Classification in a large number of categories

T. Artières°, Joint work with the MLIA team° at LIP6, the AMA team at LIG[†] and Demokritos[‡]

[°] Lab. d'informatique de Paris 6, France
 [†] Lab. d'Informatique de Grenoble & Grenoble University, France
 [‡] N.C.S.R., Demokritos, Athens, Greece

September 4, 2017

DSBDE Wshp - 17 July 2013 - Large Number of Classes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Existing huge hierarchies
 - Yahoo! Directory (130k categories)
 - Wikipedia (325k categories)
 - Mesh (Medical), International patents (IPC), Open Directory Project (ODP), Reuters Hierarchy for news-stories, ...

3

(日) (同) (日) (日) (日)

- Existing huge hierarchies
 - Yahoo! Directory (130k categories)
 - Wikipedia (325k categories)
 - Mesh (Medical), International patents (IPC), Open Directory Project (ODP), Reuters Hierarchy for news-stories, ...

- Existing huge hierarchies
 - Yahoo! Directory (130k categories)
 - Wikipedia (325k categories)
 - Mesh (Medical), International patents (IPC), Open Directory Project (ODP), Reuters Hierarchy for news-stories, ...
- How many is a large Number of Classes ?
 - Qualitative change of the methods
 - May vary according to the data (e.g. Images vs. Text)
 - 38% accuracy on 325k classes (text docs) (Cf. LSHTC3) vs. 17% on 10k classes (Imagnet)

- Existing huge hierarchies
 - Yahoo! Directory (130k categories)
 - Wikipedia (325k categories)
 - Mesh (Medical), International patents (IPC), Open Directory Project (ODP), Reuters Hierarchy for news-stories, ...
- How many is a large Number of Classes ?
 - Qualitative change of the methods
 - May vary according to the data (e.g. Images vs. Text)
 - 38% accuracy on 325k classes (text docs) (Cf. LSHTC3) vs. 17% on 10k classes (Imagnet)
- Applications / context
 - Search engines
 - Image Annotation
 - Text classification

Additional ressource about labels (Prior Label Relation)

Prior Label Relation structure

- Tree hierarchy of generalization / specification (usually disjoint)
- Some times it is a DAG, less often it is a graph

Trees

- More intuitive (generalization/specification relation)
- Low complexity algorithms (training and inference)

In practice

- Most often lots of cleaning before use
- · Selection of a part of a hierarchy, removal of unpredictable nodes

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

- Large number of samples
- Large number of features

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

- Large number of samples
- Large number of features
- Unbalanced classification problems and almost not learnable classifiers

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

- Large number of samples
- Large number of features
- Unbalanced classification problems and almost not learnable classifiers
- Multilabel data

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

- Large number of samples
- Large number of features
- Unbalanced classification problems and almost not learnable classifiers
- Multilabel data
- Optimize wrt an appropriate evaluation criterion

Main challenge

Maintaining accuracy while being scalable (training and inference)

Side effects of CLNC problems

- Large number of samples
- Large number of features
- Unbalanced classification problems and almost not learnable classifiers
- Multilabel data
- Optimize wrt an appropriate evaluation criterion
- Relevance of an existing hierarchy / ontology (if any)
- Time varying hierarchy

・ロト ・四ト ・ヨト ・ヨト ・ヨ

LNC datasets

Name	#cat	#features	#docs	cat/doc	Tree hier	max path
news20	20	19,996	139,217	1	√	2
rcv1	101	47,236	806,791	3,1	✓	3
Yahoo! Directory (2004)	132,199	4,194,304	792,601	2.2	 ✓ 	16
Ohshumed	14,321	72,076	233,445	12	✓	10
DMOZ (LSHTC1)	27,875	497,992	594,158	1.02	√	5
Wiki Small (LSHTC2)	36,504	346,299	538,148	1.86	-	10
Wiki Large (LSHTC3)	325,056	1,617,899	2,817,603	3.26	-	14
BioAsq	26,563	-	10,876,004	12.55	\checkmark	5.24

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

Rare categories

- Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

イロト イポト イヨト イヨト

- Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

イロト イポト イヨト イヨト

- Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

(人間) トイヨト イヨト

- · Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

- 4 同 6 4 日 6 4 日 6

- Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

Size of the categories

- Power law distribution
 - 76% of the Yahoo! 246k categories have less than 5 docs

[Y. Yang, Tutorial ECIR 2010]

- 4 週 ト - 4 三 ト - 4 三 ト

- · Proportion of rare categories increases at deeper hierarchy levels
- It is a often good idea to remove rare classes ((DS10))

