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Introduction

Outline

e Introduction
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Introduction

Where is Al?

Constat

@ The original Al was the General Al (1A forte)
@ Today 60 years after the Dartmouth meeting

o We have achieved some NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

Gartner Hype Cycle for Emerging Technologies, 2017

gartner.com/SmarterWithGartner
SEaTR, Gartner.
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Introduction

At the heart of Al: Machine Learning (and Deep Learning)

Which algorithms to solve these tasks ? J

person

helmet

motorcycle
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Introduction

Machine Learning

What is it for?

@ Writing programs that solve a task while we don’t even know how to writre the algorithm
@ Where a program takes some input and produce a corresponding output

@ The program is learned from labeled data = pairs of (input, output)

What is it?
@ Algorithms that enable learning a function f : x € X — y € Y from a training dataset of
samples
@ The function must generalize well to data unseen at training time

@ x and y may be discrete, continuous, vectors, matrices, tensors, sequences ...
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Introduction

Main difficulty

Generalization

@ |t is “easy” to learn models that are perfect on training data

@ But is is useless

Erreur de prédiction

T. Artidres (ECM - LIS / AMU )

Sous- apprentissage

Sur-apprentissage
R

Echantillon

/ de test

Echantillon

damandlion Limite au dela de laquelle

{on est en sur-apprentissage

Complexité du modele

Deep Learning
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Introduction

History of Neural Networks

Key dates

@ 1943 : Formal neuron [McCuloch-Pitts]

@ 1950 : Oragnization of neurons and learning rules [Hebb]

@ 1960 : Perceptron [Rosenblatt]

@ 1960 : Update rule [Widrow Hoff]

@ 1969 : Limitations of the Perceptron [Minsky]

@ 1980s : Back-propagation [Rumelhart and Hinton]

@ 1990s : Convolutional Networks [LeCun and al.]

@ 1990s: Long Short Term Memory networks [Hochreiter and Schmidhuber]

@ 2006 : Paper on Deep Learning in Nature [Hinton and al.]

@ 2012 : Imagenet Challenge Win [Krizhevsky, Sutskever, and Hinton]

@ 2013 : First edition of ICLR

@ 2013 : Memory networks [Weston and al.]

@ 2014 : Adversarial Networks [Goodfelow and al.]

@ 2014 : Google Net [Szegedy and al.]

@ 2015 : Residual Networks [He et al.]

° v
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Introduction

Al today

Where are we?

@ The original Al (Dartmouth workshop) was General Al (IA forte)
@ Today 60 years after Dartmouth

o We have achieved some NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

Gartner Hype Cycle for Emerging Technologies, 2017

gartner.com/SmarterWithGartner
SEaTR, Gartner.
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Introduction

Al today

Where are we?
@ The original Al (Dartmouth workshop) was General Al (IA forte)
@ Today 60 years after Dartmouth

o We have achieved some NIA results (IA faible)
o We can start thinking more seriously about GAI
o These are just the premises.

The evolution of artificial intelligence

Intelligence

<2016 2016 2020 2050 >2050
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Introduction

Deep Learning today

Spectaculary breakthroughs - fast industrial transfer

@ Images, Videos, Audio, Speech, Texts
@ Successful setting

o Structured data (temporal, spatial...)
o Huge volumes of datas

o Huge models (millions of parameters)

o Huge storage and computing resources (GPU, TPU)

VGGNet DeepVideo
Ident g Image g Video

Image

Input @

Output 1000 Categories
Parameters 140M

Data Size 2M Images with Videos with |6M Sentence Pairs,
assigned Category | assigned Category 340M Words
Dataset ILSVRC-2012 Sports-1M WMT14

T. Artidres (ECM - LIS / AMU )
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Introduction

Machine Learning and Deep Learning today

Spectacular diffusion and activity
Machine Learning and Deep Learning Conferences sold out early
More attendees than ever seen in computer science conferences

Exponential growth

Semantic change in what Al means

Large Conference Attendance

— AAAL

/\ wea
NIPS

= CVPR

ICML
— ICRA

2000
o —

1990 2000 2010

4000

Attendees

Year
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Introduction >rogrammin,

