|-----------------------------------|-------|----------------|
| 0<br>00<br>0000000<br>00000000000 | 00000 | 00<br>00000000 |

## Outline



Basics

DL=RL



- Capacity!
- Capacity

|           |                                         |                | Power of depth         |
|-----------|-----------------------------------------|----------------|------------------------|
|           | 0<br>00<br>000000                       | 00000<br>00000 | • <b>0</b><br>00000000 |
| Capacity! | 000000000000000000000000000000000000000 |                |                        |

## Depth in RNNs

### Depth in Feedforward nets

- Stacked layers in a feed forward or more complex manner (e.g. multiple paths)
- Gradient vanishing or exploding problems when backpropagating

### Depth in RNNs

- Stacked hidden layers as in traditional deep NNs : usual in many arhcitectures
- $\bullet~\mbox{Long sequences} \to \mbox{deep in time}$
- Both structural depths yield similar optimization problems (gradient flow)

|         |                                      |                | Power of depth         |
|---------|--------------------------------------|----------------|------------------------|
| 00<br>0 | 0<br>00<br>0000000<br>00000000000000 | 00000<br>00000 | <b>0</b> ●<br>00000000 |

#### Capacity!

### Deep networks are powerful





|          |                                  |                | Power of depth |
|----------|----------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>0000000000 | 00000<br>00000 | 00<br>●0000000 |
| Capacity |                                  |                |                |

## (Dense) Deep vs Shalow: Increased capacity

### The power of depth [Eldan and Shamir, 2016]

 There is a simple function expressible by a 3-layer network that may not be approximated by a 2-layer network to more than a certain accuracy unless its width is exponential in the input dimension

#### Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

- DNNs with RELU activation function  $\Rightarrow$  piecewise linear function
- Capacity as a function of the number of linear regions one may divide the input space
- Exponentially more regions per parameter in terms of number of HL
  - Case of  $p_0$  inputs and  $p = 2p_0$  hidden cells per HL (with k HL) :
    - Maximum number of regions at least :  $2^{(k-1)p_0} \sum_{i=0}^{p_0} {2p_0 \choose i}$

|          |                                |                | Power of depth |
|----------|--------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>00000000 | 00000<br>00000 | 00<br>0●000000 |
| Capacity |                                |                |                |

### DNNs are overparameterized

#### Large DNNs may even learn noise

- For instance : Learn after random permutation of the labels of the training samples
- It learns, but it takes more time...
- Note that the same (large) architectures that may learn random labels generalize well when trained on non perturbated data



|          |                                  |                | Power of depth |
|----------|----------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>0000000000 | 00000<br>00000 | 00<br>0000000  |
| Capacity |                                  |                |                |

## DNNs and overfitting

### Actually NNs do not easily overfit

- The more you learn the better it generalizes
- Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size H) NNs without any regularization  $\rightarrow$  no overfitting observed



[Neyshabur 2017]

|          |                                    |                | Power of depth |
|----------|------------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>000000000000 | 00000<br>00000 | 00<br>00000000 |
| Capacity |                                    |                |                |
|          |                                    |                |                |

## Capacity

### Vapnik dimension



Rademacher capacity

$$R_n(H) = E_{\sigma}[sup_{h \in H} \frac{1}{n} \sum_{i=1}^n \sigma_i h(x_i)]$$

with  $\sigma_i \in \{-1, 1\}$ 

- Clearly looks like the randomization test
- Trivial upperbound (=1): useless

|          |                                   |                | Power of depth |
|----------|-----------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>0000●000 |
| Capacity |                                   |                |                |

### DNNs' capacity

Vapnik dimension of deep NNs with ReLU

- With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is  $h = \Theta(L^2 p^2)$
- Considering classical generalization bound :  $R(w) \leq R_{emp}(w) + \tilde{O}(\sqrt{\frac{L^2 \rho^2}{n}})$
- This does not explain generalization behavior



[O. Bousquet, tutorial 2017]

| 00 |  |
|----|--|
|    |  |
|    |  |

DL=RL 00000 00000 Power of depth OO OOOOOOOOO

#### Capacity

## Deep nets do not actually need to be huge

Size helps learning but one may simplify once learned !

- Low rank tensor approximation (CP, Tucker, TensorTrain) of layer weight matrices (FC, Conv, RNN) [Novikov et al. 2015]
- Distillation strategy [Hinton et al., 2015]
  - Learn a deep and complex model  $f_{NN}$  (or en ensemble of deep models) on a dataset D
  - Create a new learning task by computing the output vectors o of f<sub>NN</sub> for samples in D (better use logits than outputs of the softmax)
  - Learn a narrower model to predict *o* vectors for samples in *D*



number of parameters in the weight matrix of the first layer



|          |                                |                | Power of depth  |
|----------|--------------------------------|----------------|-----------------|
|          | 0<br>00<br>0000000<br>00000000 | 00000<br>00000 | 00<br>000000000 |
| Capacity |                                |                |                 |

## FitNets [Romero et al., 2015]

### Going further in distillation with intermediate transfer

• Knowledge distillation + intermediate distillation losses



|          |                                   |                | Power of depth |
|----------|-----------------------------------|----------------|----------------|
|          | 0<br>00<br>0000000<br>00000000000 | 00000<br>00000 | 00<br>0000000● |
| Capacity |                                   |                |                |

## DL vs standard ML

### Traditional Machine Learning

- Overfitting is the enemy
- One may control generalization with appropriate regularization
- Suboptimal optimization due to multiple local minima

### DL: mysterious phenomenon

- Huge capacity without overfitting
- The size helps learning
- Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
- Regularization may slightly improve performance but is not THE answer for improving generalization
- Not clear what in the DNN may allow to predict its generalization ability