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

7 / 1

Distribution vs. depth

- Number of Category vs hierarchy depth (level)
- Number of documents vs hierarchy depth (level)

Multilabel

- Usually multilabel but not so much
 - 2.23 label/doc in Yahoo! Dataset
 - 3.26 label/doc in Wikipedia Large
 - 1.11 label/doc for subset of 1k largest Wikipedia categories
 DSBDE Wshp - 17 July 2013 - Large Number of Classes

Distribution vs. depth

- Number of Category vs hierarchy depth (level)
- Number of documents vs hierarchy depth (level)

Multilabel

- Usually multilabel but not so much
 - 2.23 label/doc in Yahoo! Dataset
 - 3.26 label/doc in Wikipedia Large
 - 1.11 label/doc for subset of 1k largest Wikipedia categories
 DSBDE Wshp - 17 July 2013 - Large Number of Classes

イロト 不得下 イヨト イヨト

Distribution vs. depth

- Number of Category vs hierarchy depth (level)
- Number of documents vs hierarchy depth (level)

Multilabel

- Usually multilabel but not so much
 - 2.23 label/doc in Yahoo! Dataset
 - 3.26 label/doc in Wikipedia Large
 - 1.11 label/doc for subset of 1k largest Wikipedia categories

DSBDE Wshp - 17 July 2013 - Large Number of Classes

[Y. Yang, Tutorial ECIR 2010]

Distribution vs. depth

- Number of Category vs hierarchy depth (level)
- Number of documents vs hierarchy depth (level)

Multilabel

- Usually multilabel but not so much
 - 2.23 label/doc in Yahoo! Dataset
 - 3.26 label/doc in Wikipedia Large
 - 1.11 label/doc for subset of 1k DSBD largest_1Wikipedia_categories

Organization hierarchies vs. tag hierarchies

LSHTC Challenges

Large Scale Hierarchical Text Classification

(http://lshtc.iit.demokritos.gr/)

LSHTC1 - 2010 - Whsp ECIR

• Tree hierarchy/ Monolabel / Number of categories up to 12,000

LSHTC2 - 2011 - Wshp ECML

- Tree or DAG hierarchy / Multi-label / Number of categories up to $325{,}000$

LSHTC3 - 2012 - Wshp ECML

- Tree or DAG hierarchy / Multi-label / Number of categories up to 325,000
- Additional tracks: Multi-task/Transfer Learning and Refinement learning (semi-supervised and unsupervised)

DSBDE Wshp - 17 July 2013 - Large Number of Classes

BioASQ Challenge 2013, 2014

- Challenge on biomedical semantic indexing and Question-Answering
- Motivating example: *Q1: What is the role of thyroid hormones* administration in the treatment of heart failure?

Objectives

 Large-scale classification of biomedical documents onto ontology concepts, in order to automate semantic indexing

Task 1a

- · BioASQ distributes new unclassified PubMeed abstracts
- BioMedAnswers attaches MeSH terms (limited resp. time)
- · Evaluation when abstracts get classified by PubMed curators
- Delivery of all retrieved information in a concise and

Evaluation measures

Flat vs. hierarchical

- $T = target, P_1, P_2, P_3$ are prediction
- Flat measure counts uniformly 1 error
- Hierarchical measure: Tree induced loss

Multilabel measures (TKV10)

• Accuracy, *F*₁, ...

Hierarchical versions of P and R, F_1 (CLCF07)

HP = 1/3, HR = 1/5

(日) (周) (三) (三)

Main categories of methods

Many dichotomies

Flat vs. hierarchical / Exploiting hierarchy vs. ignoring / \ldots

DSBDE Wshp - 17 July 2013 - Large Number of Classes

3

Flat methods

イロト 不得下 イヨト イヨト

Standard methods

KNN, One-vs-rest classifiers, (ECOC) based classifiers

Advantages

- Conceptually simple, naturally multilabel
- Optimal wrt. accuracy / Hamming loss in ML case
- Do not require a (or rely on a possibly irrelevant) label information

Disadvantages

- Unbalanced classification problems
- Slow (training and inference)

Flat methods

イロト 不得下 イヨト イヨト

Standard methods

KNN, One-vs-rest classifiers, (ECOC) based classifiers

Advantages

- Conceptually simple, naturally multilabel
- Optimal wrt. accuracy / Hamming loss in ML case
- Do not require a (or rely on a possibly irrelevant) label information

Disadvantages

- Unbalanced classification problems
- Slow (training and inference)

