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Gradient Descent Optimization

Gradient Descent Optimization

Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt

⇒ Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog
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Optimal learning rate and convergence speed

Second order point of view

Taylor expansion, noting ∇2C(w) the Hessian (a N × N
matrix with N a model with parameters )

∇C(w)|w′ = ∇C(w)|w +∇2C(w)(w ′ − w)

→ optimum rule (setting ∇C(w)|w′ to 0):

w ′ = w − (∇2C(w))−1∇C(w)

Optimal move not in the direction of the gradient
In Order 1 Gradient descent the optimal the optimal value of ε
depends on eigen values of the Hessian ∇2C(w)

From
[Lecun et al, 93]
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Gradient Descent: Stochastic, Batch and mini batchs
Objective : Minimize C(w) =

∑
i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs

Batch gradient descent
Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j Lw (j)

Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
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Optimization routines

Many SGD variants popular in DL

SGD with Momentum
Nesterov accelerated gradient
Adragrad
Adadelta
RmsProp
...
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Computation graph

Gradient Computation: Chain rule

Gradient of a function

z = 2× f (x + 3× y) + 6× g(5× x + y)

⇒
∂z
∂x
|x,y = 2× f ′(x + 3× y) + 30× g ′(5× x + y)

Equivalent computation with the Chain rule

Set a = f (x + 3 × y) and b = g(5 × x + y)

⇒ z = 2 × a + 6 × b

⇒
∂z

∂x
=

∂z

∂a
×

∂a

∂x
+

∂z

∂b
×

∂b

∂x
With:

∂z

∂a
= 2 and

∂z

∂b
= 6

∂a

∂x
= f ′(a × x + 3 × y)

∂b

∂x
= 5 × g′(5 × x + y)

∂a

∂y
= 3 × f ′(a × x + 3 × y)

∂b

∂y
= ×g′(5 × x + y)
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Computation graph

BackPropagation

Forward pass
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Regularization

Guiding the learning through regularization

Regularization

Constraints on weights (L1 or L2)
Constraints on activities (of neurons in a hidden layer) → induces sparsity

L1 or L2
Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)
Winner take all like strategies

Disturb learning for avoiding learning by heart the training set
Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
Noisy labels

Early stopping
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Dense

Dense architecture

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 12 / 58



Optim Basics DL=RL Power of depth

Autoencoders

Autoencoders

Principal Component Analysis

Unsupervised standard (Linear) Data Analysis
technique

Visualization, dimension reduction
Aims at finding principal axes of a dataset

NN with Diabolo shape

Reconstruct the input at the output via an
intermediate (small) layer
Unsupervised learning
Non linear projection, distributed representation
Hidden layer may be larger than input/output layers
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Autoencoders

Deep autoencoders

Deep NN with Diabolo shape

Extension of autoencoders (figure [Hinton et al.,
Nature 2006])
Pioneer work that started the Deep Learning
wave
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Convolution

Convolutional architectures

Convolutional layers

Exploit a structure in the data
Images : spatial structure
Texts, audio ; temporal structure
videos : spatio-temporal structure

Use shared weigths

Dense vs. Locally connected

[LeCun and Ranzato Tutorial, DL, 2015]
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Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 16 / 58



Optim Basics DL=RL Power of depth

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 16 / 58



Optim Basics DL=RL Power of depth

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 16 / 58



Optim Basics DL=RL Power of depth

Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

Example of a filter
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Convolution

Convolution layer

Convolution of multiple inputs with several small
filter yields several activation maps

[From Fei Feil Li slides]

Very few free parameters but intensive
computation

Input : Nm input maps of size H ×W
Output Nf filters with filter size = h×w
Parameters : h × w × Nm × Nf

Fwd computation :
≈ H ×W × Nf × Nm × h × w
For instance (very small case) :

From 3 32× 32 input maps → 6
filters with filter size 3× 3
3× 3× 3× 6 = 48 parameters
165 888 operations
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Convolution

Convolution layer

Aggregation layer

Subsampling layer (one per activation map) with aggregation operator
Max pooling → brings invariance and robustness

Complexity

No parameters
Moderate computation
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Convolution

Old and new convolutional architectures

Convolution architectures

Most often a mix of (convolutional + pooling) layers followed by dense layers
Most computation effort are in propagating through convolution layers
Most parameters are in final fully connected layers

LeNet [LeCun and al., 1997]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]

AlexNet [Krizhevsky and al., 2012]
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]

GoogleNet
2014
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Convolution

Old and new convolutional architectures

Convolution architectures

Dit it change so much ?

