Réseaux de Neurones Profonds, Apprentissage de Représentations

Thierry Artières

ECM, Equipe QARMA @LIS, AMU, CNRS

October 9, 2018
RNNs

Recursive models

Embeddings
 - Embedding layer
 - Mikolov at google
 - Embeddings and transfer
Outline

1. RNNs
2. Recursive models
3. Embeddings
Recurrent NNs

Main features

- May handle data of different dimension w.r.t. traditional FeedForward Models
- Useful for dealing with
 - Sequences: Text (sentiment, translation, parsing...), Speech, Videos, Time series...
 - Trees: Syntactic parse tree etc
- State space models’ like architecture
 - Links to state space models
 $$s(t) = f(s(t-1), x(t)) \text{ and } y(t) = g(s(t))$$
 - The state at time \(t \) resumes the whole history of inputs

![Graph showing time series data from Jan 2014 to Jul 2014]
Recurrent NNs (RNNs)

RNNs in general

- May handle data of different dimension w.r.t. traditional FeedForward Models (Sequences, trees, ...)
- A recurrent neural network is a NN with cycles in its connections
- Much more powerful than acyclic models (FeedForward NNs such as MLPs)
- Not all architectures work well. Few popular ones.
Feedforward and Recurrent NNs

RNNs in general

- A recurrent neural network is a NN with cycles in its connections
- RNNs are dynamical systems
- Much more powerful than acyclic models (FeedForward NNs such as MLPs)
- Today RNNs are specific recurrent architectures. Not all architectures work well..
Popular RNNs

Two representations of the same model
Inference

Algorithm

- Start with null state $h(0) = 0$
- Iterate

$$h(t) = \tanh((Vh(t-1) + Ux(t))$$

$$y(t) = \tanh(Wh(t))$$

⇒ Inference is done as a forward propagation in a FeedForward NN
- This model computes an output sequence from an input sequence
Inference and learning through unfolding the RNN

Inference: Forward propagation in the FeedForward unfolded RNN

- Start with null state $h(0) = 0$
- Iterate

$$h(t) = g(V \times h(t-1) + U \times x(t))$$

$$y(t) = g(W \times h(t))$$
Inference and learning through unfolding the RNN

Learning: Back-propagation in the FeedForward unfolded RNN

- Unfold the model
- Backpropagate the gradient in the whole network
- Sum the gradient corresponding to all shared parameters and unshared parameters (possibly the last layer)
- Apply Gradient Optimization Update rule on all parameters
Various settings

- One to One: MLP, CNN ...
- One to Many: Generation of a sequential process (speech, handwriting ...)
- Many to one: Sequence classification (e.g. activity recognition)
- Asynchronous Many to many: Machine Translation
- Synchronous Many to Many: POS tagging, Speech recognition...
Example: Using RNNs for Language models (LM)

- A LM should allow computing the likelihood of sentences $p(w_1, \ldots, w_T)$ using a limited number of parameters.
- Traditional n-gram language models use n-grams (e.g. bigrams) assuming fixed and limited past dependencies...

$$p(w_t | w_{t-1}, w_{t-2}, \ldots, w_{t-n+1})$$

- ... to compute sentence likelihood. E.g. using bigrams:

$$p(w_1, \ldots, w_T) = p(w_1) \times \prod_{t=2}^{T} p(w_t | w_{t-1})$$
RNN based Language Models use an, a priori, unlimited past by computing

\[p(w_t | c(w_{t-1}, w_{t-2}, ... w_1)) \]

where \(c(w_{t-1}, w_{t-2}, ... w_1) \) stands for a fixed dimension representation of the context computed from the full past.

This corresponds to a recursive computation of a context information, \(s_t \), and of the computation of an output \(y_t (w_t) \) based on the full history.
Sequence labeling vs Sequence Classification

\[y(1) \quad y(t) \quad \ldots \quad y(T) \]

\[0 \quad \text{V} \quad h(1) \quad \text{V} \quad h(2) \quad \ldots \quad h(T) \]

\[x(1) \quad x(2) \quad \ldots \quad x(T) \]

\[\text{U} \quad \text{U} \quad \text{U} \quad \text{U} \]

\[y \]

\[\text{V} \quad \text{V} \quad \text{V} \quad \text{V} \]

\[0 \quad \text{V} \quad h(1) \quad \text{V} \quad h(2) \quad \ldots \quad h(T) \]

\[\text{U} \quad \text{U} \quad \text{U} \quad \text{U} \]
Unfolding the RNN: classification tasks