Inference a la Pachinko

- 1: n = root2: repeat
- 3: n = Choose(Childs(n), x)
- 4: until n is final for x

- Big bang approaches: One global classifier
 - Margin based classifier for the tree induced loss (CH04) and the 0/1 tree loss (BWG10)
- Local classifiers methods: any kind of classifier may be used (SVM, ...)
 - One classifier per node / One classifier per father
 - With various ways to define positive and negative samples from the sub-hierarchy

Inference a la Pachinko

- 1: n = root 2: repeat
- 3: n = Choose(Childs(n), x)
- 4: until n is final for x

- Big bang approaches: One global classifier
 - Margin based classifier for the tree induced loss (CH04) and the 0/1 tree loss (BWG10)
- Local classifiers methods: any kind of classifier may be used (SVM, ...)
 - One classifier per node / One classifier per father
 - With various ways to define positive and negative samples from the sub-hierarchy

Inference a la Pachinko

- 1: n = root2: repeat
- 3: n = Choose(Childs(n), x)
- 4: until n is final for x

- Big bang approaches: One global classifier
 - Margin based classifier for the tree induced loss (CH04) and the 0/1 tree loss (BWG10)
- Local classifiers methods: any kind of classifier may be used (SVM, ...)
 - One classifier per node / One classifier per father
 - With various ways to define positive and negative samples from the sub-hierarchy

Inference a la Pachinko

- 1: n = root 2: repeat
- $3: \quad n = Choose(Childs(n), x)$
- 4: until n is final for x

- Big bang approaches: One global classifier
 - Margin based classifier for the tree induced loss (CH04) and the 0/1 tree loss (BWG10)
- Local classifiers methods: any kind of classifier may be used (SVM, ...)
 - One classifier per node / One classifier per father
 - With various ways to define positive and negative samples from the sub-hierarchy

Hierarchical methods

Advantages

- More balanced classification problems
- Much lower Inference complexity

Disadvantages

- Error propagation (Local classifier methods)
- Non linear decision surfaces
- Data sparsity (leaf nodes)
- Hierarchy maybe irrelevant or wrong and needs to be simplified in practical cases (Cf. LSHTC3)

Main lessons from experiments

- Flat methods
 - Perform well up to few thousands of classes
 - Does not scale beyond tens of thousands
- Pure Hierarchical method
 - Much lower Inference AND training complexity

2,1h Hierarchical vs 1,8 months (flat) for training - 0.0016s vs 0,69s for testing (LYW $^+$ 05) (Yahoo! Dataset)

- Ususally found more accurate than flat methods (SF11)
- Data sparisty problem

Performance strongly corelated with the number of positive examples per category (LYW $^{+}05$)

- Partially irrelevant existing hierarchies
- In practice
 - Mix of ideas (e.g. Hierarchical classifier + label embedding in (SBG10))
 - Best performers in LSHTC series from different families

Ongoing work at LIP6

Improving flat monolabel classifiers

- Build on ECOC ideas but with low dimensional codes (p < L)
- Exploit Prior Label Relations (e.g. hierarchy) to design codes

Improving flat multilabel classifiers

- Design scalable multilabel classifiers that scale with the number of labels
- Use a low dimensional binary reduction again

Joint learning of the hierarchy and the hierarchical classifier

- No useful hierarchy for non text data (e.g. images)
- Many recent works in this direction / Preliminary works on that part

ECOC

Multiclass classification with ECOCs

- Binary reduction of a L multiclass classification
 - Replace with p > L binary classification problems
- Principle
 - Random generation of binary codes for every classes
 - Learn of a dicotomizer per bit
 - Inference through minimum Hamming distance between predicted binary vector and class codes

ECOC

Multiclass classification with ECOCs

- Binary reduction of a L multiclass classification
 - Replace with p > L binary classification problems
- Principle
 - Random generation of binary codes for every classes
 - Learn of a dicotomizer per bit
 - Inference through minimum Hamming distance between predicted binary vector and class codes

DSBDE Wshp - 17 July 2013 - Large Number of Classes

Learning compact class codes using a prior on label relations (CAG12)

Using prior label relation to design codes

Learn binary codes that preserves the similarity between labels (class representations)

- Learn real valued codes
- Binarize the codes by thresholding
- Then training and inference as in ECOC classifiers

Start with a similarity matrix computed from the hierarchy

$$\begin{bmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,L} \\ \dots & \dots & \dots & \dots \\ s_{i,1} & s_{i,2} & \dots & s_{i,L} \\ \dots & \dots & \dots & \dots \\ s_{L,1} & s_{L,2} & \dots & s_{L,L} \end{bmatrix}$$

$$s_i = (s_{i,1}, s_{i,2}, ..., s_{i,L})$$

 $s_{i,j} = e^{-d_{Tree}(i,j)}$

Repeat :