Machine Learning and Deep Learning today

Topics, trends and who's who?
@ Mix between academics and companies
@ Extreme popularity of Deep Learning topics

@ Birth of the International Conference on Learning Representation (2014)

1 1 Tutorials Hall A 2789 287

2 2 Deep Learning, Applications 2364 289 ]

3 3 Deep Learning 1831 163 © tongescn ot usa

4 3 Reinforecment Learning, Deep Learning 1592 140 ﬂ' ﬂ'
5 1 Optimization 1522 130

6 1 Tutorials Hall C 1344 135 GOOGLE cmu
7 1 Algorithms 1307 137 MICROSOFT Mt
8 2 Theory 1288 83 1BM STANFORD
9 2 Algorithms Optimization 1223 107 Publication
10 4 Deep Learning, Algorithms 1202 113

11 4 Deep Reinforcement Learning 1202 43

12 2 Invited talk: Kate Crawford: The Trouble with Bias 1162 71

13 3 Reinforcement Learning, Algorithms, Applications 1156 134

14 3 Invited talk: Pieter Abbeel: Deep Learning for Robotics 1087 61

15 1 Tutorials Grand Ballroom 1082 132
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Introduction

DL research is going very fast !!

Example of an emerging topic: Generative Adversarial Networks

@ First publication : 2014 by lan J. Goodfellow, and al.

@ Hundreds of publications (close to a thousand) papers since

New publication mode

@ Wasserstein GANs, Martin Arjovsky and al.

o Published on arXiv : Jan 2017
o Published at ICML in Aout 2017

@ Improved Training of Wasserstein GANs by Ishaan Gulrajani and al.

o Published on arXiv : March 2017
o Published at NIPS in December 2017

@ Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual
Effect by Xiang Wei and al.

o Published on Openreview : Oct 2017
o Accepted as poster at ICLR in 2018 (April 2018)

.
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Introduction

The Graal ? (but we are not there yet)

The Mammalian Visual Cortex is Hierarchical

o

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
# Lots of intermediate representations

WHAT? (Form. Color,
linferotemporal atream]

=~ To spinal corg
= Tolinge muscle «_  ——-180-220ms

180-260 ms.

[picture from Simon Thorpe]

[Gallant & Van Essen]

[Gallant et al., ...]
T. Artieres (ECM - LIS / AMU )
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Introduction

The key: features

Deep learning = Representation Learning

Learned hierarchical
feature representation

Input data

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
“Edges”

Pixels

T AT (G- U/ A ) ey 2, 20K

15 / 61



Introduction

Spectaculary breakthrough

Computer vision

Real time Object recognition J

VISION ERROR RATE

30%
Algorithms

2

Humans

N—

0
2000 2m 2012 2018 014 201 2006

SOURCE _ELECTRONIC FRONTIER FOUNDATION © HBR.ORG
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Introduction

Spectaculary breakthrough

Computer Vision

Inception-v4
80
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
7 ResNet-101
ResNet-34
g 70 ResNet-18
>
2 °° GooglLeNet
3 ENet
2 65
3 © BN-NIN
= 60 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40
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Introduction

Spectaculary breakthrough

Speech J

Read speech (vocabulary: 1K, 5K, 20K)  Broadcast speech  Conversational speech

100%
Read Specch Conyersatonal
/ \ e poadoys Switchboard Cellular
L\ 2% e

2 Poor Microphone: Switchboard

o 1K =N 2012 System ®

.

g ook -

-

5 o STean

=
@ S oo moeom s 2 2 9 = 8 0 ¥ o
§E8EE38388882888¢8¢8¢8¢6§8

Year of Annual Evaluation

FIGURE 2.7 Historical progress on reducing the word error rate in speech recog-
nition systems for different kinds of speech recognition tasks. Recent competency
for the “difficult switchboard” task (human conversation in the wild) is marked
with the green dot. SOURCE: X. Huang, J. Baker, and R. Reddy, 2014, A histori-
cal perspective of speech recognition, Communications of the ACM 57(1):94-103,
doi:10.1145/2500887. © 2014, Association of Computing Machinery, Inc. Reprinted
with permission.

