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Introduction MLPs Programming

Where is AI?

Constat

The original AI was the General AI (IA forte)
Today 60 years after the Dartmouth meeting

We have achieved some NIA results (IA faible)
We can start thinking more seriously about GAI
These are just the premises.
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At the heart of AI: Machine Learning (and Deep Learning)

Which algorithms to solve these tasks ?
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Machine Learning

What is it for?

Writing programs that solve a task while we don’t even know how to writre the algorithm
Where a program takes some input and produce a corresponding output
The program is learned from labeled data = pairs of (input, output)

What is it?

Algorithms that enable learning a function f : x ∈ X → y ∈ Y from a training dataset of
samples
The function must generalize well to data unseen at training time
x and y may be discrete, continuous, vectors, matrices, tensors, sequences ...
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Main difficulty

Generalization

It is “easy” to learn models that are perfect on training data
But is is useless
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History of Neural Networks

Key dates

1943 : Formal neuron [McCuloch-Pitts]

1950 : Oragnization of neurons and learning rules [Hebb]

1960 : Perceptron [Rosenblatt]

1960 : Update rule [Widrow Hoff]

1969 : Limitations of the Perceptron [Minsky]

1980s : Back-propagation [Rumelhart and Hinton]

1990s : Convolutional Networks [LeCun and al.]

1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]

2006 : Paper on Deep Learning in Nature [Hinton and al.]

2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]

2013 : First edition of ICLR

2013 : Memory networks [Weston and al.]

2014 : Adversarial Networks [Goodfelow and al.]

2014 : Google Net [Szegedy and al.]

2015 : Residual Networks [He et al.]

...
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AI today

Where are we?

The original AI (Dartmouth workshop) was General AI (IA forte)
Today 60 years after Dartmouth

We have achieved some NIA results (IA faible)
We can start thinking more seriously about GAI
These are just the premises.
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Deep Learning today

Spectaculary breakthroughs - fast industrial transfer

Images, Videos, Audio, Speech, Texts
Successful setting

Structured data (temporal, spatial...)
Huge volumes of datas
Huge models (millions of parameters)
Huge storage and computing resources (GPU, TPU)
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Machine Learning and Deep Learning today

Spectacular diffusion and activity

Machine Learning and Deep Learning Conferences sold out early
More attendees than ever seen in computer science conferences
Exponential growth
Semantic change in what AI means
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Machine Learning and Deep Learning today

Topics, trends and who’s who?

Mix between academics and companies
Extreme popularity of Deep Learning topics
Birth of the International Conference on Learning Representation (2014)
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DL research is going very fast !!

Example of an emerging topic: Generative Adversarial Networks

First publication : 2014 by Ian J. Goodfellow, and al.
Hundreds of publications (close to a thousand) papers since

New publication mode

Wasserstein GANs, Martin Arjovsky and al.
Published on arXiv : Jan 2017
Published at ICML in Aout 2017

Improved Training of Wasserstein GANs by Ishaan Gulrajani and al.
Published on arXiv : March 2017
Published at NIPS in December 2017

Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual
Effect by Xiang Wei and al.

Published on Openreview : Oct 2017
Accepted as poster at ICLR in 2018 (April 2018)
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The Graal ? (but we are not there yet)

[Gallant et al., ...]
T. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 14 / 61



Introduction MLPs Programming

The key: features

Deep learning = Representation Learning
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Spectaculary breakthrough

Computer vision
Real time Object recognition
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Spectaculary breakthrough

Computer Vision
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Spectaculary breakthrough

Speech

T. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 18 / 61



Introduction MLPs Programming

Spectaculary breakthrough

Natural Language Processing

Text representation, modeling, generation Demo
Chat bots
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Spectaculary breakthrough

Games

BackGammon, Chess, Go
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Spectaculary breakthrough

Image generation
Recent Nvidia results
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Spectaculary breakthrough

Should we still trust what we see?
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Basics

A single Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = g(a(x))

Non linearity : g

Sigmoide, Hyperbolic tangent, Gaussian
Rectified Linear Unit (RELU)

f (x) = 0 if x ≤ 0
= x otherwise
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Basics