LeNet [LeCun and al., 1997]
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Convolution

Old and new convolutional architectures

VGG idea

Modular design
3x3 conv as basis
Stack the same module
Same computation for each module
(1/2 spatial size => 2x filters)
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Convolution

Old and new convolutional architectures

Inception idea (GoogleNet)

Inception modules
Multiple branchs (1x1, 3x3, 5x5,
pool)
Shortcuts (stand alone 1x1, merged
by concat)
Bottleneck (reduce dim by 1x1 before
expensive 3x3/5x5 convs)

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 21 / 58



Optim Basics DL=RL Power of depth

Recurrent

Recurrent NNs

RNNs in general

A recurrent neural network is a NN with
cycles in its connections
Today RNNs are specific recurrent
architectures. Not all architectures work
well..
Shared parameters in time (whereas in
space in Convolutional architectures) MLP vs. RNN
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Recurrent

Inference and learning through unfolding the RNN

Inference: Forward propagation in the FeedForward unfolded RNN

Start with null state h(0) = 0
Iterate

h(t) = g(V × h(t − 1) + U × x(t)
y(t) = g(W × h(t))

⇒ The final state h(T ) resumes the whole input
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Recurrent

Inference and learning through unfolding the RNN

Learning: Back-propagation in the FeedForward unfolded RNN

Unfold the model
Backpropagate the gradient in the whole network
Sum the gradient corresponding to all shared parameters and unshared parameters (possibily
the last layer)
Apply Gradient Optimization Update rule on all parameters
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Recurrent

Various settings

One to One : MLP, CNN ...
One to Many : Generation of a sequential process (speech, handwriting ...)
Many to one : Sequence classification (e.g. activity recognition)
Asynchronous Many to many : Machine Translation
Synchronous Many to Many : POS tagging, Speech recognition...
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Recurrent

One To ManyText example

Text generation

Example of a generation model as a one to Many model
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Recurrent

Many to many example

Machine translation

Example of a translation model as a asynchronous Many to Many model
The nature of language and of complex grammatical forms require to first ”understand” the
sentence, encoding it in a small dimensional hidden space, then to reconstruct the sentence
in the target language.
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Recurrent

LSTMs and RNNs

New units for RNNs

Motivation:
Optimization problems in Recurrent Neural Networks (gradient explosion / vanishing)
Difficulty to capture long term dependencies

New types of hidden cells
Long Short Term Memory (LSTM) [Hochreichetr 98]
Gated Recurrent Unit (GRU) [Cho and al., 2014]
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Recurrent

LSTM units

Motivation

Units that include few gates (forget, input, output ) which allow to :
Stop capitilizing in the state the information about the past
Decide if it is worth using the information in the new input

Depending on the input and on previous state
Reset the state, Update the state, Copy previous state
Ignore new input or fully use it to compute a new state
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Recurrent

LSTM units

Notations

Cell state ct

Forget gate ft

Input gate it

Output ot

Hidden state to propagate to upper layers ht

How does it work ? in words...

Formulas
ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct )

Interpretation
If ft == 1 and it == 0 use previous cell state
If ft == 0 and it == 1 ignore previous cell sate
If ot == 1 output ois set to cell sate
If ot == 0 output is set to 0
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Recurrent

LSTM units

LSTM vs traditional RNN cells
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Recurrent

LSTM units

Forget gate ft

Input gate it
Alternative cell state c̃t
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Recurrent

LSTM units

Cell state ct

Output ot

Hidden state to propagate ht
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Recurrent

Recursive models

Principle

Allows dealing with other structured data such as trees
The model may still be unfolded and gradient may easily be computed
Used to compute a representation using data structure (e.g. text with parse tree structure)
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Deep Learning = Representation Learning

Hierarchy of representation spaces by successive hidden layers

hi (x) = g(W i × hi−1(x))
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Shallow vs deep models

From [LeCun tutorial Statlearn]

Neural Networks with one hidden layer are
shallow models
SVMs are shallow models

DL

Joint learning of a hierarchy of
representations and of a prediction model
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Feature hierarchy : from low to high level

What feature hierarchy means ?

Low-level features are shared among categories
High-level features are more global and more invariant

[From Taigman et al., 2014]
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Learning Representations

Visualizing filters and activations (primary understanding of NNs)

Mnist (toy) dataset

Low resolution handwritten digit images

Weights of first Convolutional layer (32 maps)
Outputs of first Convolutional layer for above

input
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Learning Representations

Visualizing filters and activations

[From Zeiler et Fergus]
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Learning Representations

Visualizing filters and activations

[From Zeiler et Fergus]
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Learning Representations

Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks

Two DNN : Green one learned on Task A - Blue
on Task B
Reuse DNNA for Task B (and vice versa)
Study the effect of reusing a DNN up to layer
number i ...

Main results

Better to reuse DNNA and fine
tune on Task B
Lower layers learn transferable
features while higher don’t
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Learning Representations

Learning with few samples

Few shot learning (and zero shot learning)

Rely on ability to lean relavant and transferable representations
Nearest neighbour-like rules in the learned representation space

[Ravi Larochelle ‘17]
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Embeddings

Extension of the embedding idea

More generally one call embedding a new representation space for any input data (image, text,
signal...)