T. Artieres (ECM - LIS / AMU ) November 25, 2018 18 / 61



Introduction

Spectaculary breakthrough

Natural Language Processing

@ Text representation, modeling, generation Demo
@ Chat bots

womAN
AUNT Queens

UNCLE KNGS
Queen Queen

NG KNG

s p—

sasan
TNFUT (HEAD AND LABEL)

Womem PREDICTED TAILS
TR Toller. ©

fubap Arkars oy

Francn P

0s| Fam

i e
Spam sl

15 - Poage

2 (X} 1 s ° as 12 3
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Introduction

Spectaculary breakthrough

Games

@ BackGammon, Chess, Go

3200

3000

EloRating —Human

2600 eComputer

1980 1985 1990 1995 2000 2005 2010 2015

FIGURE 2.3 Elo scores—a measure of competency in competitive games—
showing the chess-playing competency of humans and machines, measured over
time. SOURCE: Courtesy of Murray Campbell

T. Artieres (ECM - LIS / AMU ) November 25, 2018 20 / 61



Introduction

Spectaculary breakthrough

Image generation

Recent Nvidia results J
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Introduction

Spectaculary breakthrough

Should we still trust what we see? J

AL

T. Artieres (ECM - LIS / AMU ) Deep Learning November 25, 2018 22 /61
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Outline

© MLPs

@ Basics

@ Deeper in MLPs

@ GD variants

@ Computation graph
@ Regularization
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MLPs
®000000

Basics

A single Neuron

One Neuron

@ Elementary computation
activation = w' .x = Z wiXj + wo
J
output = g(a(x))
v
Non linearity : g 5 .
— sigmon
===thanh
@ Sigmoide, Hyperbolic tangent, Gaussian : — /
@ Rectified Linear Unit (RELU) ,
|
F(x) = 0if x <0 ——
= x otherwise 5 o 5
v
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MLPs
O@00000

Basics

Multi Layer Perceptron (MLP)

Structure
@ Organization in successive layers Input Hidden Output
Layer Layer Layer
e Input layer
e Hidden layers
7

o Output layer

X ol ‘\——

N

Function implemented by a MLP

g(We.g(W"x)) Q

@ Inference: Forward propagation from input
to output layer

T. Artiéres (ECM - LIS / AMU ) Deep Learning November 25, 2018 25 /61




MLPs
[e]e] le]e]ele)

Basics

MLP : Forward propagation

Forward propagation of activities, for an input example x

@ Fill the input layer with x: hg = x
@ lterate from the first hidden layer to the last one

o h=wW!x h-1
o h' = g(h')

Input dden Output
Layer Layer Layer
v

v
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MLPs
[ele]e] le]ele)

Basics

MLP Usage for Regression

Notation

@ y; : ideal output of the j™ neuron of the output layer when input is example number i

@ oj : real output of the jt™ neuron of the output layer when input is example number i

@ N : number of samples

@ O number of outputs of the model = size of the output layer

.
Training
@ Criterion:
1 N o 2
o Mean Squared Error Zle Zj:l Ilyii — ol
v
Inference
@ Forward propagation from the input layer to the output layer
@ Output: (0j)j=1..0
v

e T
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MLPs
[e]e]ele] lele)

Basics

MLP Usage for Classification

Training
@ One-hot encoding of outputs: As many outputs as there are classes
@ MSE criterion as for Regression problems
@ Cross Entropy criterion

o transformation of outputs s; in a probability distribution
expio"j
ZO exp—oj)
k=1 ik
@ New ouputs of the model : p; = output of the jth neuron of the output layer when input is
example number i
o Criterion:

N o
o Cross-entropy —4; Z:’:l Zj:1 yijlog(pij)

o Softmax : p;j =

Training
@ Forward propagation from the input layer to the output layer

@ Decision based on the maximum value amongst output cells ¢ = argmax;—1..0pjj

y
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MLPs
0000080

Basics

Learning a MLP

Learning as an optimization problem
@ Objective function of parameters set w for a given training set T
C(w) =F(w) + R(w)
= > Lulxy, w) + w2
(x,y)eT