Multi Layer Perceptron (MLP)

Structure

Organization in successive layers
Input layer
Hidden layers
Output layer

Function implemented by a MLP

g(W o .g(W hx))

Inference: Forward propagation from input
to output layer
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Basics

MLP : Forward propagation

Forward propagation of activities, for an input example x

Fill the input layer with x : h0 = x
Iterate from the first hidden layer to the last one

hl = W l × hl−1

hl = g(hl )
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Basics

MLP Usage for Regression

Notation

yij : ideal output of the jth neuron of the output layer when input is example number i

oij : real output of the jth neuron of the output layer when input is example number i
N : number of samples
O number of outputs of the model = size of the output layer

Training

Criterion:
Mean Squared Error 1

N
∑N

i=1

∑O
j=1 ‖yij − oij‖2

Inference

Forward propagation from the input layer to the output layer
Output: (oij )j=1..O
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Basics

MLP Usage for Classification

Training

One-hot encoding of outputs: As many outputs as there are classes
MSE criterion as for Regression problems
Cross Entropy criterion

transformation of outputs sij in a probability distribution

Softmax : pij = exp−oij∑O
k=1

exp−oik

New ouputs of the model : pij = output of the jth neuron of the output layer when input is
example number i

Criterion:
Cross-entropy − 1

N

∑N
i=1

∑O
j=1

yij log(pij )

Training

Forward propagation from the input layer to the output layer
Decision based on the maximum value amongst output cells c = argmaxj=1..Opij
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Basics

Learning a MLP

Learning as an optimization problem

Objective function of parameters set w for a given training set T

C(w) =F (w) + R(w)

=
∑

(x,y)∈T

Lw (x , y ,w) + ||w ||2

Gradient descent optimization: w = w − ε ∂C(w)
∂w

Backpropagation

Use chain rule for computing derivative of
the loss with respect to all weights in the
NN
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Basics

Gradient Descent Optimization

Gradient Descent Optimization

Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt

T. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 30 / 61



Introduction MLPs Programming

Deeper in MLPs

A single ReLU Neuron

One Neuron

Elementary computation

activation = wT .x =
∑

j

wj xj + w0

output = ReLU(a(x))
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Deeper in MLPs

What a MLP may compute

What does a hidden neuron

Divides the input space in two

Combining multiple hidden neurons

Allows identifying complex areas
of the input space
New (distributed) representation
of the input
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Deeper in MLPs

Distributed representations

Might be much more efficient than non distributed ones
Somehow the number of regions in which a NN architecture may divide the input space is a
measure of its capacity
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Deeper in MLPs

MLP = Universal approximators

One layer is enough !

Theorem [Cybenko 1989]: Let φ(·) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m. The space of continuous functions on Im is denoted by C(Im). Then,
given any ε > 0, there exists an integer N, such that for any function f ∈ C(Im), there exist
real constants vi , bi ∈ R and real vectors wi ∈ Rm, where i = 1, · · · ,N, such that we may
define:

F (x) =
N∑

i=1

viφ
(

wT
i x + bi

)
as an approximate realization of the function f where f is independent of φ ; that is :
|F (x)− f (x)| < ε for all x ∈ Im. In other words, functions of the form F (x) are dense in
C(Im).
Existence theorem only
Many reasons for not getting good results in practice
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Deeper in MLPs

Gradient Descent Optimization

Gradient Descent Optimization

Initialize Weights (Randomly)
Iterate (till convergence)

Restimate wt+1 = wt − ε ∂C(w)
∂w |wt

⇒ Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog
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Deeper in MLPs

Error surface

Surface error and gradient in weight space
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Deeper in MLPs

Gradient Descent: Tuning the Learning rate

Two classes Classification problem

Weight trajectory for two different gradient step
settings.

