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Introduction The problem

Classification in a Large Number of
Categories (CLNC)

• Existing huge hierarchies
• Yahoo! Directory (130k categories)
• Wikipedia (325k categories)
• Mesh (Medical), International patents (IPC), Open Directory Project

(ODP), Reuters Hierarchy for news-stories, ...

• How many is a large Number of Classes ?

• Qualitative change of the methods
• May vary according to the data (e.g. Images vs. Text)
• 38% accuracy on 325k classes (text docs) (Cf. LSHTC3) vs. 17% on

10k classes (Imagnet)

• Applications / context

• Search engines
• Image Annotation
• Text classification
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Introduction The problem

Additional ressource about labels (Prior
Label Relation)

Prior Label Relation structure

• Tree hierarchy of generalization / specification (usually disjoint)

• Some times it is a DAG, less often it is a graph

Trees

• More intuitive (generalization/specification relation)

• Low complexity algorithms (training and inference)

In practice

• Most often lots of cleaning before use

• Selection of a part of a hierarchy, removal of unpredictable nodes
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Introduction Practical settings

Standard settings of CLNC

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

• Large number of samples

• Large number of features

• Unbalanced classification problems and almost not learnable classifiers

• Multilabel data

• Optimize wrt an appropriate evaluation criterion

• Relevance of an existing hierarchy / ontology (if any)

• Time varying hierarchy
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Introduction Datasets

LNC datasets

Name #cat #features #docs cat/doc Tree hier max path
news20 20 19,996 139,217 1 X 2
rcv1 101 47,236 806,791 3,1 X 3
Yahoo! Directory (2004) 132,199 4,194,304 792,601 2.2 X 16
Ohshumed 14,321 72,076 233,445 12 X 10
DMOZ (LSHTC1) 27,875 497,992 594,158 1.02 X 5
Wiki Small (LSHTC2) 36,504 346,299 538,148 1.86 - 10
Wiki Large (LSHTC3) 325,056 1,617,899 2,817,603 3.26 - 14
BioAsq 26,563 - 10,876,004 12.55 X 5.24
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Introduction Datasets

LNC datasets main features

Size of the categories

• Power law distribution
• 76% of the Yahoo! 246k categories

have less than 5 docs

Rare categories

• Proportion of rare categories increases at deeper hierarchy levels

• It is a often good idea to remove rare classes ((DS10))
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Introduction Datasets

LNC datasets main features

Size of the categories

• Power law distribution
• 76% of the Yahoo! 246k categories

have less than 5 docs

[Y. Yang, Tutorial ECIR 2010]

Rare categories

• Proportion of rare categories increases at deeper hierarchy levels
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Introduction Datasets

LNC datasets main features

Distribution vs. depth

• Number of Category vs
hierarchy depth (level)

• Number of documents vs
hierarchy depth (level)

Multilabel

• Usually multilabel but not so
much

• 2.23 label/doc in Yahoo!
Dataset

• 3.26 label/doc in Wikipedia
Large

• 1.11 label/doc for subset of 1k
largest Wikipedia categories
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Introduction Datasets

Organization hierarchies vs. tag
hierarchies
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Our challenges on CLNC

LSHTC Challenges
Large Scale Hierarchical Text Classification
(http://lshtc.iit.demokritos.gr/)

• Tree hierarchy/ Monolabel / Number of categories up to 12,000

LSHTC1 - 2010 - Whsp ECIR

• Tree or DAG hierarchy / Multi-label / Number of categories up to
325,000

LSHTC2 - 2011 - Wshp ECML

• Tree or DAG hierarchy / Multi-label / Number of categories up to
325,000

• Additional tracks: Multi-task/Transfer Learning and Refinement
learning (semi-supervised and unsupervised)

LSHTC3 - 2012 - Wshp ECML
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Our challenges on CLNC

BioASQ Challenge 2013, 2014

• Challenge on biomedical semantic indexing and Question-Answering
• Motivating example: Q1: What is the role of thyroid hormones
administration in the treatment of heart failure?