@ Gradient descent optimization: w = w — Eag&w)

Forward propagation
v y

Backpropagation

@ Use chain rule for computing derivative of
the loss with respect to all weights in the

T
o
NN 3

de Back propagation

ow

T AT (G- U/ A ) el 2, 20K
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MLPs
O00000e

Basics

Gradient Descent Optimization

Gradient Descent Optimization

@ Initialize Weights (Randomly)

@ lterate (till convergence)
C(w)

ow ‘Wf

o Restimate wiy1 = wy — €

C(W) = Cste

T. Artieres (ECM - LIS / AMU ) November 25, 2018 30 / 61



MLPs

@000000000

Deeper in MLPs

A single ReLU Neuron

One Neuron

@ Elementary computation

activation = w' .x = Z wiXj + wo gla)
j
output = ReLU(a(x))
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MLPs

@000000000

Deeper in MLPs

A single ReLU Neuron

One Neuron
@ Elementary computation
activation = w' .x = g wiXj + wo

j
output = RelLU(a(x))
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MLPs

O®@00000000

Deeper in MLPs

What a MLP may compute

What does a hidden neuron
@ Divides the input space in two J

Combining multiple hidden neurons
@ Allows identifying complex areas
of the input space

@ New (distributed) representation
of the input
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MLPs

0O0@0000000

Deeper in MLPs

Distributed representations

Might be much more efficient than non distributed ones

Somehow the number of regions in which a NN architecture may divide the input space is a
measure of its capacity

Sub partition 1

Sub partition 5

Sub partition 4 ub

/ partition [
/8

Sub partition 2

Sub partition 3
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MLPs

0O00@000000

Deeper in MLPs

MLP = Universal approximators

One layer is enough !

@ Theorem [Cybenko 1989]: Let ¢(-) be a nonconstant, bounded, and
monotonically-increasing continuous function. Let I, denote the m-dimensional unit
hypercube [0, 1]™. The space of continuous functions on I, is denoted by C(/mn). Then,
given any € > 0, there exists an integer N, such that for any function f € C(/m), there exist
real constants v;, bj € R and real vectors w; € R™, where i = 1,--- , N, such that we may

define:
N

F(X) = Z V,'¢ (W,-TX + b,)
i=1
as an approximate realization of the function f where f is independent of ¢ ; that is :
|F(x) — f(x)| < e for all x € I;. In other words, functions of the form F(x) are dense in

C(Im).
@ Existence theorem only

@ Many reasons for not getting good results in practice
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MLPs

0O000@00000

Deeper in MLPs

Gradient Descent Optimization

Gradient Descent Optimization

@ Initialize Weights (Randomly)
@ lterate (till convergence)

aC(w)

o Restimate wii1 = wr — € T | we

Initial

weight \

1wl Gradient

Global cast minimum
e )

= Few illustrations in these slides are taken from [LeCun et al, 1993], [Fei Fei Li lecture 6], and
from S. Ruder’s blog
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MLPs

0000080000

Deeper in MLPs

Error surface

Surface error and gradient in weight space

C(W) = Cste

W,

T. Artieres (ECM - LIS / AMU ) November 25, 2018 36 / 61



MLPs

0O00000e000

Deeper in MLPs

Gradient Descent: Tuning the Learning rate

Weight trajectory for two different gradient step
settings.
Two classes Classification problem

Y N
o0 o S
Xo %

Fig. 9. Simple linear network.

Fig.11. Weight
n=25

Images from [LeCun et al.]
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MLPs

0000000800

Deeper in MLPs

Gradient Descent: Tuning the Learning rate

Effect of learning rate setting
@ Assuming the gradient direction is good, there is an optima value for the learning rate
@ Using a smaller value slows the convergence and may prevent from converging

@ Using a bigger value makes convergence chaotic and may cause divergence

E(0) )

E(0)

< Mo

(i) (i)

Fig. 6. Gradient descent for different learning rates

Images from [LeCun et al.]
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MLPs