Inference

- **Start**: $h(0) = 0$
- **For** $t = 1$ to T **DO**: $h(t) = g(V \times h(t - 1) + U \times x(t))$
- **Predict**: $y = g(W \times h(T))$
 - The final state $h(T)$ resumes the whole input
Example of a translation model as an asynchronous Many to Many model

The nature of language and of complex grammatical forms require to first "understand" the sentence, encoding it in a small dimensional hidden space, then to reconstruct the sentence in the target language.
Sequence autoencoders

Main idea

- Same architecture as the traduction model
- But where the first RNN that processes inputs is viewed as an encoder
- And the second RNN that successively produce all outputs is viewed as the decoder
- Same learning strategy as autoencoders: The desired output sequence is the input sequence
- This forces the model to learn to summarize the whole sequence in the last hidden state of the encoder
Depth in RNNs

Two dimensions

- Stacked hidden layers as in traditional deep NNs: usual in many architectures
- Long sequences \rightarrow deep in time
- Both structural depths yield similar optimization problems (gradient flow)

New units for RNNs

- Motivation:
 - Optimization problems in Recurrent Neural Networks (gradient explosion / vanishing)
 - Difficulty to capture long term dependencies
- New types of hidden cells
 - Long Short Term Memory (LSTM) [Hochreiter 98]
 - Gated Recurrent Unit (GRU) [Cho and al., 2014]
LSTM units

Motivation

- Units that include few gates (forget, input, output) which allow to:
 - Stop capitalizing in the state the information about the past
 - Decide if it is worth using the information in the new input
- Depending on the input and on previous state
 - Reset the state, Update the state, Copy previous state
 - Ignore new input or fully use it to compute a new state
LSTM units

- LSTM layers may be stacked as well as standard RNN layers
 \(h_t = LSTM(x_t, h_{t-1}, c_{t-1}) \) is input to the upper layer
LSTM units

- Forget gate f_t
- Input gate i_t
- Alternative cell state \tilde{C}_t

\[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]
\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]
\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]
LSTM units

\[C_t = f_t \ast C_{t-1} + i_t \ast \tilde{C}_t \]

\[o_t = \sigma (W_o \cdot [h_{t-1}, x_t] + b_o) \]

\[h_t = o_t \ast \text{tanh} (C_t) \]

- Cell state \(c_t \)
- Output \(o_t \)
- Hidden state to propagate \(h_t \)
LSTM units

Notations

- Cell state c_t
- Forget gate f_t
- Input gate i_t
- Output o_t
- Hidden state to propagate to upper layers h_t

How does it work? in words...

- Recall formulas
 \[
 c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \\
 h_t = o_t \odot \tanh(c_t)
 \]

- Interpretation
 - If $f_t = 1$ and $i_t = 0$ use previous cell state
 - If $f_t = 0$ and $i_t = 1$ ignore previous cell state
 - If $o_t = 1$ output is set to cell state
 - If $o_t = 0$ output is set to 0
Outline

1. RNNs
2. Recursive models
3. Embeddings
Dealing with structured data

Principle

- Allows dealing with other structured data such as trees
- The model may still be unfolded and gradient may easily be computed
Dealing with structured data

Principle
- Allows dealing with other structured data such as trees
- The model may still be unfolded and gradient may easily be computed
Outline

1. RNNs
2. Recursive models
3. Embeddings
 - Embedding layer
 - Mikolov at google
 - Embeddings and transfer
Embedding layer

Motivation: Transformation layer for discrete/categorical inputs

- Example: a Word in a Dictionary (Natural Language Processing tasks)
- Embedding: distributed representation. Not a new idea (LSA, LDA)

Main interests

- When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate estimation from tractable corpus
- When one wants to infer some continuous representations of the input values to get insight on similarities between them
Embedding layer: Implementation

Look up table

- One entry for each of the possible values \(\{v_1, ..., v_K\}\) (e.g. words in a dictionary)
- Each value is represented as a \(d\)-dimensional vector (\(d\) is the size of the embedding)
- Represented as a layer with a weight matrix \((K \times d)\)

```
    Embedding (d dim)
      \(v_1\) = [1 0 0 ... 0 0]
      \(v_2\) = [0 1 0 ... 0 0]
            ...
      \(v_K\) = [0 0 0 ... 0 1]
```