Images from [LeCun et al.]
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Deeper in MLPs

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting

Assuming the gradient direction is good, there is an optima value for the learning rate
Using a smaller value slows the convergence and may prevent from converging
Using a bigger value makes convergence chaotic and may cause divergence

Images from [LeCun et al.]
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Deeper in MLPs

Optimal learning rate and convergence speed

Second order point of view

Taylor expansion, noting ∇2C(w) the Hessian (a N × N matrix with N a model with parameters )

C(w′) = C(w) + (w′ − w)T∇C(w) +
1

2
(w′ − w)T∇2C(w)(w′ − w)

∇C(w)|w′ = ∇C(w)|w +∇2C(w)(w′ − w)

Optimum rule (setting ∇C(w)|w′ to 0):

w′ = w − (∇2C(w))−1∇C(w)

Optimal move not in the direction of the gradient

Said differntly: Not a identical step in every direction !

In Order 1 Gradient descent the optimal the optimal value of ε depends on eigen values of the Hessian ∇2C(w)

The optimal value depends on the highest eigen value (ε̂ = 1
λmax

) of the Hessian
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Deeper in MLPs

Gradient Descent: Stochastic, Batch and mini batchs
Objective : Minimize C(w) =

∑
i=1..N Lw (i) with Lw (i) = Lw (x i , y i ,w)

Batch vs Stochastic vs Minibatchs

Batch gradient descent
Use ∇C(w)
Every iteration all samples are used to compute the gradient direction and amplitude

Stochastic gradient
Use ∇Lw (i)
Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Minimize C(w) by minimizing parts of it sucessively
Allows faster convergence, avoiding local minima etc

Minibatch
Use ∇

∑
few j Lw (j)

Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude
Introduce randomization in the process.
Optimize the GPU computation abilityT. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 40 / 61
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GD variants

Using Momentum

SGD with Momentum

Standard Stochastic Gradient descent :
w = w − ε ∂C(w)

∂w
SGD with Momentum:

v = γv + ε
∂C(w)
∂w

w = w − v

SGD standard SGD avec momentum
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GD variants

Nesterov Accelerated Gradient

Principle

Idea: Better anticipate when to slow down by looking forward

vt+1 = γvt + ε∇C(w)|wt−γvt

wt+1 = wt − vt+1

Blue vectors: standard momentum
Brown vectors: jump
Red vectors: correction
Green vectors: accumulated gradient
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GD variants

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

Define gt,i = ∂C(w)
∂wi

the derivative wrt a single weight value wi

wt+1,i = wt,i − ε√
Gt,ii +γ

gt,i

where Gt,ii is a diagonal matrix with i th element equal to
∑

t g2
t,i

γ is a very small value to avoid numerical exceptions
Standard value ε = 0.01

Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and
RmsProp
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Computation graph

Gradient Computation: Chain rule

Gradient of a function

z = 2× f (x + 3× y) + 6× g(5× x)× h(y)

⇒
∂z
∂x
|x,y = 2× f ′(x + 3× y) + 30× g ′(5× x)× h(y)

Equivalent computation with the Chain rule

Set a(x) = f (x + 3 × y) and b(x, y) = g(5 × x)

⇒ z = 2 × a(x) + 6 × b(x) × h(y)

⇒
∂z

∂x
|x,y =

∂z

∂a
|x,y ×

∂a

∂x
|x,y +

∂z

∂b
|x,y ×

∂b

∂x
|x,y

With:

∂y

∂a
|x,y = 2 and

∂a

∂x
|x,y = f ′(a × x + 3 × y)

∂y

∂b
|x,y = 6 × h(y) and

∂b

∂x
|x,y = 5 × g′(5 × x)

∂a

∂x
|x,y = g′(a × x)

∂b

∂x
|x,y = 5 × g′(5 × x)T. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 44 / 61
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Computation graph

Gradient computation in MLPs: Stochastic case

Notations

Activation function on every layer: g — Number of layer : L
Activity of neuron i in layer l , al

i — Output of neuron i in layer l , hl
i = g(al

i ), and
oL

i = g(aL
i )

Weight from a neuron j of layer l − 1 to neuron i in layer l : w l
ij

Example considered for computing gradient (x , y)
Squarred loss : C(w) = ‖oL − y‖2

Gradient wrt. last layer weights

Gradient wrt cell’s ouput ∂C(w)
∂oL

i
= 2(oL

i − yi )

