Réseaux de Neurones Profonds, Apprentissage de Représentations

Thierry Artières

ECM, Equipe QARMA @LIS, AMU, CNRS

October 9, 2018

1 RNNs

2 Recursive models

3 Embeddings

- Embedding layer
- Mikolov at google
- Embeddings and transfer

Outline

Recursive models

Embeddings

Recurrent NNs

Main features

- May handle data of different dimension w.r.t. traditional FeedForward Models
- Useful for dealing with
 - Sequences : Text (sentiment, translation, parsing...), Speech, Videos, Time series..
 - Trees : Syntaxic parse tree etc
- State space models' like architecture
 - Links to state space models

$$s(t) = f(s(t-1), x(t))$$
 and $y(t) = g(s(t))$

• The state at time t resumes the whole history of inputs

Recurrent NNs (RNNs)

RNNs in general

- May handle data of different dimension w.r.t. traditional FeedForward Models (Sequences, trees, ...)
- A recurrent neural network is a NN with cycles in its connections
- Much more powerful than acyclic models (FeedForward NNs such as MLPs)
- Not all architectures work well. Few popular ones.

Feedforward and Recurrent NNs

RNNs in general

- A recurrent neural network is a NN with cycles in its connections
- RNNs are dynamical systems
- Much more powerful than acyclic models (FeedForward NNs such as MLPs)
- Today RNNs are specific recurrent architectures. Not all architectures work well..

Popular RNNs

Two representations of the same model

Inference

Algorithm

- Start with null state h(0) = 0
- Iterate

$$h(t) = tanh((Vh(t-1) + Ux(t)))$$

y(t) = tanh(Wh(t))

- \Rightarrow Inference is done as a forward propagation in a FeedForward NN
- This model computes an output sequence from an input sequence

Inference and learning through unfolding the RNN

Inference: Forward propagation in the FeedForward unfolded RNN

• Start with null state h(0) = 0

Iterate

$$h(t) = g(V \times h(t-1) + U \times x(t))$$
$$y(t) = g(W \times h(t))$$

Inference and learning through unfolding the RNN

Learning: Back-propagation in the FeedForward unfolded RNN

- Unfold the model
- Backpropagate the gradient in the whole network
- Sum the gradient corresponding to all shared parameters and unshared parameters (possibily the last layer)
- Apply Gradient Optimization Update rule on all parameters

Various settings

- One to One : MLP, CNN ...
- One to Many : Generation of a sequential process (speech, handwriting ...)
- Many to one : Sequence classification (e.g. activity recognition)
- Asynchronous Many to many : Machine Translation
- Synchronous Many to Many : POS tagging, Speech recognition...

Example: Using RNNs for Language models (LM)

- A LM should allow computing the likelihood of sentences $p(w_1, ..., w_T)$ using a limited number of parameters
- Traditional n-gram language models use n-grams (e.g. bigams) assuming fixed and limited past dependencies...

$$p(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1})$$

• ... to compute sentence likelihood. E.g. using bigrams:

$$p(w_1,...,w_T) = p(w_1) \times \prod_{t=2}^T p(w_t|w_{t-1})$$

Example: Using RNNs for Language models (LM)

• RNN based Language Models use an, a priori, unlimited past by computing

 $p(w_t | c(w_{t-1}, w_{t-2}, ... w_1))$

where $c(w_{t-1}, w_{t-2}, ..., w_1)$ stands for a fixed dimension representation of the context computed from the full past

 This corresponds to a recursive computation of a context information, s_t, and of the computation of an output y_t (w_t) based on the full history.

Sequence labeling vs Sequence Classification

October 9, 2018 13 / 37

Unfolding the RNN: classification tasks

Inference

- Start : h(0) = 0
- For t = 1 to T DO : $h(t) = g(V \times h(t-1) + U \times x(t))$

• Predict :
$$y = g(W \times h(T))$$

 \Rightarrow The final state h(T) resumes the whole input

Machine Translation

- Example of a translation model as a asynchronous Many to Many model
- The nature of language and of complex grammatical forms require to first "understand" the sentence, encoding it in a small dimensional hidden space, then to reconstruct the sentence in the target language.