One hot code (K dim)
Embedding layer: Implementation

Look up table

- One entry for each of the possible values $\{v_1, \ldots, v_K\}$ (e.g. words in a dictionary)
- Each value is represented as a d-dimensional vector (d is the size of the embedding)
- Represented as a layer with a weight matrix ($K \times d$)

$$\begin{align*}
 V_i &= [0 \quad \ldots \quad 1 \quad \ldots \quad 0 \quad 0]
\end{align*}$$
Motivation pour les représentations continues (dans les modèles de langage)

- Modèle de langages type Ngrams : Pas de notion de similarité entre mots / nécessité de corpus de taille gigantesque pour une bonne estimation (qui n’existent pas)
- Représentation distribuée de mots → dépasse les limitations des Ngrams car partage de l’information entre mots :
 - Réponse similaire du système pour une entrée similaire
 - Taille de corpus nécessaire gigantesque mais suffisante pour apprendre ce que l’on veut
Modèle de langage type RN récurrent [Mikolov 2013]

\[W(t) : \text{Codage 1 parmi N} \]
\[y(t) : \text{Distrib de proba sur Vocab} \]
\[s(t) = f(Uw(t) + Ws(t - 1)) \]
\[y(t) = g(Vs(t - 1)) \]
\[f : \text{sigmoide} ; \quad g : \text{softmax} \]

⇒ Les représentations des mots sont les colonnes de \(U \)
⇒ Capacité intéressante des représentations de mots
Une relation particulière entre deux mots (syntaxique pluriel, féminin, ou sémantique) correspond à un déplacement constant dans l’espace des représentations
Architecture CBOB (Continuous Bag Of Words) [Mikolov et al., 2013]

- Ultimate goal: estimate kind of absolute low dimensional distributed representations of words (including semantic, syntactic information...)

- Interests
 - Much smaller objects
 - Shared parameters between similar entries

- Maximum likelihood learning on very large corpus of texts

\[
P(w_t | w_{t' \neq t}) \propto \exp\left(\sum_{d \neq 0} w_{t+d}^T w_t \right)
\]

- Learned embeddings may be used as feature vectors in many applications

- Recent alternatives, e.g. Gloves [Pennington and al., 2014]
Architecture CBOW (Continuous Bag Of Words) [Mikolov et al., 2013]

- The overall architecture may be put in the shape of a deep NN

```
INPUT   PROJECTION   OUTPUT
w(t-2)   <--- SUM      w(t)
|                      |
|                      |
w(t-1) <--- SUM      w(t)
|                      |
|                      |
w(t+1) <--- SUM      w(t)
|                      |
|                      |
w(t+2) <--- SUM      w(t)
```

```
Look up table

w_{t+d}
```

```
CBOw
```

```
INPUT   PROJECTION   OUTPUT
```

```
CBOw
```
Architecture SkipGram

Utilise une représentation pour chaque mot en entrée et idem en sortie

Modèle

\[P(w_{t+d} | w_t) \propto \exp((w_{t+d})^T w_t) \]
Word2vec

Caractéristiques de l’approche

- Un modèle très simple appris avec **beaucoup** de données
- ≠ modèles continus de langage : pas de couche cachée
- Appris par MV sur textes standards indépendamment d’une tâche
 ⇒ volonté de trouver une représentation “universelle”
A particular interesting effect: compositionality

Idea

- $\text{Emb}('\text{King}') + \text{Emb}('\text{Woman}') - \text{Emb}('\text{Man}') \approx \text{Emb}('\text{Queen}')$
- It is an observed phenomenon which is not actually favored by the model design the learning criterion
Extension of the embedding idea

More generally one call embedding a new representation space for any input data

New Representations of the input image in the hidden layers
Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks
- Two DNN: Green one learned on Task A - Blue on Task B
- Reuse DNN A for Task B (and vice versa)
- Study the effect of reusing a DNN up to layer number i ...

Main results
- Better to reuse DNN A and fine tune on Task B
- Lower layers learn transferable features while higher don’t
Embeddings and transfer

Extension of the embedding idea for vision tasks

Main interest

- Many very deep architectures have been proposed by major actors (Google, Microsoft, Facebook...)
 - Using huge training corpora
 - Using huge computing resources
 - Architecture and Weights are often made publicly available
- It is better to use such models for computing high features from which one may design a classifier
 - With fine tuning (of upper layers) if enough training data are available on the target task
 - As a preprocessing if not