- pick randomly two vectors (s_i, s_j)
- make a gradient to optimize the corresponding loss

(日) (同) (三) (三) (三)

Start with a similarity matrix computed from the hierarchy

$$\begin{bmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,L} \\ \dots & \dots & \dots & \dots \\ s_{i,1} & s_{i,2} & \dots & s_{i,L} \\ \dots & \dots & \dots & \dots \\ s_{L,1} & s_{L,2} & \dots & s_{L,L} \end{bmatrix}$$

$$egin{aligned} s_i &= (s_{i,1}, s_{i,2}, ..., s_{i,L}) \ s_{i,j} &= e^{-d_{Tree}(i,j)} \end{aligned}$$

Repeat :

- pick randomly two vectors (s_i, s_j)
- make a gradient to optimize the corresponding loss

(日) (同) (三) (三) (三)

Start with a similarity matrix computed from the hierarchy

$$\begin{bmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,L} \\ \dots & \dots & \dots & \dots \\ s_{i,1} & s_{i,2} & \dots & s_{i,L} \\ \dots & \dots & \dots & \dots \\ s_{L,1} & s_{L,2} & \dots & s_{L,L} \end{bmatrix}$$

$$s_i = (s_{i,1}, s_{i,2}, ..., s_{i,L})$$

 $s_{i,j} = e^{-d_{Tree}(i,j)}$

Algorithm

Repeat :

- pick randomly two vectors (s_i, s_j)
- make a gradient to optimize the corresponding loss

(日) (同) (三) (三) (三)

Start with a similarity matrix computed from the hierarchy

$$\begin{bmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,L} \\ \dots & \dots & \dots & \dots \\ s_{i,1} & s_{i,2} & \dots & s_{i,L} \\ \dots & \dots & \dots & \dots \\ s_{L,1} & s_{L,2} & \dots & s_{L,L} \end{bmatrix}$$

$$s_i = (s_{i,1}, s_{i,2}, ..., s_{i,L})$$

 $s_{i,j} = e^{-d_{Tree}(i,j)}$

Algorithm

Repeat :

- pick randomly two vectors (s_i, s_j)
- make a gradient to optimize the corresponding loss

(日) (同) (三) (三) (三)

Start with a similarity matrix computed from the hierarchy

$$\begin{bmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,L} \\ \dots & \dots & \dots & \dots \\ s_{i,1} & s_{i,2} & \dots & s_{i,L} \\ \dots & \dots & \dots & \dots \\ s_{L,1} & s_{L,2} & \dots & s_{L,L} \end{bmatrix}$$

$$s_i = (s_{i,1}, s_{i,2}, ..., s_{i,L})$$

 $s_{i,j} = e^{-d_{Tree}(i,j)}$

Algorithm

Repeat :

- pick randomly two vectors (s_i, s_j)
- make a gradient to optimize the corresponding loss

(日) (同) (三) (三) (三)

Designing binary class codes

1: repeat

- 2: Pick randomly two samples (s_i, s_j) Make a gradient step to optimize $L_{\lambda,\alpha}(w)$
- 3: until convergence criteria is met
- 4: Compute the new representation of classes with the learned function $h_i = f(W \times s_i)$
- 5: for all j such that $1 \le j \le p$ do
- Compute the median m_j of (h_i(j))_{i=1..L}
- 7: Redefine $\forall i = 1..L, u_i(j) = 1$ if $u_i(j) > m_j, 0$ otherwise
- 8: end for
- 9: return Class code matrix U

Results on LSHTC1 datasets

Zero shot learning is also possible

# labels removed	10	20	30	40	50
Accuracy (%)	25.64	24.45	16.76	14.31	12.76
std	12.20	6.34	4.24	3.18	2.48

DSBDE Wshp - 17 July 2013 - Large Number of Classes

23 / 1

3

<ロ> (日) (日) (日) (日) (日)

Multilabel classification with Bloom filters

- Aim: Extend the previous idea to multilabel classification
- Main tool: Bloom Filters (BF)
 - Space efficient, random data structure for encoding small subsets of a large set of objects
 - The code of an element is defined by K hash functions
 - The code of a subset is the union of the codes of its elements
 - A code may be queried with a (small) false positive rate

イロト イポト イヨト イヨト

Multilabel classification with RBF

Multilabel Classification with BF

- Training
 - Define a BF (of length p) for encoding labels
 - Learn p binary classifiers
- Test
 - Compute the vectors of *p* predictions
 - Query every label
- May be fast provided p is small (p/L factor wrt. BR).