Objectives

1 Large-scale classification of biomedical documents onto ontology
concepts, in order to automate semantic indexing

• BioASQ distributes new unclassified PubMeed abstracts

• BioMedAnswers attaches MeSH terms (limited resp. time)

• Evaluation when abstracts get classified by PubMed curators

Task 1a

2 Delivery of all retrieved information in a concise and
user-understandable form
DSBDE Wshp - 17 July 2013 - Large Number of Classes 10 / 1



Our challenges on CLNC Evaluation Measures

Evaluation measures

Flat vs. hierarchical

• T = target, P1,P2,P3 are prediction

• Flat measure counts uniformly 1 error

• Hierarchical measure: Tree induced loss

P3

P1

P2T

Multilabel measures (TKV10)

• Accuracy, F1, ...

Hierarchical versions of P and R , F1 (CLCF07)

T2

T1 P1

HP = 1/3, HR=1/5
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Basic methods

Main categories of methods

Many dichotomies

Flat vs. hierarchical / Exploiting hierarchy vs. ignoring / ...
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Basic methods Flat

Flat methods

Standard methods

KNN, One-vs-rest classifiers, (ECOC) based
classifiers

Root

Books Music

Comics Poetry Rock Jazz

Funky Fusion

Advantages

• Conceptually simple, naturally multilabel

• Optimal wrt. accuracy / Hamming loss in ML case

• Do not require a (or rely on a possibly irrelevant) label information

Disadvantages

• Unbalanced classification problems

• Slow (training and inference)
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Basic methods Hierarchical

Hierarchical methods (Pachinko)
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Basic methods Hierarchical

Hierarchical methods (Pachinko)

Inference a la Pachinko Root

Books Music

Comics Poetry Rock Jazz

Funky Fusion

Big bang and Local Classifiers methods

• Big bang approaches: One global classifier
• Margin based classifier for the tree induced loss (CH04) and the 0/1

tree loss (BWG10)

• Local classifiers methods: any kind of classifier may be used (SVM,
...)

• One classifier per node / One classifier per father
• With various ways to define positive and negative samples from the

sub-hierarchy
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Basic methods Hierarchical

Hierarchical methods

Advantages

• More balanced classification problems

• Much lower Inference complexity

Disadvantages

• Error propagation (Local classifier methods)

• Non linear decision surfaces

• Data sparsity (leaf nodes)

• Hierarchy maybe irrelevant or wrong and needs to be simplified in
practical cases (Cf. LSHTC3)
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Basic methods Improving methods

Main lessons from experiments

• Flat methods
• Perform well up to few thousands of classes
• Does not scale beyond tens of thousands

• Pure Hierarchical method
• Much lower Inference AND training complexity

2,1h Hierarchical vs 1,8 months (flat) for training - 0.0016s vs 0,69s for testing (LYW+05) (Yahoo! Dataset)

• Ususally found more accurate than flat methods (SF11)
• Data sparisty problem

Performance strongly corelated with the number of positive examples per category (LYW+05)

• Partially irrelevant existing hierarchies

• In practice
• Mix of ideas (e.g. Hierarchical classifier + label embedding in (SBG10))
• Best performers in LSHTC series from different families
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Designing class codes for fast inference flat classifiers

Ongoing work at LIP6

Improving flat monolabel classifiers

• Build on ECOC ideas but with low dimensional codes (p < L)

• Exploit Prior Label Relations (e.g. hierarchy) to design codes

Improving flat multilabel classifiers

• Design scalable multilabel classifiers that scale with the number of
labels

• Use a low dimensional binary reduction again

Joint learning of the hierarchy and the hierarchical classifier

• No useful hierarchy for non text data (e.g. images)

• Many recent works in this direction / Preliminary works on that part
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Designing class codes for fast inference flat classifiers Monolabel classification

ECOC

Multiclass classification with ECOCs

• Binary reduction of a L multiclass classification
• Replace with p > L binary classification problems

• Principle
• Random generation of binary codes for every classes
• Learn of a dicotomizer per bit
• Inference through minimum Hamming distance between predicted

binary vector and class codes
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Designing class codes for fast inference flat classifiers Monolabel classification

Learning compact class codes using a prior
on label relations (CAG12)

Using prior label relation to design codes

Learn binary codes that preserves the similarity between labels (class
representations)

• Learn real valued codes

• Binarize the codes by thresholding

• Then training and inference as in ECOC classifiers
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Designing class codes for fast inference flat classifiers Monolabel classification