T. Artières (ECM - LIS / AMU ) Deep Learning - ECM - UE IA December 9, 2018 43 / 58



Optim Basics DL=RL Power of depth

Embeddings

Extension of the embedding idea for images

Main interest

Many very deep architectures have been proposed by major actors (Google, Microsoft,
Facebook...)

Using huge training corpora
Using huge computing resources
Architecture and Weights are often made publicly available

It is better to use such models for computing high features from which one may design a
classifier

With fine tuning (of upper layers) if enough training data are available on the target
task
As a preprocessing if not
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Embeddings

One goal: learning “universal” representations

Motivation : learn representations for any task

Unsupervised or supervised
For images, text, speech etc

The last layer of a CNN encodes most relevant information on the input (image)
The last hidden state of a RNN encodes most relevant information on the processed
input sequence (e.g. sentence, signal)
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Embeddings

Word embeddings

Embeddings for words

When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate
estimation from tractable corpus
When one wants to infer some continuous representations of the input values to get insight
on similarities between them
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Embeddings

A particular interesting effect: compositionality

Idea

Emb(′King ′) + Emb(′Woman′)− Emb(′Man′) ≈ Emb(′Queen′)
It is an observed phenomenon which is not actually favored by the model design the learning
criterion
Similar effect reported on images (with DCGAN from [Radford et al.])
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Capacity!

Depth in RNNs

Depth in Feedforward nets

Stacked layers in a feed forward or more complex manner (e.g. multiple paths)
Gradient vanishing or exploding problems when backpropagating

Depth in RNNs

Stacked hidden layers as in traditional deep NNs : usual in many arhcitectures
Long sequences → deep in time
Both structural depths yield similar optimization problems (gradient flow)
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Capacity!

Deep networks are powerful

[Kaiming He]
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Capacity

(Dense) Deep vs Shalow: Increased capacity

The power of depth [Eldan and Shamir, 2016]

There is a simple function expressible by a 3-layer network that may not be approximated by
a 2-layer network to more than a certain accuracy unless its width is exponential in the
input dimension

Characterizing the complexity of functions a DNN may implement [Pascanu and al., 2014]

DNNs with RELU activation function ⇒ piecewise linear function
Capacity as a function of the number of linear regions one may divide the input space
Exponentially more regions per parameter in terms of number of HL

Case of p0 inputs and p = 2p0 hidden cells per HL (with k HL) :
Maximum number of regions at least : 2(k−1)p0

∑p0
j=0

(
2p0

j

)
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Capacity

DNNs are overparameterized

Large DNNs may even learn noise

For instance : Learn after random permutation of the labels of the training samples
It learns, but it takes more time...
Note that the same (large) architectures that may learn random labels generalize well when
trained on non perturbated data

[Zhang and al., 2017]
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Capacity

DNNs and overfitting

Actually NNs do not easily overfit

The more you learn the better it generalizes
Experiments on Mnist and CIFAR data (downsampled): 1 hidden layer (size H) NNs
without any regularization → no overfitting observed

[Neyshabur 2017]
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Capacity

Capacity

Vapnik dimension

Rademacher capacity

Rn(H) = Eσ[suph∈H
1
n

n∑
i=1

σi h(xi )]

with σi ∈ {−1, 1}
Clearly looks like the randomization test
Trivial upperbound (=1): useless
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Capacity

DNNs’ capacity

Vapnik dimension of deep NNs with ReLU

With L hidden layer of p neurons the Vapnik dimension of deep ReLU NNs is h = Θ(L2p2)

Considering classical generalization bound : R(w) ≤ Remp(w) + Õ(
√

L2p2
n )

This does not explain generalization behavior

[O. Bousquet, tutorial 2017]
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Capacity

Deep nets do not actually need to be huge

Size helps learning but one may simplify once
learned !

Low rank tensor approximation (CP,
Tucker, TensorTrain) of layer weight
matrices (FC, Conv, RNN) [Novikov et al.
2015]
Distillation strategy [Hinton et al., 2015]

Learn a deep and complex model fNN
(or en ensemble of deep models) on a
dataset D
Create a new learning task by
computing the output vectors o of
fNN for samples in D (better use
logits than outputs of the softmax)
Learn a narrower model to predict o
vectors for samples in D
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Capacity

FitNets [Romero et al., 2015]

Going further in distillation with intermediate transfer

Knowledge distillation + intermediate distillation losses
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Capacity

DL vs standard ML

Traditional Machine Learning

Overfitting is the enemy
One may control generalization with appropriate regularization
Suboptimal optimization due to multiple local minima

DL: mysterious phenomenon

Huge capacity without overfitting
The size helps learning
Overfitting idea should be revised for DNNs [Zhand and al., 2017] ?
Regularization may slightly improve performance but is not THE answer for improving
generalization
Not clear what in the DNN may allow to predict its generalization ability
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