Sequence autoencoders

Main idea

- Same architecture as the traduction model
- But where the first RNN that processes inputs is viewed as an encoder
- And the second RNN that successively produce all outputs is viewed as the decoder
- Same learning strategy as autoencoders: The desired output sequence is the input sequence
- This forces the model to learn to summarize the whole sequence in the last hidden state of the encoder

Depth in RNNs

Two dimensions

- Stacked hidden layers as in traditional deep NNs : usual in many arheitectures
- $\bullet~\mbox{Long sequences} \to \mbox{deep in time}$
- Both structural depths yield similar optimization problems (gradient flow)

New units for RNNs

- Motivation:
 - Optimization problems in Recurrent Neural Networks (gradient explosion / vanishing)
 - Difficulty to capture long term dependencies
- New types of hidden cells
 - Long Short Term Memory (LSTM) [Hochreichetr 98]
 - Gated Recurrent Unit (GRU) [Cho and al., 2014]

Motivation

- Units that include few gates (forget, input, output) which allow to :
 - Stop capitilizing in the state the information about the past
 - Decide if it is worth using the information in the new input
- Depending on the input and on previous state
 - Reset the state, Update the state, Copy previous state
 - Ignore new input or fully use it to compute a new state

 LSTM layers may be stacked as well as standard RNN layers (h_t = LSTM(x_t, h_{t-1}, c_{t-1}) is input to the upper layer)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Forget gate f_t
- Input gate *i*_t
- Alternative cell state č_t
 T. Artières (ECM, Equipe QARMA @LIS, AMU, CNR

October 9, 2018 20 / 37

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

- Cell state c_t
- Output ot
- Hidden state to propagate *h_t* T. Artières (ECM, Equipe QARMA @LIS, AMU, CNR

Notations

- Cell state c_t
- Forget gate f_t
- Input gate *i*_t

- Output o_t
- Hidden state to propagate to upper layers h_t

How does it work ? in words...

Recall formulas

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$
$$h_t = o_t \odot tanh(c_t)$$

Interpretation

- If $f_t == 1$ and $i_t == 0$ use previous cell state
- If $f_t == 0$ and $i_t == 1$ ignore previous cell sate
- If $o_t == 1$ output ois set to cell sate
- If $o_t == 0$ output is set to 0

Outline

Embeddings

Dealing with structured data

Principle

- Allows dealing with other structured data such as trees
- The model may still be unfolded and gradient may easily be computed

Recursive Autoencoder	Unfolding Recursive Autoencoder
$\begin{array}{c} \hline \\ \hline $	$\begin{array}{c} \hline \texttt{COSS} X_1' & \texttt{COSS} X_2' & \texttt{COSS} X_3' \\ W_d & W_d \\ \hline \texttt{COSS} y_1' \\ \hline \texttt{COSS} y_2 \\ W_e & \texttt{COSS} y_1 \\ \hline \texttt{COSS} Y_1 \\ \texttt{COSS} X_2 & \texttt{COSS} X_3 \end{array}$

Dealing with structured data

Principle

- Allows dealing with other structured data such as trees
- The model may still be unfolded and gradient may easily be computed

00 0000000 000

Outline

Recursive model

3 Embeddings

- Embedding layer
- Mikolov at google
- Embeddings and transfer

Embedding layer

Embedding layer

Motivation : Transformation layer for discrete/categorical inputs

- Example : a Word in a Dictionary (Natural Language Processing tasks)
- Embedding : distributed representation. Not a new idea (LSA, LDA)

Main interests

- When the cardinality of the input is (very) large (e.g. NLP tasks) to allow accurate estimation from tractable corpus
- When one wants to infer some continuous representations of the input values to get insight on similarities between them