False positive rate

Unrecoverable Hamming Loss

- Due to the false positive rate fp(p, P, K) which depends on:
 - p the size of the BF
 - P the marginal distribution on the label sets
 - K ..
- Should be made negligible wrt overall prediction error
- It is possible to derive good estimation of *reasonnable B* from the dataset distribution on label sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Left: Hamming loss as a function of the BF's size p for the *Industries* dataset. The curves corrspond to various values of the number of hash function K.

Right: Hamming loss as a function of the number of hash function K for the *Industries* dataset. The curves corrspond to various values of BF's size

Image: A math a math

```
P.
DSBDE Wshp - 17 July 2013 - Large Number of Classes
```

Performances with comparative methods

Comparison of Binary Relevance (BR), Pruned Binary Relevance (cf. Dekel), Bloom Filter with standard decoding (BF-SD) and improved decoding (BF-CD)

Classifier	NC	HL	m-F1	M-F1	NC	HL	m-F1	M-F1
	RCV-Industries				Wikipedia1K			
BR	303	0.200	72.43	47.82	1000	0.0711	55.96	34.7
	75	0.360	30.00	15.72	100	0.1070	8.11	4.99
BR-Dekel	150	0.308	46.98	30.14	250	0.0984	22.18	12.16
	200	0.233	65.78	40.09	500	0.0868	38.33	24.52
BF-SD	75	0.246	63.43	34.76	100	0.0801	46.03	22.35
	100	0.223	67.45	40.29	250	0.0742	53.02	31.41
	200	0.217	68.32	40.95	500	0.0734	53.90	32.57
BF-CD	75	0.251	63.74	37.37	100	0.0778	49.97	24.80
	100	0.218	68.42	42.20	250	0.0726	54.79	32.35
	200	0.212	70.07	43.37	500	0.0713	55.79	34.23

Current work: Design class codes using some information about labels.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Conclusion

- No clear winner among flat, hierarchical, IR, label embedding...
- Usually best peforming methods exploit many ideas
- Various settings (organization vs. tags) require various solution
- Medium scale problems (thousands to tens of thousands)
 - Flat methods are probably difficult to beat... but no really scalable such method for multilabelclassification
- Large scale problems (more than tens of thousands)
 - Hierarchical are mandatory
 - For texts: Hierarchies may be useful provided some cleaning / simplification
 - For images: Still much work to be done for automatc learning of hierarchies from data

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Conclusion

- [BWG10] Samy Bengio, Jason Weston, and David Grangier, Label embedding trees for large multi-class tasks, Advances in Neural Information Processing Systems 23 (J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.), 2010, pp. 163–171.
- [CAG12] M. Cissé, Thierry Artières, and Patrick Gallinari, Learning compact class codes for fast inference in large multi class classification, ECML/PKDD (1), 2012, pp. 506–520.
- [CH04] Lijuan Cai and Thomas Hofmann, Hierarchical document categorization with support vector machines, Proceedings of the thirteenth ACM international conference on Information and knowledge management, 2004, pp. 78–87.
- [CLCF07] E.P. Costa, A.C. Lorena, A.C.P.L.F. Carvalho, and A.A. Freitas, A review of performance evaluation measures for hierarchical classifiers, Evaluation Methods for Machine Learning II: papers from the AAAI-2007 Workshop, AAAI Technical Report WS-07-05, July 2007, pp. 1–6.
 - [DS10] Ofer Dekel and Ohad Shamir, Multiclass-multilabel classification with more classes than examples, vol. 9, 2010, pp. 137–144.
- [LYW⁺05] Tie-Yan Liu, Yiming Yang, Hao Wan, Qian Zhou, Bin Gao, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma, An experimental study on large-scale web categorization, WWW (Special interest tracks and posters), 2005, pp. 1106–1107.
 - [SBG10] J. Weston S. Bengio and D. Grangier, Label embedding trees for large multi-class tasks, NIPS, 2010.
 - [SF11] Carlos N. Silla, Jr. and Alex A. Freitas, A survey of hierarchical classification across different application domains, Data Min. Knowl. Discov. 22 (2011), no. 1-2, 31–72.
 - [TKV10] G. Tsoumakas, I. Katakis, and I. Vlahavas, Random k-labelsets for multi-label classification, IEEE Transactions on Knowledge Discovery and Data Engineering, 2010.

DSBDE Wshp - 17 July 2013 - Large Number of Classes