0O0000000e0

Deeper in MLPs

Optimal learning rate and convergence speed

Second order point of view
@ Taylor expansion, noting V2 C(w) the Hessian (a N X N matrix with N a model with parameters )
’

cw'y=cw)+ W —w)T vcw) + %(W’ —w) T F2cw)w’ — w)

= VCW)lw + V2Cw)(w — w)

vewl,,
@ Optimum rule (setting VC(w)l,,r to0):
W = w— (vVEcw) v ew)
@ Optimal move not in the direction of the gradient
@ Said differntly: Not a identical step in every direction !
@ In Order 1 Gradient descent the optimal the optimal value of ¢ depends on eigen values of the Hessian V2 C(w)
@ The optimal value depends on the highest eigen value (¢ = >\n11.ax ) of the Hessian
v
w2 Sigenvector

w1
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MLPs

000000000 e

Deeper in MLPs
Gradient Descent: Stochastic, Batch and mini batchs
Objective : Minimize C(w) =Y., Lw(i) with Lu (i) = Lw(x,y’, w)

Batch vs Stochastic vs Minibatchs

@ Batch gradient descent

e Use VC(w)
o Every iteration all samples are used to compute the gradient direction and amplitude

@ Stochastic gradient

e Use VL, (i)

o Every iteration one sample (randomly chosen) is used to compute the gradient
direction and amplitude

o Introduce randomization in the process.

e Minimize C(w) by minimizing parts of it sucessively

o Allows faster convergence, avoiding local minima etc

@ Minibatch

o Use szewj Lw(j)

o Every iteration a batch of samples (randomly chosen) is used to compute the gradient
direction and amplitude

° Introduce randomlzatlon in the process

..... DIl ~ o
T, Artitves [EOVT TS /AU November 25, 2018 40 / 61




GD variants

Using Momentum

“
SGD with Momentum
@ Standard Stochastic Gradient descent :
_ 9C(w) s |
W=w—e——
ow
@ SGD with Momentum: 7 1
oC(w) ,5 |
V=9Vv+e——
ow ) |
w=w-—v
of g T ww w2 s s
SGD standard SGD avec momentum
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GD variants

Nesterov Accelerated Gradient

Principle
@ ldea: Better anticipate when to slow down by looking forward

Verl = YVt + eV C(W)|wy—yve

Wil = Wt — Viql

@ Blue vectors: standard momentum
@ Brown vectors: jump
@ Red vectors: correction

@ Green vectors: accumulated gradient

T. Artieres (ECM - LIS / AMU ) November 25, 2018 42 / 61



GD variants

Adagrad

Reminder: Optimally one needs to adapt the learning rate to every weight

@ Define gt j = oc(w) the derivative wrt a single weight value w;
8t, ow; g g

@ Wiil, = Wi — —F—=———=8¢,i
t+1,i t,i \/mgf,l

o where G ;i is a diagonal matrix with ith element equal to Ztgfi
;

o v is a very small value to avoid numerical exceptions

e Standard value ¢ = 0.01

@ Variants that aim at minimizing the aggressive feature of Adagrad: Adadelta , Adam, and
RmsProp
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Computation graph

Gradient Computation: Chain rule

Gradient of a function

z=2xf(x+3%xy)+6xg((5xx)x h(y)

8
:>ai|x,y=2xf'(x+3Xy)+3OXg’(5xx)xh(y)
X

Equivalent computation with the Chain rule

Set a(x) = f(x +3 X y) and b(x, y) = g(5 X x)
= z=2x a(x) +6 x b(x) X h(y)

I : 0 o o,
= —lxy = — ey X — Iy + —lxyy X —lx,
YT e Y T e Y ap Y Y

ax

da ,
—x,y =2and — |x,y =f(a X x+3 X y)
ax
b ’
— |x,y =6 X h(y) and ;\ny:fwxg (5 X x)

’
— Ix,y =8 (a X x)

Ah

T. Artiéres (ECM - LIS / AMU ) Deep Learning

2=2 f(x+3y) + g(5x) x h(y)

TN

a=f(x+3y) b=g(5x) x h(y)
X y X y
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Computation graph

Gradient computation in MLPs: Stochastic case

Notations

@ Activation function on every layer: g — Number of layer : L

@ Activity of neuron i in layer /, aI’. — Output of neuron i in layer /, hf = g(al(), and

ot = g(at)

@ Weight from a neuron j of layer | — 1 to neuron i in layer / : w/.