Embedding layer

Embedding layer: Implementation

Look up table

- One entry for each of the possible values $\{v_1, ..., v_K\}$ (e.g.words in a dictionary)
- Each value is represented as a *d*-dimensional vector (*d* is the size of the embedding)
- Represented as a layer with a weight matrix (K imes d)

Embedding layer

Embedding layer: Implementation

Look up table

- One entry for each of the possible values $\{v_1, ..., v_K\}$ (e.g.words in a dictionary)
- Each value is represented as a *d*-dimensional vector (*d* is the size of the embedding)
- Represented as a layer with a weight matrix (K imes d)

Word2vec [Mikolov, 2013]

Motivation pour les représentations continues (dans les modèles de langage)

- Modèle de langages type Ngrams : Pas de notion de similarité entre mots / nécessité de corpus de taille gigantesque pour une bonne estimation (qui n'existent pas)
- $\bullet~$ Représentation distribuée de mots \to dépasse les limitations des Ngrams car partage de l'information entre mots :
 - Réponse similaire du système pour une entrée similaire
 - Taille de corpus nécessaire gigantesque mais suffisante pour apprendre ce que l'on veut

Modèle de langage type RN récurrent [Mikolov 2013]

- W(t) : Codage 1 parmi N
- y(t) : Distrib de proba sur Vocab

$$s(t) = f(Uw(t) + Ws(t-1))$$
$$y(t) = g(Vs(t-1))$$

- f : sigmoide ; g : softmax
- \Rightarrow Les représentations des mots sont les colonnes de U
- \Rightarrow Capacité intéressante des représentations de mots
- Une relation particulière entre deux mots (syntaxique pluriel, féminin, ou sémantique) correspond à un déplacement constant dans l'espace des représentations

Architecture CBOW (Continuous Bag Of Words) [Mikolov et al., 2013]

CBOW

- Ultimate goal : estimate kind of *absolute* low dimensional distributed representations of words (including semantic, syntactic information...)
- Interests
 - Much smaller objects
 - Shared parameters between similar entries
- Maximum likekihood learning on very large corpus of texts

$$P(w_t|w_{t'\neq t}) \propto exp((\sum_{d\neq 0} w_{t+d})^T w_t))$$

- Learned embeddings may be used as feature vectors in many applications
- Recent alternatives, e.g. Gloves [Pennington and al., 2014]

Architecture CBOW (Continuous Bag Of Words) [Mikolov et al., 2013]

• The overall architecture may be put in the shape of a deep NN

Architecture SkipGram ?

Skip-gram

- Utilise une representation pour chaque mot en entrée et idem en sortie
- Modèle

$$P(w_{t+d}|w_t) \propto exp((w_{t+d})^T w_t))$$

Word2vec

Caractéristiques de l'approche

- Un modèle très simple appris avec beaucoup de données
- $\bullet \neq$ modèles continus de langage : pas de couche cachée
- Appris par MV sur textes standards indépendamment d'une tâche ⇒ volonté de trouver une représentation "universelle"

A particular interesting effect: compositionality

Idea

- $Emb('King') + Emb('Woman') Emb('Man') \approx Emb('Queen')$
- It is an observed phenomenon which is not actually favored by the model design the learning criterion

000

Embeddings and transfer

Extension of the embedding idea

More generally one call embedding a new representation space for any input data

Embeddings and transfer

Genericity of representations [Yozinski and al., 2014]

Experiments on two similar tasks

- Two DNN : Green one learned on Task A -Blue on Task B
- Reuse DNNA for Task B (and vice versa)
- Study the effect of reusing a DNN up to layer number *i* ...

Main results

- Better to reuse DNNA and fine tune on Task B
- Lower layers learn transferable features while higher don't

000

Extension of the embedding idea for vision tasks

Main interest

- Many very deep architectures have been proposed by major actors (Google, Microsoft, Facebook...)
 - Using huge training corpora
 - Using huge computing resources
 - Architecture and Weights are often made publicly available
- It is better to use such models for computing high features from which one may design a classifier
 - With fine tuning (of upper layers) if enough training data are available on the target task
 - As a preprocessing if not