Gradient wrt cell’s activity δL
i = ∂C(w)

∂aL
i

= ∂C(w)
∂oL

i

∂oL
i

∂aL
i

= 2(oL
i − yi )g ′(aL

i )

Gradient wrt weights arriving to output cells

∂C(w)
∂wL

ij
=
∂C(w)
∂aL

i

∂aL
i

∂wL
ij

= δL
i × hL−1

jT. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 45 / 61
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Computation graph

Gradient computation in MLPs: Stochastic case (continues)

Gradient wrt. last hidden layer (LHL) weights

Gradient wrt LHL cell’s activity δL−1
j = ∂C(w)

∂aL−1
j

=
∑

i
∂C(w)
∂aL

i

∂aL
i

∂aL−1
j

=
∑

i δ
L
i wL

ij g ′(aL−1
j )

Gradient wrt weights arriving to a LHL cell
∂C(w)
∂wL−1

jk
= δL−1

j × hL−2
k
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Computation graph

Gradient computation in MLPs

Forward propagation of activities, for an input example x

Fill the input layer with x : h0 = x
Iterate from the first hidden layer to the last one

hl = W l × hl−1

hl = a(hl )

Backward computation of the error

Compute the output error δL

Iterate from the last hidden layer to the first one
Compute δL from δL−1

Computing gradient

For each weight w l
jk of every layer compute the gradient using δl

j and ol−1
k
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Regularization

Guiding the learning through reguarization

Regularization

Constraints on weights (L1 or L2)
Constraints on activities (of neurons in a hidden layer) → induces sparsity

L1 or L2
Mean activity constraint (Sparse autoencoders, [Ng et al.])
Sparsity constraint (in a layer and/or in a batch)
Winner take all like strategies

Disturb learning for avoiding learning by heart the training set
Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
Noisy labels
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Regularization

Constraints on weights

L2 norm on weights (known as Weight Decay)

Penalizing the weights through adding a weighted L2 norm λ‖w‖2 to the loss
It is equivalent to defining a family of models such that ‖w‖2 ≤ Cλ with Cλ increasing
when λ decreases
L2 norm penalization ↔ diminishing the space of functions implemented with the network
architecture

L2 and L1 norms

L2 norm move useless weights to 0 (without reaching 0)
L1 norm set useless weights to 0
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Regularization

Early stopping and callbacks

Principle

Early stopping monitors performance (loss) on validation set
Stopes before it reaches a plateau and starts increasing
Related to the idea that the implemented model’s capacity increases with the number of
iteration

Think of small weights initialization and sigmoid activation
⇒ at the beginning the model is a linear one !
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Regularization

Lots of tricks to favor convergence

And more...

Weight Initialization
Gradient step setting
...
⇒ Despite appearances not all is automatic
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Why now ?

Huge training resources for huge models

Huge volumes of training data
Huge computational ressources (clusters of GPUs)

Advances in understanding optimizing NNs

Regularization (Dropout...)
Making gradient flow (ResNets, LSTM, ...)

Faster diffusion than ever

Softwares
Results

Publications (arxiv publication model) + codes
Architectures, weights (3 python lines for loading a state of the art computer vision
model!)
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Plateformes

Large and active community (forums, models are available when published...) for each of these
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GPU and CPU
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Computation graph

Computation graph for a calculus
One may build a computation graph
form the calculus definition

z = Ax + b

Computation graph for a calculus and
a criterion

One may add a criterion (accounting
for supervised learning)

From Fei Fei Li slides
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Automatic differentitation

Differentiation graph
From a computation graph one may automatically compute the backward differentiation graph !

Different rules to apply according to the operation yielding z from x and y

From Fei Fei Li slides
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Computation graph and TensorFlow

An example from [Tensorflow doc]

T. Artières (ECM - LIS / AMU ) Deep Learning November 25, 2018 58 / 61



Introduction MLPs Programming

Computation graph and Pytorch

Another example
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Computation graph and Pytorch

Another example
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Example (pytorch)

Mnist Classifier (model definition)
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Example (pytorch)

Mnist Classifier (model training)
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