Learning continuous class codes

Start with a similarity matrix computed from the hierarchy
s1,1 s1,2 ... s1,L

... ... ... ...
si ,1 si ,2 ... si ,L
... ... ... ...
sL,1 sL,2 ... sL,L

 si = (si ,1, si ,2, ..., si ,L)

si ,j = e−dTree(i ,j)

Algorithm

Repeat :

• pick randomly two vectors
(si , sj)

• make a gradient to optimize the
corresponding loss

Until convergence
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Designing class codes for fast inference flat classifiers Monolabel classification

Designing binary class codes
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Designing class codes for fast inference flat classifiers Monolabel classification

Results on LSHTC1 datasets

Zero shot learning is also possible

# labels removed 10 20 30 40 50

Accuracy (%) 25.64 24.45 16.76 14.31 12.76

std 12.20 6.34 4.24 3.18 2.48
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Designing class codes for fast inference flat classifiers Multilabel classification

Multilabel classification with Bloom filters

• Aim: Extend the previous idea to multilabel classification

• Main tool: Bloom Filters (BF)
• Space efficient, random data structure for encoding small subsets of a

large set of objects
• The code of an element is defined by K hash functions
• The code of a subset is the union of the codes of its elements
• A code may be queried with a (small) false positive rate
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Designing class codes for fast inference flat classifiers Multilabel classification

Multilabel classification with RBF

Multilabel Classification with BF

• Training
• Define a BF (of length p) for encoding labels
• Learn p binary classifiers

• Test
• Compute the vectors of p predictions
• Query every label

• May be fast provided p is small (p/L factor wrt. BR).
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Designing class codes for fast inference flat classifiers Multilabel classification

False positive rate

Unrecoverable Hamming Loss

• Due to the false positive rate fp(p,P,K ) which depends on:
• p the size of the BF
• P the marginal distribution on the label sets
• K ..

• Should be made negligible wrt overall prediction error

• It is possible to derive good estimation of reasonnable B from the
dataset distribution on label sets
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Designing class codes for fast inference flat classifiers Multilabel classification

Performance on rcv1 (100 labels)
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Left: Hamming loss as a function of the BF’s size p for the Industries
dataset. The curves corrspond to various values of the number of hash
function K .
Right: Hamming loss as a function of the number of hash function K for
the Industries dataset. The curves corrspond to various values of BF’s size
p.
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Designing class codes for fast inference flat classifiers Multilabel classification

Performances with comparative methods

Comparison of Binary Relevance (BR), Pruned Binary Relevance (cf. Dekel), Bloom Filter with standard decoding (BF-SD) and
improved decoding (BF-CD)

Classifier
NC HL m-F1 M-F1 NC HL m-F1 M-F1

RCV-Industries Wikipedia1K
BR 303 0.200 72.43 47.82 1000 0.0711 55.96 34.7

BR-Dekel
75 0.360 30.00 15.72 100 0.1070 8.11 4.99

150 0.308 46.98 30.14 250 0.0984 22.18 12.16
200 0.233 65.78 40.09 500 0.0868 38.33 24.52

BF-SD
75 0.246 63.43 34.76 100 0.0801 46.03 22.35

100 0.223 67.45 40.29 250 0.0742 53.02 31.41
200 0.217 68.32 40.95 500 0.0734 53.90 32.57

BF-CD
75 0.251 63.74 37.37 100 0.0778 49.97 24.80

100 0.218 68.42 42.20 250 0.0726 54.79 32.35
200 0.212 70.07 43.37 500 0.0713 55.79 34.23

Current work: Design class codes using some information about labels.
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Conclusion

Conclusion

• No clear winner among flat, hierarchical, IR, label embedding...

• Usually best peforming methods exploit many ideas

• Various settings (organization vs. tags) require various solution

• Medium scale problems (thousands to tens of thousands)
• Flat methods are probably difficult to beat... but no really scalable

such method for multilabelclassification

• Large scale problems (more than tens of thousands)
• Hierarchical are mandatory
• For texts: Hierarchies may be useful provided some cleaning /

simplification
• For images: Still much work to be done for automatc learning of

hierarchies from data
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