@ Example considered for computing gradient (x, y)

@ Squarred loss : C(w) = ||ot —y|?

iy

Gradient wrt. last layer weights

@ Gradient wrt cell's ouput %{S‘f) = 2(0,!‘ —¥i)

i
aC(w) _ aC(w) dok
BafL - aoiL 8a,.L

@ Gradient wrt cell's activity 6}- =

@ Gradient wrt weights arriving to output cells

9C(w)  9C(w) dat _

i

T. Artiéres (ECM - LIS / AMU ) Deep Learning
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Computation graph

Gradient computation in MLPs: Stochastic case (continues)

Gradient wrt. last hidden layer (LHL) weights

. , .. _ dat
@ Gradient wrt LHL cell’s activity 6}‘ 1= BCI(W) = Zi Bacizv) o3 La T = Z Wug L 1)

@ Gradient wrt weights arriving to a LHL cell

C
o (L‘ivz =6t x 2
awjk
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Computation graph

Gradient computation in MLPs

Forward propagation of activities, for an input example x

@ Fill the input layer with x: A0 = x
@ |terate from the first hidden layer to the last one

o h=Wwxnp-1
o h' = a(h)

Backward computation of the error

@ Compute the output error 6t
@ lterate from the last hidden layer to the first one

o Compute 6t from §L—1

Computing gradient

@ For each weight Wj’k of every layer compute the gradient using 5} and oi_l

T AT (G- U/ A ) ey 2, 20K
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Regularization

Guiding the learning through reguarization

Regularization

@ Constraints on weights (L1 or L2)
@ Constraints on activities (of neurons in a hidden layer) — induces sparsity

o Llorl2

e Mean activity constraint (Sparse autoencoders, [Ng et al.])
e Sparsity constraint (in a layer and/or in a batch)

o Winner take all like strategies

@ Disturb learning for avoiding learning by heart the training set

o Noisy inputs (e.g. Denoising Autoencoder, link to L2 regularization)
o Noisy labels

T AT (G- U/ A ) el 2, 20K
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Regularization

Constraints on weights

L2 norm on weights (known as Weight Decay)

@ Penalizing the weights through adding a weighted L2 norm A||w||? to the loss

@ It is equivalent to defining a family of models such that ||w||> < Cy with Cy increasing
when A decreases

@ L2 norm penalization <> diminishing the space of functions implemented with the network
architecture

L2 and L1 norms

@ L2 norm move useless weights to 0 (without reaching 0)

@ L1 norm set useless weights to 0

w ws,

iy Ll
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Regularization

Early stopping and callbacks

Principle

Error | |

\
\

Validation

. Training

Stop training Number of epochs

@ Early stopping monitors performance (loss) on validation set

@ Stopes before it reaches a plateau and starts increasing

@ Related to the idea that the implemented model’s capacity increases with the number of

iteration

e Think of small weights initialization and sigmoid activation
e = at the beginning the model is a linear one !

T AT (G- U/ A )
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Regularization

Lots of tricks to favor convergence

obert Miiller (Eds.)
And more...
Neural Networks:
@ Weight Initialization Tricks of the Trade
@ Gradient step setting
o ...
@ = Despite appearances not all is automatic
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Programming

Outline

e Programming
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Programming

Why now ?

Huge training resources for huge models

@ Huge volumes of training data

@ Huge computational ressources (clusters of GPUs)

Advances in understanding optimizing NNs

@ Regularization (Dropout...)

@ Making gradient flow (ResNets, LSTM, ...)

v
Faster diffusion than ever
@ Softwares
@ Results
o Publications (arxiv publication model) + codes
o Architectures, weights (3 python lines for loading a state of the art computer vision
model!)
v
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Programming

Plateformes

Large and active community (forums, models are available when published...) for each of these J

Amazon

F Tensorl

Microsoft

‘ Facebook ‘

T. Artiéres (ECM - LIS / AMU ) Deep Learning November 25, 2018 54 / 61




Programming

GPU and CPU

I 1l 5262013 N Pascal Tian X (0 GubNN) Pascal Titan X (cuDNN 5.1)
24000

o BBX 67x 71x 64x >6x
-\ /o 1
N R R |

vee16 vee-19 ResNet 18 Res Net:50 ResNei-200

N=16 Forward + Backward tme (ms)

s from hpshud comicomnsonie-benenmarks

Model
is here

Data is here

If you aren't careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads.
to prefetch data

[N
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Computation graph

Computation graph for a calculus

One may build a computation graph
form the calculus definition

z=Ax+b

Computation graph for a calculus and
a criterion

One may add a criterion (accounting
for supervised learning)

T. Artidres (ECM - LIS / AMU )

Programming

[f=Wa] [Li =%, max(0,5; — sy +1)]

~ / T\ s(scores) /7
* ) () ——

- (=)
*

From Fei Fei Li slides

D
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Programming

Automatic differentitation

Differentiation graph
From a computation graph one may automatically compute the backward differentiation graph !

@ Different rules to apply according to the operation yielding z from x and y

/
“local gradient”
x

OL|
9z
gradients

From Fei Fei Li slides
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Programming

Computation graph and TensorFlow

An example from [Tensorflow doc]

of |upssew, | |upases,
=

Gradients
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Computation graph and Pytorch

Another example

Computational Graphs

Programming

PyTorch

import torch
from torch.autograd import Variable

N, D=3, 4

x = Variable(torch.randn(N, D),
requires_grad=True)
y = Variable(torch.randn(N, D),
requires_grad=True)
z = Variable(torch.randn (N, D),
requires_grad=True)

x *y
atz
¢ = torch.sum(b)

c.backward()

print(x.grad.data)
print(y.grad.data)
print(z.grad.data)
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Programming

Computation graph and Pytorch

Another example

[3] import torch
from torch.autograd import Variable

© s5.0=31 :
x=Variable(torch.randn(N,D}.cuda(},requires_grad=True)
y=Variable(torch.randn(N,D}.cuda(},reguires_grad=True
z=Variable(torch.randn(N,D}.cuda(},requires_grad=True)

[B] a==x*y
b=a+z
c = torch.sum(kb)
c.backward()

print (x.grad.data)
print (y.grad.data)
print (=z.grad.data)

[» tensor([[-2.4946, -1.774%, -2.8303, -1.0450],
[ 1.8087, -0.8123, 1.4324, -0.7437],
[ 0.4153, -0.7573, -0.3054, 1.8146)], device='cuda:0')
tensor([[-0.2363, -1.8247, -3.2515, 4.3729],
[-0.6283, 1.9725, -3.6697, -1.4272],
[ 0.8991, -0.2417, -0.2456, -2.46B4]], device='cuda:0')
tensor([[2., 2., 2., Z.],

r? 7
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Example (pytorch)

Programming

Mnist Classifier (model definition)

class Net(nn.Module):
def __init_ (self):

de

&

super(Net, self).__init_ ()

self.convl = nn.Conv2d(1, 1@, kernel_size=5)
self.conv2 = nn.Conv2d(1@, 2@, kernel_size=5)
self.convZ_drop = nn.Dropout2d()

self.fcl = nn.Linear(32@, 50)

self.fc2 = nn.Linear(50, 18)

forward(self, x):

= F.relu(F.max_pool2d(self.convi(x), 2))
F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
= x.view(-1, 320)

F.relu(self.fcl(x))

F.dropout(x, training=self.training)

self.fc2(x)

return F.log_softmax(x, dim=1)

X X X X X X
[
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Programming

Example (pytorch)

Mnist Classifier (model training)

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == @:
print('Train Epoch: {} [{}/{} ({:.8f}%)]\tloss: {:.6f}".format(
epoch, batch_idx * len(data), len(train_loader.dataset),
188. * batch_idx / len(train_loader), loss.item()))

T AT (G- U/ A ) ey 2, 20K

61/ 61



	Introduction
	MLPs
	Basics
	Deeper in MLPs
	GD variants
	Computation graph
	Regularization

	Programming

